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Abstract. This is the first of two articles studying the structure of left ade-
quate and, more generally, of left Ehresmann monoids. Motivated by a careful
analysis of normal forms, we introduce here a concept of proper for a left
adequate monoid M . In fact, our notion is that of T -proper, where T is a
submonoid of M . We show that any left adequate monoid M has an X

∗-

proper cover for some set X , that is, there is a left adequate monoid M̂ that

is X
∗-proper, and an idempotent separating epimorphism θ : M̂ → M of the

appropriate type. Given this result, we may deduce that the free left adequate
monoid on any set X is X

∗-proper.
In a subsequent paper, we show how to construct T -proper left adequate

monoids from any monoid T acting via order preserving maps on a semilattice
with identity, and prove that the free left adequate monoid is of this form. An
alternative description of the free left adequate monoid appears in a recent
preprint of Kambites. We show how to obtain the labelled trees appearing in
his result from our structure theorem.

Our results apply to the wider class of left Ehresmann monoids, and we give
them in full generality. We also indicate how to obtain some of the analogous
results in the two-sided case. This paper and its sequel, and the two of Kam-
bites on free (left) adequate semigroups, demonstrate the rich but accessible
structure of (left) adequate semigroups and monoids, introduced with startling
insight by Fountain some 30 years ago.

Introduction

Left adequate monoids were introduced by Fountain in [3] as monoids M for
which every principal left ideal is projective as a left M-act, and such that the
set E(M) of idempotents forms a semilattice. The former condition is equivalent
to every R∗-class of M containing an idempotent; the latter guarantees that this
idempotent is unique. Denoting by a+ the (unique) idempotent in the R∗-class
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of a ∈ M , it is easy to see that the class of left adequate monoids forms a quasi-
variety of algebras of type (2, 1, 0) (that is, possessing the binary and nullary
monoid operations, and the unary operation of +, as basic operations), but not a
variety.

If M is an inverse monoid, then R∗ = R onM and certainly M is left adequate.
The structure of the free inverse monoid FIM(X) on a set X was discovered
by Scheiblich [23] and Munn [22]. Certainly FIM(X) is E-unitary, which for
an inverse monoid is equivalent to being proper, that is, R ∩ σ = ι. Here σ is
the least congruence on a monoid M identifying all the idempotents, so that if
M is inverse, σ is the least group congruence. The powerful results of McAlister
[20, 21] show that proper inverse monoids are ubiquitous in the sense that any

inverse monoid M is closely related to a proper inverse monoid M̂ (its ‘cover’)
and moreover, any proper inverse monoid P can be constructed from a group G
acting by order automorphisms on a partially ordered set X with subsemilattice
Y (P is isomorphic to a ‘P-semigroup’ P = P(G,X, Y )). In the case X = Y , the
semigroup P becomes a semidirect product.

Naturally, one would wish for similar theory for left adequate monoids. It
was rapidly realised, however, that this was overambitious, and to succeed one
would need to specialise to left ample monoids (formerly, left type A), that is, left
adequate monoids satisfying xy+ = (xy+)+x. This identity, which ensures some
control over the position of idempotents in products, is what enables the free left
ample monoid FLAmM(X) on X to be embedded in FIM(X) [6]. Further,
FLAmM(X) is proper in the sense that R∗ ∩ σ = ι, where σ is now the least
right cancellative congruence. A theory analogous to that of McAlister has been
developed for left ample monoids, initially by Fountain in [4].

Until recently, little was known of the structure of left adequate monoids in
general. We aim to address this issue in the current article and its sequel [10].
After Section 1 of preliminaries, we take a simple minded approach to the struc-
ture of left ample monoids in Section 2. The purpose of our analysis is to focus
on the role of normal forms in left ample monoids, which enables us enroute to
make some comments on the notion of factorisability, and, more significantly,
leads us in Section 3 to develop a theory of T -normal forms, and a concept of
being T -proper, where T is a submonoid of a left adequate monoid M . In Sec-
tion 4 we show that every left adequate monoid has an X∗-proper cover. Finally
in Section 5, without fully determining at this stage the structure of the free
left adequate monoid FLAdM(X) on a set X, we show that FLAdM(X) is
X∗-proper.

In the subsequent article [10], we develop a ‘recipe’ for constructing a T -proper
left adequate monoid P(T, Y ) from a right cancellative monoid T acting by order-
preserving maps on a semilattice Y with identity, that is in a loose sense an
analogue of a semidirect product. Our construction is inspired by that of the
free left h-adequate monoid given in [5], where it occurs in the very special case



STRUCTURE OF LEFT ADEQUATE AND LEFT EHRESMANN MONOIDS 3

of T being a free monoid. Left h-adequate monoids need not be left ample,
but neither is every left adequate monoid left h-adequate [3]. We also show
that a left adequate monoid M has uniqueness of T -normal forms if and only
if it is isomorphic to P(T,E(M)) and further, every left adequate monoid has
a proper cover of the form P(X∗, E(M)). We then use our recipe to provide a
description of FLAdM(X). An alternative description appears in the preprint
[15] of Kambites, which arises from his consideration of the free adequate monoid
in [16].

All of our results are given in the more general setting of left Ehresmann
monoids. Such monoids have been championed by Lawson [18]; they are the
variety generated by the quasi-variety of left adequate monoids (see [10] and
[15]). We also remark that we concentrate on monoids rather than semigroups.
For technical reasons this makes some of our arguments more straightforward;
the free left adequate monoid is the free left adequate semigroup with an identity
adjoined (see [15]), so there is no significant loss in generality.

1. Preliminaries

In this section we give the basic definitions and results needed for the rest of
the article. We first define twenty one related quasi-varieties of algebras. Since
some of our results apply to all of these quasi-varieties, the effort is worthwhile.
Further details may be found in the notes [12].

The relation R∗ is defined on a monoid M by the rule that for any a, b ∈ M ,
aR∗ b if and only if for all x, y ∈M ,

xa = ya if and only if xb = yb.

It is easy to see that R∗ is a left congruence, R ⊆ R∗ and R = R∗ if M is regular.
In general, however, the inclusion can be strict. Let M be a monoid and suppose
now that E ⊆ E(M) and E forms a commutative subsemigroup of M ; we will
say simply that E is a semilattice in M .

Definition 1.1. A monoid M is left E-adequate if E is a semilattice in M , and
every R∗-class contains an idempotent of E. If E = E(M) then we say that M
is left adequate.

In further definitions, where E = E(M), we may drop explicit mention of E,
as in Definition 1.1. From the commutativity of idempotents it is clear that any
R∗-class contains at most one idempotent of E. Where it exists we denote the
(unique) idempotent of E in the R∗-class of a by a+. If every R∗-class contains an
idempotent of E, then + is a unary operation on M and we may regard M as an
algebra of type (2, 1, 0); as such, morphisms must preserve the unary operation
of + (and hence the relation R∗). We may refer to such morphisms as ‘(2, 1, 0)-
morphisms’ if there is danger of ambiguity. Of course, any semigroup isomorphism
must preserve the additional operations. Similarly, if X is a set of generators of a
left E-adequate monoid as an algebra with the augmented signature, then we say



4 MARIO BRANCO, GRACINDA GOMES, AND VICTORIA GOULD

that X is a set of (2, 1, 0)-generators and write M = 〈X〉(2,1,0) for emphasis. We
remark here that if M is inverse and E = E(M), then a+ = aa−1 for all a ∈M .

Definition 1.2. A left adequate monoid M is left ample if the left ample identity
(AL) holds:

xy+ = (xy+)+x (AL).

We observe that there is no need to explicity define and discuss ‘left E-ample
monoids’, since if a left E-adequate monoid satisfies (AL), E is forced to be E(S).

Remark 1.3. The class of left E-adequate monoids forms a quasi-variety of
algebras of type (2, 1, 0) with sub-quasi-varieties the classes of left adequate and
left ample monoids.

Left ample monoids have a nice representation theory: they are precisely the
submonoids of symmetric inverse monoids closed under + (see, for example [12]).

The relation L∗ is the dual of R∗ and may be used to give an abstract charac-
terisation of right (E-)adequate and right ample monoids. We denote the unique
idempotent in the L∗-class of a, where it exists, by a∗. Observe that if M is
inverse, then a∗ = a−1a for all a ∈M . The right ample identity (AR) states that
b∗a = a(b∗a)∗ for all a, b ∈M . A monoid is E-adequate if it is both left and right
E-adequate with respect to the same semilattice E, and adequate (ample) if it is
both left and right adequate (ample). The class of E-adequate monoids therefore
forms a quasi-variety of algebras of type (2, 1, 1, 0), with sub-quasi-varieties the
quasi-varieties of adequate and ample monoids.

left ample

left adequate

left E-adequate

ample

adequate

E-adequate

right ample

right adequate

right E-adequate

We remark that as any inverse monoid is certainly ample, any submonoid of
an inverse monoid that is closed under + and ∗ is ample. On the other hand it is
undecidable whether a finite ample monoid embeds as a (2, 1, 1, 0)-algebra into
an inverse monoid [13].
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We now turn our attention to classes defined by certain relations R̃E and L̃E .

Again, let E be a semilattice in a monoid M . The relation R̃E on M is defined
by the rule that for any a, b ∈M , a R̃E b if and only if for all e ∈ E,

ea = a if and only if eb = b,

that is, a and b have the same set of left identities fromE. Dually, we define L̃E . It

is easy to see that for any monoidM , we have R ⊆ R∗ ⊆ R̃E, with both inclusions
equalities if M is regular and E = E(M); in general, however, these inclusions

can be strict. The relation R̃E is certainly an equivalence; however, unlike the
case for R and R∗, it need not be left compatible, not even when E = E(M).
As a guide, the adjective ‘weakly’ in front of any of the classes appearing in the
above diagram denotes the correponding class obtained by replacing R∗ (L∗) in

the definition by R̃E (L̃E), with the addition of the condition that R̃E (L̃E) be
a left (right) congruence.

It is clear that any R̃E-class contains at most one idempotent from E. If every

R̃E-class contains an idempotent of E, we again have a unary operation a 7→ a+,
where a+ is now the (unique) idempotent of E in the R̃E-class of a. We may then
consider M as an algebra of type (2, 1, 0). Notice that a+ is the least element in
the set of left identities of a lying in E, with respect to the natural partial order
on E. In the case that E = E(M), we continue to drop the ‘E’ from notation

and terminology, for example, we write R̃E(M) more simply as R̃.

Definition 1.4. A monoid M with semilattice E is left Ehresmann (with dis-

tinguished semilattice E) if every R̃E-class contains an idempotent of E and R̃E

is a left congruence. In addition, if E = E(M), we say that M is weakly left
adequate; if M satisfies (AL), then M is left restriction and if E = E(M) and M
satisfies (AL), then M is weakly left ample.

According to our convention, left Ehresmann monoids may also be referred
to as weakly left E-adequate monoids. Left restriction monoids have arisen in
a number of contexts (see [12]) and have received various names, in particular
that of weakly left E-ample (see, for example, [7]). They are precisely those
submonoids of partial transformation monoids closed under +, where α+ is the
identity map in the domain of α.

Remark 1.5. The class of left Ehresmann monoids is a variety of algebras of
type (2, 1, 0), with the class of left restriction monoids being a subvariety, and the
classes of weakly left adequate (ample) monoids being sub-quasi-varieties.

It is worth making the remark that if M is a left Ehresmann monoid, then
E = {a+ : a ∈M}. Moreover, the identity of M must lie in E, for we must have
that 1+ = 1.

Right Ehresmann, right restriction, weakly right adequate and weakly right
ample monoids may be defined in terms of L̃ and L̃E. In each case, we denote
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the dual of the operation + by ∗. A monoid is Ehresmann (restriction) if it is
both left and right Ehresmann (restriction) with respect to the same semilattice
E, in this case E = {a+ : a ∈ M} = {a∗ : a ∈ M}. Similarly, a monoid is
weakly adequate (ample) if it is both left and right weakly adequate (ample).
Ehresmann monoids form a variety of algebras of type (2, 1, 1, 0), with subvariety
the variety of restriction monoids, and sub-quasi-varieties the quasi-varieties of
weakly adequate and of weakly ample monoids.

The following diagram depicts some of the inclusion relation between the classes
discussed.

weakly left adequate

weakly left ample

left Ehresmann

left restriction

left ample

left adequate

left E-adequate

After a discussion of left ample monoids and left restriction monoids in Sec-
tion 2, largely by way of illustration and motivation, the paper will focus on left
Ehresmann monoids i.e. we dispense with Condition (AL).

We now give a technical result which will be useful in the subsequent sections.

It follows immediately from the fact that in a left Ehresmann monoid, R̃E is a
left congruence. The relation ≤ appearing in its statement is the natural partial
order on E.

Lemma 1.6. Let M be a left Ehresmann monoid. Then for any a, b ∈ M and
e ∈ E, (ab)+ = (ab+)+, (ea)+ = ea+ and (ab)+ ≤ a+.

The following lemma is folklore, but we include its proof here for complete-
ness, since the underlying idea is central to our approach to the structure of left
Ehresmann monoids.

Lemma 1.7. Let M be a left Ehresmann monoid and let T be a submonoid of M .
Then T acts on E on the left via order preserving maps by (t, e) 7→ t · e = (te)+.
If M is left restriction, then the action is by morphisms of E.

Proof. For any e ∈ E, we have that 1 · e = (1e)+ = e+ = e, and for any s, t ∈ T ,

st · e = (ste)+ = (s(te)+)+ = s · (te)+ = s · (t · e),
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by Lemma 1.6. Hence T acts on E.
If e, f ∈ E and e ≤ f , then for any s ∈ T

(sf)+se = (sf)+(sf)e = sfe = se,

so that (se)+ ≤ (sf)+, since (se)+ is the minimum left identity of se in E. Thus
· is an order-preserving action.

Suppose now that M is left restriction, so that ae = (ae)+a for all a ∈M and
e ∈ E. Then for any t ∈ T and e, f ∈ E we have

t · (ef) = (tef)+ = ((te)+tf)+ = ((te)+(tf)+)+ = (te)+(tf)+ = (t · e)(t · f),

so that T acts by morphisms as required. �

We recall that a left Ehresmann monoid M is said to be hedged [9] if · is an
action by morphisms; in particular, if the left ample identity holds, then M is
hedged.

Let S be a semigroup and suppose that E ⊆ E(S). We define the relation σE

to be the semigroup congruence on S generated by E×E; that is, for any a, b ∈ S
we have that a σE b if and only if a = b or there exists a sequence

a = c1e1d1, c1f1d1 = c2e2f2, . . . , cnfndn = b,

where c1, d1, . . . , cn, dn ∈ S1 and (e1, f1), . . . , (en, fn) ∈ E × E. Notice that in a
left Ehresmann monoid M , for any a, b ∈ M , a+ σE b

+ (whether or not a σE b),
giving us the following.

Lemma 1.8. Let M be a left Ehresmman monoid with distinguished semilattice
E. Then E is contained in a σE-class and σE is a (2, 1, 0)-congruence.

With the addition of (AL), we have a closed formula for σE .

Lemma 1.9. [7, Proposition 2.5]. Let S be a left restriction semigroup with
distinguished semilattice of idempotents E. Then a σE b if and only if ea = eb for
some e ∈ E.

If E = E(M) then we write σ for σE(M). From [4, 11, 12, 14, 17] we have the
following.

Proposition 1.10. Let M be a monoid and E ⊆ E(M) a semilattice:
(i) if M is left restriction with E = E(M), then σ is the least unipotent con-

gruence on M ;
(ii) if M is left ample, then σ is the least right cancellative congruence on M ;
(iii) if M is ample, then σ is the least cancellative congruence on M ;
(iv) if M is inverse, then σ is the least group congruence on M .

Considerations of duality now tell us that if M is right restriction, then a σE b
if and only if af = bf for some f ∈ E.

It is well known that an inverse monoid is E-unitary if and only if it is proper,
where here proper means that R ∩ σ = ι or equivalently, L ∩ σ = ι. Analogously,
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we say that a left ample monoid is proper if R∗ ∩ σ = ι, and a left restriction
monoid is proper if R̃E ∩ σE = ι. Since R∗ = R̃ for a left ample monoid (and so
certainly for an inverse monoid), there is little danger of ambiguity. In the two
sided case (where in general we do not have the natural duality guaranteed by the
existence of the involution −1 in the inverse case), we say that an ample monoid
is proper if R∗ ∩ σ = L∗ ∩ σ = ι, with the obvious alteration in the restriction
case. Proper left ample monoids are E-unitary, but the converse is not true [4].

In this article we require care with signatures. To this end we give a technical
but straightforward result, the proof of which we omit.

Lemma 1.11. (i) Let M be a left Ehresmann monoid with distinguished semi-
lattice E, and let X be a subset of M . Put T = 〈X〉(2,0). Then

〈E ∪X〉(2,1,0) = 〈E ∪X〉(2) = 〈E ∪ T 〉(2) = 〈E ∪ T 〉(2,1,0).

(ii) Let M be an Ehresmann monoid with distinguished semilattice E, and let
X be a subset of M . Put T = 〈X〉(2,0). Then

〈E ∪X〉(2,1,1,0) = 〈E ∪X〉(2) = 〈E ∪ T 〉(2) = 〈E ∪ T 〉(2,1,1,0).

Corollary 1.12. (i) Let M be a left Ehresmann monoid with distinguished semi-
lattice E, and suppose that M = 〈X〉(2,1,0). Put T = 〈X〉(2,0). Then M =
〈E ∪ T 〉(2).

(ii) Let M be an Ehresmann monoid with distinguished semilattice E, and
suppose that M = 〈X〉(2,1,1,0). Put T = 〈X〉(2,0). Then M = 〈E ∪ T 〉(2).

Proof. For (i) We have that

M = 〈X〉(2,1,0) = 〈E ∪X〉(2,1,0) = 〈E ∪ T 〉(2),

from Lemma 1.11. The proof of (ii) is virtually identical. �

For convenience we define a list (L ) of the quasi-varieties and varieties of
monoids we have discussed. More accurately, these are classes of algebras with
an underlying monoid structure:

(i) left (or right, or two-sided) ample;
(ii) weakly left (or right, or two-sided) ample;
(iii) left (or right, or two-sided) restriction;
(iv) left (or right, or two-sided) adequate;
(v) left (or right, or two-sided) E-adequate;
(vi) weakly left (or right, or two-sided) adequate;
(vii) left (or right, or two-sided) Ehresmann.

In Section 5 we show that if M is free on X in any class in our list (L ), and if
T = 〈X〉(2,0) as above, then T ∼= X∗ ∼= M/σE .
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2. Left restriction monoids

To set the scene for our investigation of left adequate and related monoids, we
give a short discussion of the approach to proper covers in the case where the
ample identity holds.

We recall that a left restriction monoid M with distinguished semilattice E

is proper if R̃E ∩ σE = ι. This tells us that M is a subdirect product as a
set of M/R̃E and M/σE . Since every element of M is R̃E-related to a unique

idempotent of E, we may identify M/R̃E with E. Letting

P = {(s+, sσE) : s ∈M}

and defining θ : M → P by sθ = (s+, sσE), then (P, ∗) is a semigroup isomorphic
to M under

sθ ∗ tθ = (st)θ.

The aim of a ‘P -theorem’ is to show that there is an action ofM/σE on a partially
ordered set E containing E as a subsemilattice, such that the binary operation
∗ is given as in a semidirect product, that is, by

(e, sσE) ∗ (f, tσE) = (e ∧ (sσE · f), sσEtσE).

Let M be a left Ehresmann monoid, and let T be a submonoid of M such that
M = 〈E ∪ T 〉(2) where E is the distinguished semilattice of M . We say that a
pair (e, t) ∈ E × T is a strong T -normal form if e ≤ t+. If m ∈ M and m = et
where (e, t) is a strong T -normal form, then we say that m = et is a factorisation
of m in strong T -normal form. Where there is no danger of ambiguity, we may
say that et is, or is in, strong T -normal form, if e ≤ t+. Observe that, in this
case, m+ = (et)+ = et+ = e, so e is unique.

A left Ehresmann monoid M with distinguished semilattice E is said to be
factorisable by a submonoid T if M = ET .

Lemma 2.1. Let M be a left Ehresmann monoid with distinguished semilattice
E. Suppose that T is a submonoid of M . Then:

(a) If M = 〈E ∪ T 〉(2) and M is left restriction, then M = ET , i.e. M is
factorisable by T .

(b) If M is factorisable by T , then

(i) any m ∈M can be written in strong T -normal form;
(ii) for any [m] ∈M/σE we have that [m] = [a] for some a ∈ T ;
(iii) if m = ea and n = fb where e, f ∈ E, a, b ∈ T are factorisations in strong

T -normal form, then

m (R̃E ∩ σE)n if and only if e = f and a σE b.

Proof. (a) Certainly E ∪ T ⊆ ET , as 1 ∈ E ∩ T . If ea, fb ∈ ET where e, f ∈ E
and a, b ∈ T , then

(ea)(fb) = e(af)b = e(af)+ab ∈ ET.
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It follows that M = ET .
(b) Suppose that M is factorisable by T .
(i) Simply note that if e ∈ E and a ∈ T , then ea = ea+a and ea+ ≤ a+.
(ii) Let m ∈M and write m as m = ea for some e ∈ E and a ∈ T ; then clearly

m = ea σE a
+a = a.

(iii) Let m,n, e, f, a and b be as given. Notice that m+ = e, n+ = f , mσE a
and nσE b, from which the result follows. �

If every element of M has a unique expression as a strong T -normal form, we
say that M has uniqueness of strong T -normal forms.

Lemma 2.2. Let M be a left restriction monoid with distinguished semilattice E
such that M is factorisable by a submonoid T . Then M has uniqueness of strong
T -normal forms if and only if ν = νσE

|T : T → M/σE is a monoid isomorphism.

Proof. Suppose that M has uniqueness of strong T -normal forms. By Lemma 2.1
(b)(ii), the map ν is onto. If s, t ∈ T and sν = tν, then es = et for some e ∈ E, by
Lemma 1.9. It follows that (es+t+)s = (es+t+)t, and as (es+t+, s) and (es+t+, t)
are strong T -normal forms, we have that s = t and ν is injective. Hence ν is an
isomorphism.

Conversely, suppose that ν is an isomorphism, and es = ft where (e, s) and
(f, t) are strong T -normal forms. Then sν = tν, so that s = t. Moreover,

e = es+ = (es)+ = (ft)+ = ft+ = f.

Hence (e, s) = (f, t) and M has uniqueness of strong T -normal forms. �

Lemma 2.3. Let M be a left restriction monoid with distinguished semilattice
E, factorisable by a submonoid T (or equivalently, M = 〈E ∪ T 〉(2)). If M has

uniqueness of strong T -normal forms, then R̃E ∩ σE = ι so that M is proper.

Proof. Let m = es and n = ft be elements of M in strong T -normal form, and

suppose thatm (R̃E∩σE)n. From Lemma 2.1, e = f and s σE t. From Lemma 2.2
it follows that s = t so that m = n and M is proper. �

A left Ehresmann monoid Q with distinguished semilattice E ′ is said to be a
cover of a left Ehresmann monoid M with distinguished semilattice E if there
exists a (2, 1, 0)-morphism from Q onto M which is injective on E ′.

Let M be a left restriction monoid with distinguished semilattice E, and sub-
monoid T . From Lemma 1.7, we know that T acts on the left of E via morphisms.
We may thus form the semidirect product E ∗ T . From [7, Lemma 6.2]

E ∗m T = {(e, t) ∈ E × T : e ≤ t+}

is a proper left restriction monoid with (e, t)+ = (e, 1), identity (1, 1) and distin-
guished semilattice

E = {(e, 1) : e ∈ E}.
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Proposition 2.4. Let M be a left restriction monoid with distinguished semilat-
tice E and submonoid T .

(i) The function θ : E ∗m T → M given by (e, t)θ = et is an E-separating
morphism from E ∗m T to M .

(ii) The monoid is E ∗m T is a proper cover of M via the morphism θ if and
only if M = 〈E ∪ T 〉(2) (if and only if M is factorisable by T ).

(iii) If M = 〈E ∪ T 〉(2), then M has uniqueness of strong T -normal forms if
and only if θ is an isomorphism.

Proof. Clearly θ preserves the identity; if (e, s) ∈ E ∗m T , then
(
(e, s)θ

)+
= (es)+ = es+ = e = (e, 1)θ = (e, s)+θ.

If in addition (f, t) ∈ E ∗m T , then
(
(e, s)(f, t)

)
θ = (e(sf)+, st)θ = e(sf)+st = esft = (e, s)θ(f, t)θ,

so that θ is a morphism. Clearly θ is E-separating.
If θ is onto, then M = ET , so that certainly M = 〈E ∪ T 〉(2). The converse

follows by Lemma 2.1 (b)(i). Hence (ii) holds.
If M = 〈E ∪ T 〉(2), then M has uniqueness of strong T -normal forms if and

only if each m ∈ M has a unique expression as m = et for some e ∈ E, t ∈ T
with e ≤ t+. But this is exactly saying that for each m ∈M , mθ−1 is a singleton,
or equivalently, θ is one-one. �

We pause to consider the application of the above results to the concept of fac-
torisability for inverse monoids and their generalisations. Recall that an inverse
monoid is certainly left restriction where m+ = mm−1 (so that E = E(M)). An
inverse monoid is factorisable if M = E(M)U(M), where U(M) is the group of
units of M .

The last proposition applied to the inverse case gives the well known result
that an inverse monoid M is factorisable if and only if it admits the semidirect
product E(M) ∗ U(M), where the action is given by g · e = geg−1 = (ge)+, as
proper cover, via the map (e, g) 7→ eg.

We now demonstrate this in the broader setting of left restriction monoids.
The concept of a factorisable right adequate monoid is due to El Qallali, and
first appeared in [1]; the dual was considered by El Qallali and Fountain for left
ample monoids in [2]. These concepts are discussed in detail by Szendrei and the
second author in [8]. We say that a left restriction monoid M is factorisable if it

is factorisable by R̃1, where R̃1 is the R̃E-class of 1. That is, M is factorisable if
M = ER̃1; this extends the definition in [8] given in the case E = E(M).

Proposition 2.5. Let M be a left restriction monoid. Then M is proper and

factorisable if and only if M is isomorphic to the semidirect product E ∗ R̃1 under
the isomorphism (e,m) 7→ em.
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Proof. We first note that R̃1 is certainly a submonoid of M , and as by very

definition, m+ = 1 for any m ∈ R̃1, we have that E ∗m R̃1 = E ∗ R̃1.
If θ : E ∗ R̃1 →M is an isomorphism, then by Proposition 2.4 and Lemma 2.3,

M is proper and factorisable.
Conversely, if M is factorisable, then θ is onto and certainly M = 〈E ∪ R̃1〉(2).

Suppose now that M is also proper and eg = fh, where (e, g), (f, h) ∈ E ∗ R̃1.
Then g σE h and since g+ = 1 = h+, we have that g = h as M is proper. Also,
e = (eg)+ = (fh)+ = f , and therefore θ is an isomorphism. �

The above result may easily be adapted to give the characterisation of proper
(i.e. E-unitary) factorisable inverse monoids as semidirect products of semilattices

by groups (where we must take the submonoid U(M) of R̃1) [19].
We have shown how the concepts of proper and unique strong normal forms

are intrinsically related in the world of left restriction monoids. The importance
of the class of proper left restriction monoids is well established. In the next
section we investigate the corresponding class of left Ehresmann monoids.

We remark that (in view of the next section) we could have defined ‘strong
T -normal form’ in a slightly different way, by insisting that in a product ea we
have e = 1 or e < a+. However, the approach we have taken is easier to present.

3. Proper left Ehresmann monoids

Once we drop the ‘ample’ condition, moving from classes of left restriction
monoids to classes of left Ehresmann monoids, the nice behaviour of generators
as in Lemma 2.1 does not hold; consequently, we cannot describe the structure
of these monoids using semidirect products.

The following result is obtained from a series of straightforward manoevres,
but provides us with an important idea.

Lemma 3.1. Let M be a left Ehresmann monoid. Suppose that M = 〈E ∪ T 〉(2)
for some submonoid T of M . Then any x ∈M can be written as

x = t0e1t1 . . . entn,

where n ≥ 0, e1, . . . , en ∈ E \ {1}, t1, . . . , tn−1 ∈ T \ {1}, t0, tn ∈ T and for
1 ≤ i ≤ n,

ei < (tiei+1 . . . entn)+.

Proof. Since M is generated as a semigroup by E and T , and bearing in mind
that 1 ∈ T , any element x of M can be written as x = s0f1s1 . . . fmsm for some
s0, . . . , sm ∈ T and f1, . . . , fm ∈ E. We now give an algorithm for reducing m to
an expression in the required form.
Step 1. Eliminate all fi’s such that fi(si . . . fmsm)+ = (si . . . fmsm)+ to ob-
tain x = u0g1u1 . . . gkuk where u0, . . . , uk ∈ T and g1, . . . , gk ∈ E are such that
gi(ui . . . gkuk)

+ < (ui . . . gkuk)
+.
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Step 2. For each i ∈ {1, . . . , k}, we put

g′i = gi(ui . . . gkuk)
+.

Certainly

gkuk = gku
+
k uk = g′kuk.

Suppose for induction we have

giui . . . gkuk = g′iui . . . g
′

kuk.

Then

gi−1ui−1giui . . . gkuk = gi−1(ui−1giui . . . gkuk)
+ui−1giui . . . gkuk

= g′i−1ui−1giui . . . gkuk

= g′i−1ui−1g
′

iui . . . g
′

kuk.

Hence

x = s0f1s1 . . . fmsm = u0g1u1 . . . gkuk = u0g
′

1u1 . . . g
′

kuk.

Notice that for each i ∈ {1, . . . , k} we have that

g′i < (uigi+1 . . . gkuk)
+ = (uig

′

i+1 . . . g
′

kuk)
+

and observe that no g′i can be equal to 1.
Step 3. Finally we delete any interior ui’s that are 1. Suppose that ui = 1
for some i ∈ {1, . . . , k − 1} and let ℓ ∈ {1, . . . , k − 1} be greatest such that
uℓ = uℓ−1 = . . . = uh = 1, but uh−1 6= 1 (or h = 1). Then

g′huh . . . g
′

kuk = g′hg
′

h+1 . . . g
′

ℓg
′

ℓ+1uℓ+1g
′

ℓ+2 . . . g
′

kuk

and

g′hg
′

h+1 . . . g
′

ℓg
′

ℓ+1 ≤ g′ℓ+1 < (uℓ+1g
′

ℓ+2 . . . g
′

kuk)
+.

We have

x = u0g
′

1u1 . . . uh−1(g
′

hg
′

h+1 . . . g
′

ℓg
′

ℓ+1)uℓ+1g
′

ℓ+2 . . . g
′

kuk

where

uh−1(g
′

hg
′

h+1 . . . gℓg
′

ℓ+1)uℓ+1g
′

ℓ+2 . . . g
′

kuk = uh−1g
′

huh . . . g
′

kuk.

Delete the next right-most block of ui’s that are equal to 1 and continue until
there are no interior 1’s and x is now reduced to the required form.

It is worth noticing that in the last reductions, a product g′hg
′

h+1 . . . g
′

ℓg
′

ℓ+1 is in
fact equal to g′h. Since, if uh = 1, then

g′h < (uhg
′

h+1 . . . g
′

kuk)
+ = (g′h+1 . . . g

′

kuk)
+ = g′h+1(uh+1 . . . g

′

kuk)
+ ≤ g′h+1.

�

We will say that an element x = t0e1t1 . . . entn expressed as in the statement
of Lemma 3.1 is in T -normal form; if T = M then we say ‘normal form’. Notice
that x+ = (t0e1)

+. If every element of M has a unique expression in T -normal
form, then we say that M has uniqueness of T -normal forms.
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Since the above reduction process and the concept of uniqueness of T -normal
forms will be crucial to some later results, in particular in Proposition 3.9, we
pause to make a number of comments. Let M and T be as in Lemma 3.1. If

x = t0e1t1 . . . entn,

where n ≥ 0, e1, . . . , en ∈ E, and t0, t1, . . . , tn ∈ T , then the first two steps of the
reduction process eliminate any ei’s with ei ≥ (tiei+1 . . . entn)+. We are then left
with

x = u0f1u1 . . . fmum

where ui ∈ T, i ∈ {0, . . . , m} and fj ∈ E with fj < (ujfj+1 . . . fmum)+, 1 ≤
j ≤ m. As a temporary definition, let us say that x is in weak T -normal form.
The remaining step is to eliminate an of u1, . . . , um−1 (‘interior ui’s’) that are
1. Notice that at this stage none of the fj ’s will dispappear, but they may be
amalgamated with other idempotents by virtue of eliminating ui’s.

Suppose now that M has uniqueness of T -normal forms and

u0f1u1 . . . fk−1uk−1fkuk . . . fmum = v0g1v1 . . . gℓvℓfkuk . . . fmum (∗)

where both sides are in weak T -normal form and uj 6= 1, k ≤ j ≤ m − 1. Put
a = u0f1 . . . uk−1 and b = v0g1 . . . vℓ. The reduction of both sides of (*) to T -
normal form involves eliminating from a any of u0, . . . , uk−1 that are equal to 1
to obtain an expression a′, and eliminating from b any of v0, . . . , vℓ that are equal
to 1 to obtain b′, where

a′fkuk . . . fmum = b′fkuk . . . fmum

and both sides are in T -normal form. Consequently, a′fk = b′fk and (as a = a′

and b = b′), we have that

u0f1u1 . . . uk−1fk = v0g1v1 . . . vℓfk.

Observing the algorithm in Lemma 3.1, we notice that we only delete (interior)
elements of T that are equal to 1, and this does not affect the value of any (non-
empty) product.

Remark 3.2. Let x = u0f1u1 . . . fmum be a product of elements of T and E, as
in the proof of Lemma 3.1, and suppose that the reduction process described in
that lemma yields x = t0e1t1 . . . entn in T -normal form. Then

t0t1 . . . tn = u0u1 . . . um.

We introduce a class of left Ehresmann monoids that play the role for the class
of all left Ehresmann monoids that groups play for inverse monoids, cancellative
monoids play for ample monoids, etc.

Definition 3.3. Let M be a left Ehresmann monoid. We say that M is reduced
if m+ = 1 for all m ∈M , i.e. E = {1}.

Note that any monoid is a reduced left Ehresmann monoid - we have simply
augmented the monoid signature.



STRUCTURE OF LEFT ADEQUATE AND LEFT EHRESMANN MONOIDS 15

Proposition 3.4. Let M be a left Ehresmann monoid where M = 〈E ∪ T 〉(2)
for some submonoid T of M . Suppose that M has uniqueness of T -normal
forms. Then the map cT : M → T given by cT (a) = t0t1 . . . tn where t0, . . . , tn ∈
T, e1, . . . , en ∈ E and a = t0e1t1 . . . entn, is a well-defined monoid morphism with
ker cT = σE so that M/σE

∼= T as monoids. Moreover, if T is regarded as being a
reduced left Ehresmann monoid, then cT is a (2, 1, 0)-morphism and M/σE

∼= T
as left Ehresmann monoids.

Proof. Let a = t0e1t1 . . . entn = t′0e
′

1t
′

1 . . . e
′

mt
′

m where t0, . . . , tn, t
′

0 . . . , t
′

m ∈ T and
e1, . . . , en, e

′

1, . . . , e
′

m ∈ E. Then reducing both decompositions of a to T -normal
forms as in Lemma 3.1, we arrive at the same T -normal form a = s0f1s1 . . . fksk

for some s0, . . . , sk ∈ T and f1, . . . , fk ∈ E. As commented in Remark 3.2,

t0t1 . . . tn = s0 . . . sk = t′0t
′

1 . . . t
′

m.

It follows that cT : M → T is well defined.
It is clear that cT is a monoid morphism.
Observe that for any e ∈ E, cT (e) = 1. Regarding T as reduced left Ehresmann,

we have that for any a ∈M with cT (a) = t say,

cT (a+) = 1 = t+ = cT (a)+,

so that cT is a (2, 1, 0)-morphism.
It is clear that cT is onto. If a = t0e1t1 . . . entn and b = s0f1s1 . . . fmsm ∈ M

are in T -normal form, then if cT (a) = cT (b) we have that

a = t0e1t1 . . . entn σE t01t11 . . . 1tn = t0t1 . . . tn =

s0s1 . . . sm = s01s11 . . . 1sm σE s0f1s1 . . . fmsm = b

so that ker cT ⊆ σE . On the other hand, if a σE b, then a = b (so that certainly
cT (a) = cT (b)), or there exist c1, d1, . . . , ck, dk ∈ M , g1, h1, . . . , gk, hk ∈ E such
that

a = c1g1d1, c1h1d1 = c2g2f2, . . . , ckhkdk = b.

Now cT (e) = 1 for any e ∈ E. Hence

cT (a) = cT (c1g1d1) = cT (c1)cT (g1)cT (d1) = cT (c1)cT (d1)

= cT (c1)cT (h1)cT (d1) = cT (c1h1d1) = cT (c2g2d2) = . . . = cT (b).

so that σE ⊆ ker cT . Hence σE = ker cT as claimed. �

Let M,T and a as in Proposition 3.4, the T -content of a is defined to be
cT (a) = t0t1 . . . tn. We warn the reader that we are not saying that T is a
(2, 1, 0)-subalgebra of M .

With the above consideration of behaviour under generators, we feel that new
notions of ‘proper’ are needed for left Ehresmann monoids. We propose the
following.
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Definition 3.5. Let M be a left Ehresmann monoid and let T be a submonoid
of M such that M = 〈E ∪ T 〉(2). Then M is T -proper if whenever

a = t0e1t1 . . . entn and b = u0e1u1 . . . enun

are in T -normal form, and we have for all i ∈ {0, . . . , n}:
(s) ti σE ui and
(r) (tiei+1 . . . entn)+ = (uiei+1 . . . enun)+,

then a = b.
If M is T -proper, and S is a monoid isomorphic to T , then we may also say

that M is S-proper; this convention will be useful in the case where S is a monoid
of well known type.

Note (a) We could equally well rephrase (r) by saying that

tiei+1 . . . entn R̃E uiei+1 . . . enun

and in view of (s), we could replace R̃E by R̃E ∩ σE .
Note (b) The reader might also wonder why we assume that the idempotents

appearing in a and b are the same, and why our condition (r) applies only to
right factors of a and b that begin with elements of T . Observe however that if

a = t0e1t1 . . . entn and b = u0f1u1 . . . fnun

are in T -normal form, and for i ∈ {1, . . . , n}

eiti . . . entn R̃E fiui . . . fnun,

then as ei < (ti . . . entn)+ and fi < (ui . . . fnun)+, we have that

ei = ei(ti . . . entn)+ R̃E eiti . . . entn R̃E fiui . . . fnun R̃E fi(ui . . . fnun)+ = fi,

whence ei = fi.

Lemma 3.6. Let M be a left Ehresmann monoid and let T be a submonoid of
M such that M = 〈E ∪ T 〉(2).

(i) If T ⊆ S ⊆ M and M is S-proper, then M is T -proper.
(ii) If M is left restriction, then M is M-proper if and only if it is proper.

Proof. (i) This is clear.
(ii) Clearly if M is proper, then in view of the fact that (r) applies to the case

where i = 0, and Note (a) following Definition 3.5, it is M-proper.

Conversely, suppose that M is M-proper and a, b ∈M with a (R̃E∩σE) b, then
a = a0, b = b0 are normal forms satisfying (s) and (r), so that a = b and M is
proper. �

Notice that in the next lemma, we do not need condition (r); uniqueness of
T -normal forms gives, effectively, a stronger notion of T -proper.

Lemma 3.7. Let M be a left Ehresmann monoid and let T be a submonoid of
M such that M = 〈E ∪ T 〉(2). If M has uniqueness of T -normal forms, then M
is T -proper.
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Proof. This follows immediately from Proposition 3.4. �

In the case where M/σE is right cancellative we can simplify the notion of
T -proper to obtain one more reminiscent of that in the left ample case.

Lemma 3.8. Let M be a left Ehresmann monoid and let T be a submonoid of
M such that M = 〈E ∪ T 〉(2). Suppose that M/σE is right cancellative. Then M
is T -proper if and only if for any x, y ∈ T and m ∈M we have

xm (R̃E ∩ σE) ym implies that xm = ym.

Proof. Suppose first that for any x, y ∈ T and m ∈ M we have

xm (R̃E ∩ σE) ym implies that xm = ym.

Let a, b ∈M be in T -normal form

a = t0e1t1 . . . entn and b = u0e1u1 . . . enun

such that (s) and (r) hold.
If n = 0, then a = t0, b = u0 and

a = t0 1 (R̃E ∩ σE) s0 1 = b,

so by assumption, a = b. Suppose now the result is true for elements in T -
normal form of length n− 1. Then certainly t1e2 . . . entn = u1e2 . . . enun, so that
with m = e1t1e2 . . . entn = e1u1e2 . . . enun, we have that a = t0m, b = u0m and

a (R̃E ∩ σE) b. Hence a = b and M is T -proper.

Conversely, suppose that M is T -proper and xm (R̃E ∩ σE) ym where x, y ∈
T and m ∈ M . Write m in T -normal form as m = t0e1 . . . entn, so that
xt0t1 . . . tn σE yt0t1 . . . tn. SinceM/σE is right cancellative, we obtain that xt0 σE yt0.
Now, xm = (xt0)e1 . . . entn and ym = (yt0)e1 . . . entn are elements in T -normal
form satisfying (s) and (r), so that as M is T -proper, xm = ym as required. �

We end this section with a technical result, which is crucial for the sequel
[10]. In that article, we construct a T -proper left Ehresmann monoid P(T, Y )
from a monoid (that is, a reduced left Ehresmann monoid) T acting by order-
preserving maps on a semilattice Y . We show that P(T, Y ) has uniqueness of
T -normal forms and then call upon the result below for specialisations to other
quasi-varieties.

Proposition 3.9. Let M be a left Ehresmann monoid and let T be a submonoid
of M such that M = 〈E ∪ T 〉(2). Suppose that M has uniqueness of T -normal
forms. Let a = t0e1 . . . entn ∈M be in T -normal form.

(i) The element a is idempotent if and only if

t0 = t0t1 . . . tnt0

and for all i ∈ {1, . . . , n} we have that

(titi+1 . . . tnt0e1)
+ ≤ ei.
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(ii) If T is unipotent, then a ∈ E(M) if and only if t0t1 . . . tn = 1 and for all
i ∈ {1, . . . , n} we have that

(titi+1 . . . tnt0e1)
+ ≤ ei.

(iii) If T is right cancellative, then M is left E-adequate.
(iv) If T is right cancellative and has no invertible elements other than 1, then

M is left adequate.

Proof. (i) Put u = t1e2 . . . entn so that a = t0e1u.
Suppose the given conditions hold. Then

a2 = (t0e1t1 . . . tn−1entn)(t0e1t1 . . . tn−1entn)
= (t0e1t1 . . . tn−1)en(tnt0e1)

+(tnt0e1)u
= (t0e1t1 . . . tn−1)(tnt0e1)

+(tnt0e1)u as (tnt0e1)
+ ≤ en

= t0e1t1 . . . en−1tn−1tnt0e1u
= (t0e1t1 . . . tn−2)en−1(tn−1tnt0e1)

+(tn−1tnt0e1)u
= (t0e1t1 . . . tn−2)(tn−1tnt0e1)

+(tn−1tnt0e1)u as (tn−1tnt0e1)
+ ≤ en−1

= (t0e1 . . . en−2)(tn−2tn−1tnt0e1)u
= . . .
= t0t1 . . . tnt0e1u
= t0e1u as t0t1 . . . tnt0 = t0
= a

so that a is idempotent.
Conversely, suppose that a is idempotent. We are given that a is in T -normal

form, and a2 must be reducible to the same form. We have that

a2 = t0e1t1 . . . en(tnt0)e1u.

Notice that the occurrence of e1 preceding u can never be erased in the reduction
algorithm given in Lemma 3.1 when applied to a2, so the factor of u will remain
untouched. In view of said algorithm, we must have that

en ≥ (tnt0e1u)
+ = (tnt0e1u

+)+ = (tnt0e1)
+

so that

a2 = t0e1t1 . . . en−1tn−1tnt0e1u.

Continuing in this way we obtain that for all i ∈ {1, . . . , n},

ei ≥ (titi+1 . . . tnt0e1)
+,

and

a2 = t0t1 . . . tnt0e1t1 . . . entn.

But this expression is in T -normal form, so by uniqueness of such we must have
that t0t1 . . . tnt0 = t0 as required.

(ii) Observe that if t0t1 . . . tnt0 = t0 then t0t1 . . . tn ∈ E(T ), so that if T is
unipotent, t0t1 . . . tn = 1. Clearly, if t0t1 . . . tn = 1, then t0t1 . . . tnt0 = t0.
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(iii) Suppose now that T is right cancellative. We know that a R̃E a
+, so that

a+a = a, it remains to show that for any x, y ∈M , if xa = ya, then xa+ = ya+.
To this end, let

x = u0f1u1 . . . fmum and y = v0g1v1 . . . gℓvℓ

be elements in T -normal form.
Consider the process of reducing xa to T -normal form. We have that

xa = u0f1u1 . . . fm(umt0)e1t1 . . . entn;

the first two steps of the reduction tell us to delete any fi with

fi(uifi+1 . . . fmuma)
+ = (uifi+1 . . . fmuma)

+

and for any fi with

fi(uifi+1 . . . fmuma)
+ < (uifi+1 . . . fmuma)

+,

replace fi with f ′

i = fi(uifi+1 . . . fmuma)
+. We thus obtain

xa = c0h1c1 . . . cr−1hr(c
′

rumt0)e1t1 . . . entn (1)

= c0h1c1 . . . cr−1hr(c
′

rum)a

where c′r, ci ∈ T, i ∈ {0, . . . , r − 1} and hj ∈ E \ {1} with

hj < (cjhj+1 . . . cr−1hrc
′

ruma)
+, 1 ≤ j ≤ r.

The T -normal form of xa is then obtained by deleting any (interior) ci that are
1, for i ∈ {1, . . . , r}, where cr = c′rumt0. We therefore assume, without loss of
generality, that c1, . . . , cr−1 ∈ T \ {1}.

Similarly,

ya = d0k1d1 . . . ds−1ks(d
′

svℓt0)e1t1 . . . entn (2)

= d0k1d1 . . . ds−1ks(d
′

svℓ)a

where d′s, di ∈ T, i ∈ {0, . . . , s− 1} and kj ∈ E \ {1} with

kj < (djkj+1 . . . ds−1ksd
′

svℓa)
+, 1 ≤ j ≤ s.

The T -normal form of ya is then obtained by deleting any (interior) di that are
1, for i ∈ {1, . . . , s}, where ds = d′svℓt0. We therefore assume, without loss of
generality, that d1, . . . , ds−1 ∈ T \ {1}. Thus (1) and (2) are the T -normal forms
of xa and ya, up to c′rumt0 and d′svℓt0, respectively, being 1.

Observe that as (uifi+1 . . . fmuma)
+ = (uifi+1 . . . fmuma

+)+, and (vigi+1 . . . gℓvℓa)
+ =

(vigi+1 . . . gℓvℓa
+)+, the first two steps in the same reduction processes yield that

xa+ = c0h1c1 . . . cr−1hrc
′

ruma
+

and
ya+ = d0k1d1 . . . ds−1ksd

′

svℓa
+.

Suppose now that xa = ya; recall that every element of M has a unique T -
normal form.
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First observe that c′rumt0 = 1 if and only if d′svℓt0 = 1. If n = 0 this is clear.
Suppose that n > 0 and assume, without loss of generality, that c′rumt0 6= 1 and
d′svℓt0 = 1. Then we must have s > 0. Looking at the T -normal forms of xa
and of ya, from right to left, in view of their uniqueness we obtain e1 = kse1,
i.e. e1 ≤ ks. But ks < (e1t1 . . . entn)+ = e1(t1 . . . entn)+ < e1 and so ks < e1, a
contradiction.

If c′rumt0 = d′svℓt0 = 1, then c′rum = d′svℓ, since T is right cancellative, and
equalities (1) and (2) give c0h1c1 . . . hr−1cr−1 = d0k1d1 . . . ks−1ds−1 and hre1 =
kse1. But hre1 = hr and kse1 = ks. Hence xa+ = ya+.

If c′rumt0 and d′svℓt0 are not 1, then, by the uniqueness of the T -normal forms (1)
and (2), c′rumt0 = d′svℓt0 and c0h1c1 . . . hr−1cr−1hr = d0k1d1 . . . ks−1ds−1ks. Again
c′rum = d′svℓ and xa+ = ya+ follows.

(iv) Suppose now that T is right cancellative and has no units other than 1.
In view of (iii) we need only show that E(M) = E. Let b = s0f1s1 . . . fksk be
in T -normal form and assume that b is idempotent. In view of (ii) we have that
s0s1 . . . sk = 1, whence si = 1 for all i ∈ {0, . . . , k}. It follows that k = 0 and
b = 1, or k = 1 and b = f1; in either case, b ∈ E as required. �

4. A covering theorem

The aim of this section is to give a covering result for monoids in classes in our
list (L ). A refinement of this result in the one-sided case will be given in [10].

Theorem 4.1. Let M be a left Ehresmann monoid with M = 〈X〉(2,1,0) for some

X ⊆ M . Then M has an X∗-proper cover M̂ . Moreover, if M lies in any of the

classes of left Ehresmann monoids in the list (L ), then so does M̂ .

Proof. For convenience we denote the inclusion map of X in M by ι, so that
M = 〈Xι〉(2,1,0). We remark that ι lifts to a (unique) morphism X∗ → M , also
denoted by ι.

Certainly X∗ is reduced left Ehresmann, so we may consider X∗ and M×X∗ as
(2, 1, 0)-algebras; as such, M×X∗ is left Ehresmann with distinguished semilattice

E ′ = E × {1},

and for any (a, w) ∈M ×X∗ we have that

(a, w)+ = (a+, w+) = (a+, 1) ∈ E ′.

Suppose that a = (m, u), b = (n, v) ∈ M × X∗ are such that a σE′ b. Then
a = b or there exist

(c1, c
′

1), (d1, d
′

1), . . . , (cℓ, c
′

ℓ), (dℓ, d
′

ℓ) ∈M ×X∗

and

(e1, 1), (f1, 1), . . . , (eℓ, 1), (fℓ, 1) ∈ E ′
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such that
(m, u) = a = (c1, c

′

1)(e1, 1)(d1, d
′

1),
(c1, c

′

1)(f1, 1)(d1, d
′

1) = (c2, c
′

2)(e2, 1)(d2, d
′

2),
...

(cℓ, c
′

ℓ)(fℓ, 1)(dℓ, d
′

ℓ) = b = (n, v).

In either case we obtain that u = v.
We put

X ′ = {(xι, x) : x ∈ X} ⊆M ×X∗

and let M̂ = 〈X ′〉(2,1,0), so that M̂ is left Ehresmann. For x = (x1, . . . , xk) with
xi ∈ X, we put xι = (x1ι, . . . , xkι). Notice that for a (2, 1, 0)-term t(y1, . . . , yk),
certainly tx and txι are elements of X∗ and M respectively, but we may not have

that (tx)ι = txι. Clearly M̂ is the set of elements of M×X∗ of the form (txι, tx),
where t is a (2, 1, 0)-term and x = (x1, . . . , xk) for x1, . . . , xk ∈ X and k ≥ 0.

For any e ∈ E with e = txι where t = t(y1, . . . , yk), we have that e = sxι where

s = s(y1, . . . , yk) = t(y1, . . . , yk)
+. It follows that (e, 1) = (sxι, sx) and so M̂ has

distinguished semilattice E ′.

Let S = 〈X ′〉(2,0) = {(wι, w) : w ∈ X∗}. Clearly the projection maps p1 : M̂ →

M and p2 : M̂ → X∗ are both onto, p1|E′ is an isomorphism from E ′ onto E, and
p2|S is an isomorphism from S onto X∗.

We claim that M̂ is S-proper. From Corollary 1.12, M̂ = 〈E ′ ∪S〉(2). Suppose
that

a = (u0ι, u0)(e1, 1)(u1ι, u1) . . . (en, 1)(unι, un)

and

b = (v0ι, v0)(e1, 1)(v1ι, v1) . . . (en, 1)(vnι, vn)

are elements of M̂ , where u0, v0, . . . , un, vn ∈ X∗ and e1, . . . , en ∈ E, and suppose
that

(uiι, ui) σE′ (viι, vi)

in M̂ , for 0 ≤ i ≤ n. Certainly then

(uiι, ui) σE′ (viι, vi)

in M ×X∗ so that by a comment above, ui = vi whence uiι = viι for 0 ≤ i ≤ n.

Consequently, a = b and thus M̂ is S-proper.
Since X∗ is left ample, it lies in all of the one-sided classes in (L ); since all of

these classes are quasi-varieties (if not varieties), if M lies in any of these classes,

then so does M̂ , as M̂ is a subalgebra of a direct product of two members of the
class. �

The same approach gives the following; here an Ehresmann monoid is proper
if it is proper both as a left and as a right Ehresmann monoid.
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Theorem 4.2. Let M be an Ehresmann monoid with M = 〈X〉(2,1,1,0) for some

X ⊆ M . Then M has an X∗-proper cover M̂ . Moreover, if M lies in any of the

classes of Ehresmann monoids in the list (L ), then so does M̂ .

5. General results on free objects

Without, at this stage, determining their structure completely, we can make
a number of statements concerning free algebras in the classes (L ) listed in
Section 1.

Theorem 5.1. Let X be a non-empty set and let FX be the free C-object on X,
where C is any of the quasi-varieties in our list (L ). Denote the inclusion of X
into FX by ι, so that

FX = 〈Xι〉(2,1,0)

or in the two-sided cases,

FX = 〈Xι〉(2,1,1,0);

put T = 〈Xι〉(2,0). For any a ∈ FX with

a = t0e1t1 . . . entn

where ti ∈ T and ei ∈ E, we define the content c(a) of a by

c(a) = t0t1 . . . tn.

Then
(i) T ∼= X∗;
(ii) content is a well defined map; regarding T as a reduced left Ehresmann

monoid, c : FX → T is a (2, 1, 0)-morphism; moreover,

c(a) = c(b) if and only if a σE b;

(iii) FX/σE
∼= X∗.

Proof. We give the argument for the one-sided classes; a similar proof holds in
the two-sided cases.

Let j : X → X∗ be the canonical embedding. Then there exists a (2, 1, 0)-
morphism θ : FX → X∗ such that

X

X∗

FX

j
θ

ι

commutes, since X∗ belongs to any such class.
On the other hand, there exists a (2, 0)-morphism ψ : X∗ → FX such that
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X

FX

X∗

ι
ψ

j

commutes, since FX is a monoid.
Now xjψθ = xιθ = xj and xjIX∗ = xj, so both the diagrams

X

X∗

X∗

j
ψθ

j
X

X∗

X∗

j
IX∗

j

commute. Certainly ψθ is a (2, 0)-morphism, so that ψθ = IX∗ . Consequently, ψ
is one-one and θ is onto. Further,

im ψ = 〈Xj〉(2,0)ψ = 〈Xjψ〉(2,0) = 〈Xι〉(2,0) = T

and so T ∼= X∗.
Notice now that for any x ∈ X, so that xι ∈ T , we have that

xιθψ = xjψ = xι,

and as θψ is again a (2, 0)-morphism, we have that θψ|T = IT .
Suppose now that a ∈ FX ; by Corollary 1.12, a can be written as a =

t0e1t1 . . . entn where ei ∈ E and ti ∈ T . Since eiθψ = 1ψ = 1 for each i, we
conclude that

aθψ = t0θψt1θψ . . . tnθψ = t0 . . . tn = c(a).

It follows that content is a well-defined map, indeed c = θψ. Now, regarding T
as reduced, for any m ∈ FX ,

c(m+) = (m+)θψ = 1 = c(m)+,

so that c is a (2, 1, 0)-morphism.
Since ψ is one-one,

ker c = ker θψ = ker θ.

For any e ∈ E we have that eθ = 1, so that E ×E ⊆ ker θ, whence σE ⊆ ker θ.
Still with a as above, suppose that b = u0f1 . . . fmum ∈ FX where ui ∈ T and

fi ∈ E. Then if a ker θ b, we have that

a σE c(a) = c(b) σE b.

Hence σE = ker θ so that

FX/σE = FX/ker θ ∼= im θ = X∗.

�
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Theorem 5.2. Let FX be the free object on X in any class C in our list (L ).
Then FX is X∗-proper (regarded as a left Ehresmann monoid).

Proof. We take C to be the class of left Ehresmann monoids; proofs for the other
classes are similar.

Following the proof of Theorem 4.1, taking M = FX , we know that M has an

(X ′)∗-proper cover M̂ , where |X ′| = |X|. Let j : X → X ′ be the bijection from

X to X ′ that takes x to (xι, x). Then the covering morphism p1 : M̂ → FX has
the property that xjp1 = xι. Since FX is free on X, there is a (2, 1, 0)-morphism

ψ : FX → M̂ such that ιψ = j. It follows that for any x ∈ X we have that

(xι)ψp1 = xι and (xj)p1ψ = xj,

so that as FX and M̂ are generated by Xι and Xj respectively,

ψp1 = IFX
and p1ψ = I

M̂
,

that is, ψ and p1 are mutually inverse isomorphisms. Observe that

〈X ′〉(2,0)p1 = 〈X ′p1〉(2,0) = 〈Xjp1〉(2,0) = 〈Xι〉(2,0)
∼= X∗,

the last equality following from Theorem 5.1, so that FX is X∗-proper. �
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