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The polycyclic monoids

Definition

Pn = 〈a1, . . . , an, a−1
1 , . . . , a−1

n |a−1
i ai = 1, a−1

i aj = 0, i 6= j〉

Required properties

They are congruence-free. (If n > 1.)
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Representations of inverse semigroups

Definition
A representation of an inverse monoid M is a homomorphism
M → I(X ) for some set X .

Or...

Definition2
Just vertices and arrows labelled by the generating set.
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Representations of the polycyclic monoids

Observation
Since the polycyclics are congruence-free, if ϕ : Pn → I(X ) is a
homomorphism, then x1ϕ, . . . , xnϕ are total maps with disjoint
images.
The representation is strong if X is the union of these images.
A transitive representation is primitive if every morphism from X to
another transitive space is an equivalence.
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Classification of representations of the polycyclic monoids

The list of transitive representations of the polycyclic monoids
1-infinite trees: all of these are equivalent. These are
equivalent to the action of Pn on A∗n. These actions are
neither strong nor primitive.
2-infinite trees: these are characterized by an infinite string.
These actions are strong. They are primitive if and only if the
infinite string is aperiodic.
‘Cycled’ trees: these are described by the cycle’s word -
conjugate words correspond to equivalent representations. The
representation is primitive if and only if the word is primitive.
These representations are always strong.

Multiplicity-freeness
A representation is multiplicity-free if all of its orbits are of different
type.
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‘Linear’ representations of the polycyclic monoids

Definition
Let N be a non-singular ν × ν matrix over Z, and let |det(N)| = n.
Then there exist d1, . . . ,dn ∈ Zν such that

Zν =
n⋃

i=1

NZν + di ,

where the union is disjoint.

The representation
Given such a system, let

fi : Zν → Zν , x 7→ Nx + di .

Then xi 7→ fi extends to a representation of Pn.
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One-dimensional case

In this case we have a natural number N and a complete residue
system d1 < . . . < dN modulo N.

Some results
The orbits of the resulting representations are all of the 3rd
type, primitive and multiplicity-free, so they are characterized
by a finite set of Lyndon words.
We would like to calculate the number of these words (that is,
the number of the orbits, or so-called cycles), and their total
lengths (the number of atoms).
The systems (d1, . . . , dn), (d1 − (n− 1), . . . , dn − (n− 1)) and
(−d1, . . . ,−dn) give rise to equivalent representations.
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One-dimensional case, n = 2

That is, we have only one parameter: an odd number p > 0.

x is an atom if and only if −p ≤ x ≤ 0. The length of the cycle of
x is ord p

(x,p)
(2). The cycle belonging to x is the periodic part of the

fraction x
p .

If p, q > 0 are odd numbers and the representations corresponding
to p and q are equivalent then p = q.

For any finite set of Lyndon words, there exists a parameter p > 0
such that the set of Lyndon words corresponding to the
representation determined by p contains the given set.
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‘Smooth’ one-dimensional case

The parameters are of the following form:
k , k + M, . . . , k + (N − 1)M for some 0 ≤ k < N − 1 and M ∈ N.

x is an atom if and only if −M ≤ x ≤ k
N−1 .

(N l − 1)x = k
N l − 1
N − 1

+ Mz

where 0 ≤ z ≤ N l − 1.

A conjecture

If the representations arising from the pairs (k ,M) and (k ′,M ′) are
equivalent then (k ,M) = (k ′,M ′).
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One-dimensional case, n 6= 2

This case is completely different from the previous one!

If x is an atom then − dn
N−1 ≤ x ≤ − d1

N−1 .

A half lemma
If d1, . . . , dN−1 are fixed and dn →∞ then the number of atoms
divided by dN tends to 0.

Lemma
When n = 3, there exist different triples yielding equivalent
representations.
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More dimensions

So we have an ν × ν non-singular integer matrix N, and a set of
vectors d1, . . . , dn. Furthermore, we suppose that the eigenvalues of
N have absolute value greater than one.

In this case the resulting representation is multiplicity-free, and it
has finitely many atoms.

Let

T =


∞∑
j=1

N−jdij |dij ∈ {d1, . . . , dn}

 .
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The set T

Properties of T
It is the unique compact subset of Rν such that

N · T =
⋃
i

(T + di ).

It has a non-empty interior and integer Lebesgue measure.
If it has Lebesgue-measure 1 then it is a Zν-periodic tile.
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