'Linear' representations of the polycyclic monoid

Miklós Hartmann

University of York

October 15, 2012

Based on joint work with M. V. Lawson

Miklós Hartmann 'Linear' representations of the polycyclic monoid

Definition

$$P_n = \langle a_1, \dots, a_n, a_1^{-1}, \dots, a_n^{-1} | a_i^{-1} a_i = 1, a_i^{-1} a_j = 0, i \neq j \rangle$$

Required properties

They are congruence-free. (If n > 1.)

Definition

A representation of an inverse monoid M is a homomorphism $M \to \mathcal{I}(X)$ for some set X.

Or...

Definition2

Just vertices and arrows labelled by the generating set.

Observation

Since the polycyclics are congruence-free, if $\varphi: P_n \to \mathcal{I}(X)$ is a homomorphism, then $x_1\varphi, \ldots, x_n\varphi$ are total maps with disjoint images.

The representation is *strong* if X is the union of these images. A transitive representation is *primitive* if every morphism from X to another transitive space is an equivalence.

Classification of representations of the polycyclic monoids

The list of transitive representations of the polycyclic monoids

- 1-infinite trees: all of these are equivalent. These are equivalent to the action of P_n on A_n^* . These actions are neither strong nor primitive.
- 2-infinite trees: these are characterized by an infinite string. These actions are strong. They are primitive if and only if the infinite string is aperiodic.
- 'Cycled' trees: these are described by the cycle's word conjugate words correspond to equivalent representations. The representation is primitive if and only if the word is primitive. These representations are always strong.

Multiplicity-freeness

A representation is *multiplicity-free* if all of its orbits are of different type.

'Linear' representations of the polycyclic monoids

Definition

Let N be a non-singular $\nu \times \nu$ matrix over \mathbb{Z} , and let $|\det(N)| = n$. Then there exist $\mathbf{d}_1, \ldots, \mathbf{d}_n \in \mathbb{Z}^{\nu}$ such that

$$\mathbb{Z}^{\nu} = \bigcup_{i=1}^{n} N \mathbb{Z}^{\nu} + \mathbf{d}_{i},$$

where the union is disjoint.

The representation

Given such a system, let

$$f_i: \mathbb{Z}^{\nu} \to \mathbb{Z}^{\nu}, x \mapsto Nx + \mathbf{d}_i.$$

Then $x_i \mapsto f_i$ extends to a representation of P_n .

In this case we have a natural number N and a complete residue system $d_1 < \ldots < d_N$ modulo N.

Some results

- The orbits of the resulting representations are all of the 3rd type, primitive and multiplicity-free, so they are characterized by a finite set of Lyndon words.
 We would like to calculate the number of these words (that is, the number of the orbits, or so-called cycles), and their total lengths (the number of atoms).
- The systems (d_1, \ldots, d_n) , $(d_1 (n-1), \ldots, d_n (n-1))$ and $(-d_1, \ldots, -d_n)$ give rise to equivalent representations.

That is, we have only one parameter: an odd number p > 0.

x is an atom if and only if $-p \le x \le 0$. The length of the cycle of x is $\operatorname{ord}_{\frac{p}{(x,p)}}(2)$. The cycle belonging to x is the periodic part of the fraction $\frac{x}{p}$.

If p, q > 0 are odd numbers and the representations corresponding to p and q are equivalent then p = q.

For any finite set of Lyndon words, there exists a parameter p > 0 such that the set of Lyndon words corresponding to the representation determined by p contains the given set.

The parameters are of the following form: $k, k + M, \dots, k + (N - 1)M$ for some $0 \le k < N - 1$ and $M \in \mathbb{N}$.

x is an atom if and only if $-M \le x \le \frac{k}{N-1}$.

$$(N'-1)x = k \frac{N'-1}{N-1} + Mz$$

where $0 \le z \le N^l - 1$.

A conjecture

If the representations arising from the pairs (k, M) and (k', M') are equivalent then (k, M) = (k', M').

This case is completely different from the previous one!

If x is an atom then
$$-\frac{d_n}{N-1} \le x \le -\frac{d_1}{N-1}$$
.

A half lemma

If d_1,\ldots,d_{N-1} are fixed and $d_n\to\infty$ then the number of atoms divided by d_N tends to 0.

Lemma

When n = 3, there exist different triples yielding equivalent representations.

So we have an $\nu \times \nu$ non-singular integer matrix N, and a set of vectors d_1, \ldots, d_n . Furthermore, we suppose that the eigenvalues of N have absolute value greater than one.

In this case the resulting representation is multiplicity-free, and it has finitely many atoms.

Let

$$T = \left\{ \sum_{j=1}^{\infty} N^{-j} d_{i_j} | d_{i_j} \in \{d_1, \ldots, d_n\} \right\}.$$

Properties of T

 $\bullet\,$ It is the unique compact subset of \mathbb{R}^{ν} such that

$$N \cdot T = \bigcup_i (T + d_i).$$

- It has a non-empty interior and integer Lebesgue measure.
- If it has Lebesgue-measure 1 then it is a \mathbb{Z}^{ν} -periodic tile.