
PERFECTION FOR POMONOIDS

VICTORIA GOULD AND LUBNA SHAHEEN

Abstract. A pomonoid S is a monoid equipped with a partial order that is com-
patible with the binary operation. In the same way that M -acts over a monoid M

correspond to the representation of M by transformations of sets, S-posets corre-
spond to the representation of a pomonoid S by order preserving transformations of
posets.

Following standard terminology from the theories of R-modules over a unital ring
R, and M -acts over a monoid M , we say that a pomonoid S is left poperfect if every
left S-poset has a projective cover.

Left perfect rings were introduced in 1960 in a seminal paper of Bass [1] and shown
to be precisely those rings satisfying MR, the descending chain condition on principal
right ideals. In 1971, inspired by the results of Bass and Chase [6], Isbell was the
first to study left perfect monoids [13]. The results of [13], together with those of
Fountain [11], show that a monoid is left perfect if and only if it satisfies a finitary
condition dubbed Condition (A), in addition to MR. Moreover, MR can be replaced
by another finitary condition, namely Condition (D).

A further characterisation of left perfect rings was given in [6], where Chase proved
that a ring is left perfect if and only if every flat left module is projective; the corre-
sponding result for M -acts was demonstrated in [11].

In this paper we continue the study of left poperfect pomonoids, recently initiated
in [18]. We show, as in [18] that a pomonoid S is left poperfect if and only if it satisfies
(MR) and the ‘ordered’ version Condition (Ao) of Condition (A) and further, these
conditions are equivalent to every strongly flat left S-poset being projective. On the
other hand, we argue via an analysis of direct limits that Conditions (A) and (Ao) are
equivalent, so that a pomonoid S is left perfect if and only if it is left poperfect. We
also give a characterisation of left poperfect monoids involving the ordered version of
Condition (D). Our results and many of our techniques certainly correspond to those
for monoids, but we must take careful account of the partial ordering on S, and in
places introduce alternative strategies to those found in [13], [11] and [18].

Dedicated to the memory of Douglas Munn

1. Introduction

A pomonoid is a monoid S partially ordered by ≤, such that ≤ is compatible with
the semigroup operation. That is, for all a, b, c, d ∈ S, if a ≤ b and c ≤ d, then ac ≤ bd.
The standard example of a pomonoid is an inverse monoid under the natural partial
order, which is given by the rule that a ≤ b if and only if a = aa−1b.

Date: November 24, 2009.
1991 Mathematics Subject Classification. 20 M 30, 03 C 60.
Key words and phrases. perfect pomonoids, projective covers, P = SF .
This work was completed whilst the first author was visiting CAUL, funded by Project ISFL-1-143

of CAUL and Project ‘Semigroups and Languages’ PTDC/MAT/69514/2006. She would like to thank
Gracinda Gomes and CAUL for providing a good working environment.

1



2 VICTORIA GOULD AND LUBNA SHAHEEN

Let M be a monoid and let U be a set. We say that U is a left M-act if there is a
map M × U → U , written (m, u) 7→ mu, such that for all m,n ∈M and u ∈ U ,

1 u = u and m(nu) = (mn)u.

A map φ : U → V from a left S-act U to a left S-act V is called an S-morphism if it
respects the action of S, that is, (su)φ = s(uφ) for all s ∈ S and u ∈ U . The collection
of left M-acts, together with M-morphisms, forms a category which we denote by M-
Act. The category Act-M of right M-acts and appropriate M-morphisms is defined
dually. We give further brief details of acts as necessary, referring the reader to the
comprehensive survey [16].

Now let S be a pomonoid and let A be a partially ordered set. We say that A is a
left S-poset if A is a left S-act and, in addition, for all s, t ∈ S and a, b ∈ A, if s ≤ t
then sa ≤ ta, and if a ≤ b then sa ≤ sb. We say that an order preserving S-morphism
φ : A→ B from a left S-poset A to a left S-poset B is an S-pomorphism. The collection
of left S-posets, together with S-pomorphisms, forms a category which we denote by S-
Pos. The category Pos-S of right S-posets and appropriate S-pomorphisms is defined
dually. Note that for S-acts and S-posets epimorphisms are onto, and monomorphisms
are one-one [16, 4]. In this article we deal with both left and right S-posets (and M-
acts); an unspecified S-poset (or M-act) will always be a left S-poset (left M-act).

The study of M-acts over a monoid M has been well established since the late 1960s.
On the other hand, the investigation of S-posets was initiated by Fakhruddin in the
1980s [9], [10], but lay fallow until this decade, which has seen a flurry of papers on this
topic, mostly concentrating on projectivity, and various notions of flatness for S-posets.
Definitions and concepts relating to flatness are given in Section 2; an excellent survey
is given in [3]. It is worth pointing out in this Introduction that S-posets (indeed,
pomonoids) are not merely algebras, they are relational structures. As such, care is
needed to take account of the partial order relation, particularly when considering
congruences.

A left S-poset A over a pomonoid S is called a cover for a left S-poset B if there
exists an S-poset epimorphism (an S-po-epimorphism) β : A → B, such that any
restriction of β to a proper S-subposet of A is not an S-po-epimorphism. Such a map
β is called a coessential S-po-epimorphism. The pomonoid S is said to be left poperfect
if every left S-poset has a projective cover: our aim in this article is to investigate left
poperfect pomonoids. We introduce the terminology poperfect in order to distinguish
the two possible definitions of left perfection of a pomonoid S, that is, as a monoid
and as a pomonoid. In fact, they transpire to be equivalent.

The analogous notion of a left perfect monoid was introduced in [13]. Characterisa-
tions of left perfect monoids were given by Isbell in [13] and subsequently by Fountain
[11] and Kilp [15]. Since their results inform ours, we now pause to explain them.

A submonoid T of a monoid M is right unitary if a, ba ∈ T implies that b ∈ T .

Lemma 1.1. [16, Corollary 1.4.9] A submonoid T of a monoid M is right unitary if
and only if T is the ρ-class of the identity, for some left congruence ρ on S.

Let M be a monoid. A submonoid T of M is right collapsible if for any a, b ∈ T we
can find c ∈ T with ac = bc. For convenience we list some finitary conditions that we
need below:

Condition (A): every left M-act satisfies the ascending chain condition for cyclic
subacts;
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Condition (D): every right unitary submonoid of M contains a minimal left ideal
generated by an idempotent;

Condition (K): every right collapsible submonoid of M contains a right zero;
Condition (MR): M satisfies the descending chain condition on principal right

ideals.

Theorem 1.2. [13, 11, 15] The following conditions are equivalent for a monoid M :
(i) M is left perfect;
(ii) M satisfies (A) and (D);
(iii) M satisfies (A) and (MR);
(iv) every strongly flat left M-act is projective;
(v) M satisfies (A) and (K).

In a series of steps we prove the ordered analogue of Theorem 1.2. Some of our tech-
niques are taken from those used in the monoid case, but these need careful adjustment
to deal with the orderings involved; for some steps we develop new strategies. After
giving the requisite background results in Section 2, we concentrate in Section 3 on
characterising those pomonoids S such that every strongly flat S-poset is projective,
and show that these are precisely those that satisfy Conditions (MR) and (Ao), the
ordered version of Condition (A), defined as follows:

Condition (Ao): every left S-poset satisfies the ascending chain condition on cyclic
S-subposets.

Conditions (A) and (Ao) are intimately related to the behaviour of direct limits of
sequences of copies of S. Careful analysis of these direct limits enables us to show that
(A) and (Ao) are equivalent for a pomonoid.

In Section 4 we turn our attention explicitly to poperfect pomonoids. We investigate
conditions under which a subpomonoid is the ρ-class of the identity, for some left S-
poset congruence ρ: we call such subpomonoids right po-unitary subpomonoids. We
show that a pomonoid S is left poperfect if and only if it satisfies (Do), the ordered
version of (D), defined for a pomonoid S as follows:

Condition (Do): every right po-unitary subpomonoid of S contains a minimal left
ideal generated by an idempotent.

We observe that if ρ is a left S-poset congruence on S such that S/ρ is strongly flat,
then S/ρ is strongly flat as a left S-act: it follows from [14] that ρ-class of the identity
is right collapsible. In Section 5 we show that all strongly flat cyclic left S-posets are
projective if and only if S satisfies (K).

In Section 6 we show that in the presence of Condition (Ao), Conditions (MR)
and (Do) are equivalent. One way is relatively straightforward, but to show that (Do)
follows from (MR) we require a mixture of the techniques of [13] and a classic semigroup
theoretic argument. This completes the proof of the following theorem.

Theorem 1.3. The following conditions are equivalent for a pomonoid S:
(i) S is left poperfect;
(ii) S satisfies (Ao) and (Do);
(iii) S satisfies (Ao) and (MR);
(iv) every strongly flat left S-poset is projective;
(v) S satisfies (Ao) and (K).

Since (A) and (Ao) are interchangeable, the conditions of the above result are also
equivalent to those in Theorem 1.2.
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Some of the minor results in this paper have recently been announced, without
proof, in [26]. We note, however, that the author of [26] does not distinguish between
congruence classes of S-poset congruences, and congruence classes of S-act congruences,
a distinction we feel to be necessary. More significantly, Pervukhin and Stepanova [18]
have recently shown some of the equivalences in Theorem 1.3. For completeness we
provide proofs, whilst making reference to [26] and [18].

2. Preliminaries

In this section we outline the concepts related to pomonoids and S-posets needed for
the rest of the article; for definitions relating to acts over monoids, we refer the reader
to the monograph [16]. Throughout, S will denote a pomonoid. We have already
introduced the categories S-Pos and Pos-S of left and right S-posets. An S-subposet
of an S-poset A is a subset of A partially ordered by the restriction of the ordering
on A, that is closed under the action of S (called regular S-subposets in [17]). As for
acts, a pomonoid S can be regarded as both a left and a right S-poset over itself; more
generally, left and right ideals of S are left and right S-subposets, respectively.

We now consider the notion of congruence for S-posets. For information on the
approach to congruences on general ordered structures, we refer the reader to [2] and
[8], and for further information pertaining to congruences on S-posets to [25] and [5].

Definition 2.1. Let A be a left S-poset. An S-poset congruence on A is an equivalence
relation ρ such that for a, b ∈ A and s ∈ S, if a ρ b, then sa ρ sb (that is, ρ is an S-act
congruence) such that in addition, A/ρ may be partially ordered in such a way that
the natural map νρ : A→ A/ρ is order preserving.

Such a congruence is also referred to as a (left) order-congruence or a (left) po-
congruence, particularly where we are regarding a pomonoid S as a left S-poset.

We observe that S-act and S-poset congruences on pomonoids are different relations.
For example, consider the pomonoid N of natural numbers under multiplication, with
the usual ordering. Certainly ≡ (mod 2) is an N-act congruence. But it cannot be an
N-poset congruence. For, if it were, we would have in the quotient N/ ≡ that

[1] ≤ [2] ≤ [3] = [1],

so that [1] = [2], a contradiction.
Let A be a left S-poset. For the purposes of this paper we give one description of

the S-poset congruence generated by H ⊆ A×A. First we say that a ≤H b if and only
if there exists n ≥ 0, (c1, d1), . . . , (cn, dn) ∈ H ∪H−1 and s1, . . . , sn ∈ S such that

a ≤ s1c1, s1d1 ≤ s2c2, . . . , sndn ≤ b.

Then ≤H is reflexive (take n = 0), transitive, contains the relation ≤ and compatible
with the action of S. It follows that the relation ≡H given by a ≡H b if and only if
a ≤H b ≤H a is is an S-act congruence. Moreover, A/ ≡H may be partially ordered by

[a] �H [b] if and only if a ≤H b,

and the natural map A→ A/ ≡H is an S-poset morphism. That is, ≡H is an S-poset
congruence, the S-poset congruence generated by H . Notice that for any (a, b) ∈ H ,
[a] = [b].

We now consider free, projective and flat S-posets. Freeness and projectivity are
defined in the standard categorical manner.
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An S-poset A is free on X ⊆ A if for any S-poset B and map j : X → B there is a
unique S-pomorphism θ : A → B such that i θ = j, where i : X → A is inclusion, i.e.
the diagram
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commutes.

We now show how to construct a free S-poset over a pomonoid S. First, for a
symbol x we let Sx = {sx | s ∈ S} be a set of formal expressions in one-one corre-
spondence with S; Sx becomes a left S-poset (isomorphic to the left ideal S) if we
define s(tx) = (st)x for all s, t ∈ S and sx ≤ tx if and only if s ≤ t in S. Let X
be a non-empty set: the disjoint union of S-posets

⋃
x∈X Sx is then an S-poset with

ordering given by sx ≤ ty if and only if x = y and s ≤ t. The next result is easy to
verify.

Theorem 2.2. A left S-poset A is free on a set X if and only if A ∼=
⋃

x∈X Sx.

An S-poset P is projective if for any onto S-pomorphism g : A → B and for any
S-pomorphism f : P → B there exists a S-pomorphism h : P → A such that the
following diagram
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commutes. We will denote the class of projective S-posets by P.

Proposition 2.3. [23] Let S be a pomonoid. Then
(i) Se is projective S-poset for any idempotent e ∈ S;
(ii) a disjoint union of S-posets Pi is projective if and only if each Pi is projective

for every i ∈ I;
(iii) a left S-poset is projective if and only if it is isomorphic to a disjoint union of

S-posets of the form Se, where e is idempotent.

Definition 2.4. A left S-poset A is called cyclic if A = Sa for some a ∈ A.

It is clear that A is cyclic if and only if A is isomorphic to S/ρ for some left po-
congruence on S. We remark that, from Proposition 2.3, an indecomposable projective
S-poset A is cyclic and therefore of the form Sa, where there is an S-po-isomorphism
φ : Sa → Se for some idempotent e ∈ E(S), with aφ = e. Consequently, for any
s, t ∈ S we have that sa ≤ ta if and only if se ≤ te; we say that a is ordered right
e-cancellative. In fact the following is true.

Lemma 2.5. [22] Let λ be a left po-congruence on S then S/λ is projective if and only
if there exists an idempotent e ∈ S such that 1 λ e and [s] ≤ [t] implies se ≤ te.
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Notions of flatness for S-posets are all derived from the use of the tensor product
A ⊗ B of a right S-poset A and a left S-poset B. For this article we do not need to
go into the technical details of tensor products, but refer the reader to [5]. As for the
case of acts over monoids, but unlike the case for modules over unital rings, there are
several differing notions flatness for S-posets. We are interested here in strong flatness.

A left S-poset B is strongly flat if the functor − ⊗ B from Pos-S to the category
Pos of partially ordered sets, preserves subpullbacks and subequalisers. Before stating
our next result, we remark that in S-Pos , direct limits of directed systems of S-posets
exist, as observed in [5], where they are referred to as directed colimits.

Theorem 2.6. [5] The following conditions are equivalent for a left S-poset B:
(i) B is strongly flat;
(ii) B is a direct limit of finitely generated free left S-posets;
(iii) B satisfies (P) and (E):
Condition (P): for all b, b′ ∈ B, s, s′ ∈ S, if sb ≤ s′b′, then there exists b′′ ∈ B and

u, u′ ∈ S such that b = ub′′, b′ = u′b′′ and su ≤ s′u′;
Condition (E): for all b ∈ B, s, s′ ∈ S, if sb ≤ s′b, then there exists b′ ∈ B and u ∈ S

such that b = ub′ and su ≤ s′u.

We will denote the class of strongly flat S-posets by SF .
The notion of strong flatness simplifies for cyclic left S-posets.

Lemma 2.7. [22] The following conditions are equivalent for a cyclic left S-poset
A = Sa:

(i) A is strongly flat;
(ii) A satisfies Condition (E);
(ii) for any s, t ∈ S, if sa ≤ ta, then there exists u ∈ S such that a = ua and

su ≤ tu.

Consequently, we can easily deduce the following.

Corollary 2.8. [21] Let ρ be a left po-congruence on a pomonoid S. Then S/ρ is
strongly flat if and only if for any s, t ∈ S, if [s] ≤ [t], then there exists u ∈ S such
that su ≤ tu and 1 ρ u.

The next observation is straightforward, and we will employ it from time to time to
simplify our approach to strongly flat S-posets. It follows from an analysis of direct
limits of free S-acts and S-posets. An argument directly from interpolation conditions
is given in [18].

Lemma 2.9. [18] Let A be a strongly flat left S-poset. Then A is strongly flat as a left
S-act.

3. Pomonoids for which SF = P

Just as for R-modules over a unital ring R, and M-acts over a monoid M , any
projective S-poset is strongly flat [5], that is SF ⊆ P. A natural question, which we
address in this section, asks under what conditions on S do we have that P ⊆ SF?

We have two strategies to answer this question. Both involve a careful study of
direct limits of free left S-acts versus free left S-posets over a pomonoid S. One ap-
proach is to then consider under which conditions S-morphisms automatically become
S-pomorphisms, and call upon the result of [13, 11]. Details may be found in the thesis
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of the second author [20]. We prefer here a more direct strategy, on the way making
clear a number of arguments sketched in [13].

The construction in the next result is crucial to this article, particularly in under-
standing the connections between perfection and poperfection for a pomonoid S. It
is implicit in [13] in the unordered case, taken up and made rather more explicit in
[11]. Here we aim for an even directer presentation for S-posets, noting that we have
difficulties to overcome due to the partial orders involved.

Lemma 3.1. Let S be a pomonoid and let a = (a1, a2, . . .) be a sequence of elements
of S. Let

F = Sx1 ∪ Sx2 ∪ . . .

be the free left S-poset on {xi : i ∈ N} and let

H = {(xi, aixi+1) : i ∈ N} ⊆ F × F.

(i) For any sxm, txn ∈ F ,

sxm ≤H txn if and only if samam+1 . . . aw ≤ tanan+1 . . . aw

for some w ≥ m,n. Further,

sxm ≡H txn if and only if samam+1 . . . av = tanan+1 . . . av

for some v ≥ m,n.
(ii) The S-poset F (a) = F/ ≡H is the direct limit of the directed sequence

Sx1 → Sx2 → . . .

where αi : Sxi → Sxi+1 is given by xiαi = aixi+1.
(iii) The S-poset F (a) is strongly flat.

Proof. (i) Suppose that

sxm ≤H txn;

then there exist h ∈ N
0 and si ∈ S and (yi, zi) ∈ H ∪H−1, 1 ≤ i ≤ h such that

sxm ≤ s1y1, s1z1 ≤ s2y2, . . . , shzh ≤ txn.

We proceed by induction on h. If h = 0, then

sxm ≤ txn in F

so that m = n and s ≤ t in S. Certainly

sam ≤ tam = tan.

Suppose inductively that from

uxi = s1z1 ≤ s2y2, . . . , shzh ≤ txn

we can deduce that

uai . . . ao ≤ tan . . . ao

for some o ≥ max {i, n}.
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Case (I): (y1, z1) = (xj , ajxj+1).
From sxm ≤ s1y1 = s1xj we have that m = j and s ≤ s1; from uxi = s1z1 = s1ajxj+1

we deduce that i = j + 1 and u = s1aj . Hence

sam . . . ao = sajaj+1 . . . ao

≤ s1ajaj+1 . . . ao

= uaj+1 . . . ao

= uai . . . ao

≤ tan . . . ao

and o ≥ max{i, n} ≥ max {m,n}.

Case (II): (y1, z1) = (ajxj+1, xj). From sxm ≤ s1y1 = s1ajxj+1 we have that

m = j + 1, s ≤ s1aj

and from uxi = s1z1 = s1xj we have that

i = j and u = s1.

Hence s ≤ uai, so that if i = o,

s ≤ uai ≤ tan . . . ao

giving that
sam ≤ tan . . . aoam

where m > i = o ≥ n. On the other hand, if i < o, so that o ≥ m,

sam . . . ao ≤ uaiam . . . ao

= uaiai+1 . . . ao

≤ tan . . . ao

where o ≥ max {m,n}.
Conversely, suppose that sam . . . aw ≤ tan . . . aw where w ≥ max {m,n}. Then

sxm ≤H samxm+1 ≤H . . . ≤H sam . . . awxw+1

≤ tan . . . awxw+1 ≤H tan . . . aw−1xw ≤H . . . ≤H txn

so that sxm ≤H txn as required.
Clearly if sam . . . aw = tan . . . aw for some w ≥ max {m,n}, then sxm ≤H txn ≤H sxm,

so that sxm ≡H txn.
On the other hand, if sxm ≡H txn, then from sxm ≤H txn ≤H sxm we have that

sam . . . aw ≤ tan . . . aw, tan . . . av ≤ sam . . . av

for some v, w ≥ max{m,n}. Without loss of generality assume that v ≥ w. Then

sam . . . awaw+1 . . . av ≤ tan . . . awaw+1 . . . av ≤ sam . . . av

so that sam . . . av = tan . . . av as required.
(ii) Define βi : Sxi → F (a) by xiβi = [xi]. Notice that if i < j then

xiαi . . . αj−1βj = (aiai+1 . . . aj−1xj)βj = [aiai+1 . . . aj−1xj ] = [xi] = xiβi.

Now let P be an S-poset, and γi : Sxi → P , i ∈ N, a set of S-pomorphisms such that
for any i < j we have that γi = αi . . . αj−1γj.

Define [uxi]δ to be (uxi)γi. If [uxi] ≤ [vxj ], then from (i) we know that there exists
k ≥ i, j such that

uai . . . ak ≤ vaj . . . ak.
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It follows that

[uxi]δ = (uxi)γi

= uxiαi . . . αk−1γk

= (uai . . . ak−1xk)γk

≤ (vaj . . . ak−1xk)γk

= (vxjαi . . . αk−1)γk

= (vxj)γj

= [vxj]δ

so that δ is well-defined, order preserving and clearly compatible with the action of S.
We also have that for each i ∈ N, βiδ = γi, and δ is unique with respect to the latter
property. Hence F (a) is indeed the direct limit of the given system.

(iii) This follows from Theorem 2.6. �

We remark that the above is a special case of a more general result concerning direct
limits of free S-acts and S-posets; for the details, see [20].

The equivalence of (i) and (iv) in the next lemma is implicit in [13]. We note that
in (i) and (ii) it is clear that

Sb1 ⊆ Sb2 ⊆ . . . .

Proposition 3.2. Let S be a pomonoid, let a = (a1, a2, . . .) be a sequence of elements
of S and let n ∈ N. The following conditions are equivalent:

(i) for every left S-act A and for every sequence of elements b1, b2, . . . of A such that
bi = aibi+1 for all i ∈ N,

Sbn = Sbn+1 = . . . ;

(ii) for every left S-poset A and for every sequence of elements b1, b2, . . . of A such
that bi = aibi+1 for all i ∈ N,

Sbn = Sbn+1 = . . . ;

(iii) in F (a) we have that

S[xn] = S[xn+1] = . . . ;

(iv) for all i ≥ n there exists ji ≥ i+ 1 such that

Saiai+1 . . . aji
= Sai+1 . . . aji

.

Proof. It is clear that (i) implies (ii) and that (ii) implies (iii).
We suppose now that (iii) holds. Let i ≥ n, so that S[xi] = S[xi+1]. Then

[xi+1] = u[xi] for some u ∈ S, so that by Lemma 3.1 there exists ji ≥ i + 1 such
that

ai+1ai+2 . . . aji
= uaiai+1ai+2 . . . aji

.

Then

Sai . . . aji
⊆ Sai+1 . . . aji

= Suaiai+1 . . . aji

⊆ Sai . . . aji
,

so that Sai . . . aji
= Sai+1 . . . aji

as required.
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Finally, assume that (iv) is true, let A be an S-act and let bi ∈ A be such that
bi = aibi+1 for i ∈ N. Then for any i ≥ n we have that

Sbi ⊆ Sbi+1

= Sai+1 . . . aji
bji+1

= Saiai+1 . . . aji
bji+1

= Sbi,

so that Sbn = Sbn+1 = . . . as claimed. �

Our next corollary is now immediate.

Corollary 3.3. A pomonoid S has Condition (A) if and only if it has Condition (Ao).

We say that a left S-poset A over a pomonoid S is locally cyclic if every finitely
generated S-subposet of A is contained in a cyclic S-poset [13].

Lemma 3.4. (c.f [13, Result 1.2]) The following are equivalent for a pomonoid S;
(i) for any sequence a = (a1, a2, . . .) of elements of S, F (a) is cyclic;
(ii) any direct limit of a sequence of copies of the left S-poset S is cyclic;
(iii) S satisfies Condition (Ao) (or equivalently, Condition (A));
(iv) any locally cyclic left S-poset is cyclic.

Proof. The equivalence of (i) and (ii) is clear, since any direct limit of a sequence of
copies of S must be constructed in the manner of F (a).

Suppose now that (i) holds. Let A be an S-poset and suppose that

Sb1 ⊆ Sb2 ⊆ . . .

is an ascending chain of cyclic S-subposets of A. Let a = (a1, a2, . . .) be a sequence of
elements of S such that bi = aibi+1 for each i ∈ N. It is clear that in F (a) we have that

S[x1] ⊆ S[x2] ⊆ . . .

so that as F (a) is cyclic,

S[x1] ⊆ S[x2] ⊆ . . . ⊆ Su[xn]

for some u ∈ S and n ∈ N. It now follows that for any j ≥ n,

S[xj] ⊆ Su[xn] ⊆ S[xn] ⊆ S[xj ]

so that
S[xn] = S[xn+1] = . . . .

From (iii) implies (ii) of Proposition 3.2 we have

Sbn = Sbn+1 = . . .

so that Condition (Ao) holds.
To show that (iii) implies (iv), let S have Condition (Ao) and let B be a locally

cyclic S-poset. Let b1 ∈ B; if B is not cyclic then Sb1 ⊂ B, so there exists b′1 /∈ Sb1.
Now B is locally cyclic, so that Sb1∪Sb

′
1 ⊆ Sb2 for some b2 ∈ B, and clearly, Sb1 ⊂ Sb2.

Continuing in this manner we obtain an infinite ascending chain of cyclic S-subposets
of B, contradicting the existence of Condition (Ao). Hence B is cyclic.

Finally, assume that (iv) is true. Since F (a) is the union of an ascending chain of
cyclic S-subposets, it is clear that F (a) is locally cyclic, hence cyclic by assumption.

�

We now focus on the question of when SF = P.
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Lemma 3.5. Let S be a pomonoid such that every left S-poset F (a) is projective. Then
S satisfies Condition (Ao) (or equivalently, Condition (A)).

Proof. As F (a) is a union of an ascending chain, if projective it must therefore be
cyclic. The result now follows from Lemma 3.4. �

Every S-poset F (a) is strongly flat from Lemma 3.1.

Corollary 3.6. Let S be a pomonoid such that every strongly flat left S-poset is pro-
jective. Then S satisfies Condition (Ao) (or equivalently, Condition (A)).

The following argument is essentially that of [11]; we include it here for completeness,
since all the preliminaries are set up.

Lemma 3.7. Let S be a pomonoid such that every left S-poset F (a) is projective. Then
S satisfies (MR).

Proof. Let
a1S ⊇ b1S ⊇ b2S ⊇ · · ·

be a decreasing sequence of principal right ideals of S. Then there are elements ai, i ≥ 2
such that bi = bi−1ai+1 (where b0 = a1). Then

b1 = a1a2, b2 = b1a3 = a1a2a3, . . . .

Let a = (a1, a2, . . .) and let F (a) be defined as in Lemma 3.1.
Let I be the identity map in F (a) and let α : F → F (a) be the canonical S-

pomorphism. Since F (a) is projective, there exists an S-pomorphism γ : F (a) → F
such that

F (a)

F F (a)
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γ

commutes.
Suppose that for each i ∈ N we have that

[xi]γ = cixj(i).

Then for any i ≥ 2,

c1xj(1) = [x1]γ = (a1 . . . ai−1[xi])γ = a1 . . . ai−1cixj(i),

so that j(i) = j(1) = j say, and moreover

c1 = a1 . . . ai−1ci

for all i. It follows that c1S ⊆ a1 . . . ai+1S, that is, c1S ⊆ biS for all i ∈ N. Now

[x1] = [x1]I = [x1]γα = c1xjα = [c1xj ],

so by Lemma 3.1,
a1 . . . an = c1aj . . . an

for some n ≥ j. Hence
bn−1S = a1 . . . anS ⊆ c1S

so that bn−1S = bnS = . . . and our descending chain terminates as required.
�
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Corollary 3.8. Let S be a pomonoid such that every strongly flat left S-poset is pro-
jective. Then S satisfies (MR).

Our next technical lemma has two significant uses. The strategy for the proof is
again taken from the unordered case in [11], but note that that article omits the proof
that c is idempotent. We say that a left po-congruence ρ on a pomonoid S is strongly
flat if S/ρ is strongly flat.

Lemma 3.9. Let S be a pomonoid and let ρ be a strongly flat left po-congruence on S
such that the set {dS : d ∈ B} has a minimal element with respect to inclusion, where
B = [1]. Then S/ρ is projective.

Proof. From Lemma 2.9, S/ρ is strongly flat as a left S-act. Let c ∈ B be such that cS
is minimal in I = {dS : d ∈ B}. We will now show that c is idempotent. Since c ρ c2,
by the Corollary to Result 4 of [11] we have cu = c2u for some u ∈ S with u ρ 1. Then
c2uS ⊆ cS but cS is minimal in I, hence cR c2u. Hence c = c2ux for some x ∈ S and
so

c2 = c3ux = c2ux = c.

Let d ∈ B, so that d ρ c. Exactly as in [11] we have that dv = cv for some v ∈ B and
then

cS = cvS = dvS ⊆ dS.

Thus cS is the least element in I.
Now let θ : S/ρ → Sc be defined by [u]θ = uc. Then [u] ≤ [v] implies that there

exists w ρ 1 such that uw ≤ vw. Since w ∈ B we have that cS ⊆ wS, so that c = wt
for some t ∈ S. Therefore uwt ≤ vwt implies that uc ≤ vc hence θ is well-defined and
order-preserving. To check that θ preserves the S-action,

(s[u])θ = [su]θ = (su)c = s(uc) = s[u]θ.

To check the injectivity let sc ≤ tc; then

[s] = s[1] = s[c] = [sc] ≤ [tc] = t[c] = t[1] = [t]

as ρ is an S-poset congruence. Thus θ is injective and clearly θ is a surjective S-
pomorphism; moreover, we have also shown that the inverse of θ preserves order, so
that θ is an S-poset isomorphism. As c is an idempotent, by Proposition 2.3, Sc and
hence S/ρ are projective. �

Theorem 3.10. If S satisfies (MR), then every strongly flat cyclic left S-poset is
projective.

Proof. Let C be a strongly flat cyclic S-poset. By Corollary 2.8 of Section 2, C ∼= S/ρ
where ρ is a strongly flat left congruence. Let B = [1]. Since S has (MR), there is an
element c ∈ B such that cS is minimal in {dS : d ∈ B}. The result now follows from
Lemma 3.9. �

We will call a generating set X of an S-poset A independent if for any x, x′ ∈ X such
that x ∈ Sx′ we have x = x′.

Lemma 3.11. Let A be a left S-poset which satisfies the ascending chain condition for
cyclic subposets. If X is a set of generators for A, then X contains an independent set
of generators for A.
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Proof. Regarded as an S-act, A satisfies the ascending chain condition for cyclic S-
subacts (since these coincide with the cyclic S-subposets). The result now follows from
that in the S-act case (Lemma 2 of [11]). �

Lemma 3.12. Let A be a strongly flat left S-poset which satisfies the ascending chain
condition for cyclic S-subposets. If A is indecomposable then A is cyclic.

Proof. This follows immediately from Lemma 2.9 and Lemma 3 of [11]. �

Corollary 3.13. If S satisfies Condition (Ao), then every strongly flat left S-poset is
a disjoint union of cyclic strongly flat S-posets.

Proof. It is clear that if A is a strongly flat S-poset, then so are its indecomposable com-
ponents. It is then immediate from Lemma 3.12 that the indecomposable components
are cyclic. �

We now come to the main theorem of this section. We remark that the equivalence
of (iii) and (v) is given in [18].

Theorem 3.14. Let S be a pomonoid. Then the following conditions are equivalent:
(i) every strongly flat left S-poset is projective;
(ii) every left S-poset of the form F (a) is projective;
(iii) S satisfies Condition (Ao) and (MR);
(iv) S satisfies Condition (A) and (MR);
(v) every strongly flat left S-act is projective.

Proof. Since every F (a) is strongly flat, clearly (i) implies (ii). If every S-poset F (a)
is projective, then S has (MR) from Lemma 3.7 and (Ao) from Lemma 3.5, so that (ii)
implies (iii).

Now suppose that (iii) holds. As S satisfies Condition (Ao), from Corollary 3.13,
every strongly flat S-poset A is a disjoint union of strongly flat cyclic S-posets; as in
addition S has (MR), then in view of Theorem 3.10, these are all projective, and it
follows that A is projective and (iii) implies (i).

The remainder of the result follows from Theorem 1.2 and Corollary 3.3. �

4. Poperfect Pomonoids

We recall that a pomonoid is left poperfect if every left S-poset has a projective cover,
that is, a cover that is projective.

Lemma 4.1. (cf. [26]) A cover of a cyclic left S-poset is cyclic.

Proof. Suppose that A = Sa is a cyclic left S-poset and suppose that β : B → A is a
coessential S-po-epimorphism. Let b ∈ B be such that bβ = a; then β ′ = β|Sb : Sb→ A
is an S-po-epimorphism. Since β is coessential we must have that B = Sb and B is
cyclic as required. �

We now wish to identify those subpomonoids of S that are the congruence classes of
the identity, for any left po-congruence. This will enable us to find conditions under
which cyclic S-posets have projective covers.

Definition 4.2. A subpomonoid P of a pomonoid S is right po-unitary if for any

p, a1, b1, · · · , an, bn, q ∈ P, s1, . . . , sn ∈ S,
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if

p ≤ s1 a1, s1 b1 ≤ s2 a2, · · · , sn bn ≤ q,

then

s1, s2, · · · , sn ∈ P.

We recall that a submonoid U of a monoid M is right unitary if a, ba ∈ U implies
that b ∈ U .

Lemma 4.3. Let S be a pomonoid. If U is a right po-unitary subpomonoid, then U is
right unitary.

Proof. Suppose that a, ba ∈ U . Then as

ba ≤ b · a, b · a ≤ ba

the definition of po-unitarity gives us that b ∈ U . �

The following fact concerning right unitary submonoids is useful.

Lemma 4.4. Let U be a right unitary submonoid of a monoid S. Then for a, b ∈ U ,

Ua ⊆ Ub if and only if Sa ⊆ Sb.

Proof. If Ua ⊆ Ub, then certainly Sa ⊆ Sb.
Conversely, if Sa ⊆ Sb, then a = ub for some u ∈ S, but as U is right unitary, u ∈ U

so that Ua ⊆ Ub as required. �

Notice that a right unitary submonoid need not be right po-unitary. For an ex-
ample, take that of N

0 = {0, 1, 2, . . .} under +, with the usual ordering. Then
E = {2n : n ∈ N

0} is (right) unitary. Notice that

0 ≤ 1 + 0, 1 + 0 ≤ 2

but 1 /∈ E.

Lemma 4.5. Let S be a pomonoid and let P ⊆ S. Then P = [1] for a left po-
congruence on S if and only if P is a right po-unitary subpomonoid of S.

Proof. Let ρ be a left po-congruence on S and let P = [1]. Then P is a subpomonoid
of S, as if p1, p2 ∈ P , then

p1p2 ρ p1 1 ρ p1 ρ 1.

Suppose now that p, a1, b1, · · · , an, bn, q ∈ P and s1, . . . sn ∈ S are such that

p ≤ s1a1, s1b1 ≤ s2a2, · · · , snbn ≤ q.

As ρ is a left po-congruence, we have in S/ρ that

[1] = [p] ≤ [s1a1] = s1[a1] = [s1] = s1[b1] = [s1b1]

≤ [s2a2] . . . = [snbn] ≤ [q] = [1]

which implies that

[1] ≤ [s1] ≤ [s2] . . . [sn] ≤ [1]

so that

[1] = [s1] = . . . = [sn] = [1]

as required.
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Conversely, let P be a left po-unitary subpomonoid of S. Let ρ be ≡P×P , the S-po-
congruence generated by P × P (note that P × P = (P × P ) ∪ (P × P )−1). From the
construction of ≡P×P , we have that P × P ⊆ ρ so that as 1 ∈ P we have P ⊆ [1].

Let w ∈ [1]. Then there are elements

s1, . . . , sn, t1, . . . , tm ∈ S

and
(u1, v1), . . . , (un, vn), (x1, y1), . . . , (xm, ym) ∈ P × P

such that

1 ≤ s1u1, s1v1 ≤ s2u2, . . . , snvn ≤ w = w 1,

w 1 ≤ t1x1, t1y1 ≤ t2x2, . . . , tmym ≤ 1

so that as P is left po-unitary we have that w ∈ P and P = [1] as required.
�

We note that the result below also appears without proof in [26], but the preceding
lemma in that article, characterising congruence classes of identities, is incorrect if
applied to S-poset congruences.

Proposition 4.6. (cf. [26] and [16, Proposition III 17.22]) Let ρ be a left po-congruence
on a pomonoid S. The cyclic left S-poset S/ρ has a projective cover if and only if the
subpomonoid R = [1] contains a minimal left ideal generated by an idempotent.

Proof. Suppose that the cyclic S-poset S/ρ has a projective cover; from Lemma 4.1
this must be cyclic. Without loss of generality, let α : Se → S/ρ be a coessential
S-po-epimorphism. Then for some u ∈ S,

(ue)α = [1] = u(eα).

Since α is coessential, Sue = Se so that e = que for some q ∈ S; we can assume that
q = eq. Calculating, we have that

(uq)2 = (uq)(uq) = u(qu)eq = u(que)q = ueq = uq,

so that uq ∈ E(S). Moreover,

[1] = (ue)α = (uque)α = uq(ue)α = (uq)[1] = [uq]

so that uq ∈ R = [1].
Suppose now that w ∈ R and Rw ⊆ Ruq. Then w = wuq and

(wue)α = w(ue)α = w[1] = [w],

so that
Swue = Se.

We then have that
Sw = Swuq = Swueq = Seq = Sq

and so
Sq = Sw = Swuq ⊆ Suq ⊆ Sq.

By Lemma 4.3 and 4.4, Rw = Ruq so that Ruq is a minimal left ideal in R.
Conversely, suppose that R = [1] contains a minimal left ideal Re, e ∈ E(R). Define

θ : Se→ S/ρ by (se)θ = [s]. If se ≤ te then as ρ is a po-congruence, we have that

[s] = s[1] = s[e] = [se] ≤ [te] = t[e] = t[1] = [t],
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so that θ is well defined and order preserving. It is now easy to see that θ is an onto
S-pomorphism. Notice that eθ = [1].

If Spe ⊆ Se and θ|Spe : Spe → S/ρ is onto, then we must have that (rpe)θ = [1] for
some r ∈ S. It follows that rp ∈ R so that Rrpe = Re and consequently, Srpe = Se.
We then have that Spe = Se so that θ is coessential as required.

�

Our next corollary follows immediately from Proposition 4.6 and the comment fol-
lowing Definition 2.4.

Corollary 4.7. A pomonoid S satisfies Condition (Do) if and only if every cyclic left
S-poset has a projective cover.

Lemma 4.8. (cf. [26]) If a left S-poset A is the union of an infinite strictly ascending
chain of cyclic S-subposets then A does not have a projective cover.

Proof. Suppose A = ∪n∈NSan and

Sa1 ⊂ Sa2 ⊂ · · ·San ⊂ · · ·

where all inclusions are strict, is an ascending chain of cyclic S-subposets of A and
assume that A has a projective cover P with coessential S-po-epimorphism α : P → A.

Now P = ∪i∈IPi and we can assume that each Pi = Sei for some idempotent ei in
S. If |I| > 1, take i ∈ I; then if eiα ∈ San for some n ∈ N, we have that Piα ⊆ San.
Then α|P\Pi

is still an S-po-epimorphism and thus P cannot be a cover for A. Finally
if |I| = 1, say I = {1}, then if e1α ∈ Sam, the image of α is contained in Sam, a
contradiction. �

Theorem 4.9. Let S be a pomonoid. Then S is left poperfect if and only if S satisfies
Conditions (Ao) and (Do).

Proof. Suppose S is left poperfect. Then Condition (Ao) and Condition (Do) follow
from Lemma 4.8 and Corollary 4.7, respectively.

Conversely, suppose that S satisfies Conditions (Ao) and (Do). By Corollary 4.7,
every cyclic S-poset has a projective cover.

Let A be an arbitrary S-poset. From Lemma 3.11, A has an independent set X of
generators. For each x ∈ X, let αx : Sex → Sx be a coessential S-po-epimorphism,
where ex ∈ E(S). Let G =

⋃
x̄∈X Sexx̄ be the S-subposet of the free left S-poset on

X = {x̄ : x ∈ X} and define α : G → A by (sexx̄)α = (sex)αx. Clearly, α is an
S-po-epimorphism.

Suppose that α is not coessential. Then there exists y ∈ X and a strict left ideal I
of Sey such that

α :
⋃

x∈X\{y}

Sexx̄ ∪ Iȳ → A

is onto. Consequently, y = (uexx̄)αx ∈ Sx for some x 6= y, a contradiction, or
y = (pey ȳ)α for some pey ∈ I and so αy : I → Sy is onto, contradicting the co-
eesentiality of αy. Hence α is coessential. �

5. Right collapsible subpomonoids

In this section we consider Condition (K) for a pomonoid S, introduced by Kilp
for monoids in [14]. In [15], it is proved that a monoid is left perfect if and only if
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it satisfies Condition (A) and (K). Similar techniques are employed in the article of
Renshaw [19]. Our aim here is to show the ordered analogue.

Our first result follows immediately from Lemma 2.9 and Lemma 2.2 of [14].

Lemma 5.1. Let ρ be a left po-congruence on S such that S/ρ is strongly flat and let
P = [1]. Then P is a right collapsible subpomonoid.

Lemma 5.2. Let P ⊆ S be a right collapsible subpomonoid and let ρ be the relation
≡P×P on S. Then

(i) ρ is a left po-congruence;
(ii) P ⊆ [1]

and
(iii) S/ρ is strongly flat.

Proof. (i) and (ii) are clear from the definition of ≡P×P .
(iii) Suppose now that [s] ≤ [t] in S/ρ. Then

s ≤ u1p1, u1q1 ≤ u2p2, . . . , unqn ≤ t

for some p1, q1, . . . , pn, qn ∈ P and u1, . . . , un ∈ S. Since P is right collapsible, we can
find z1 ∈ P with p1z1 = q1z1. Then

sz1 ≤ u1p1z1 = u1q1z1.

If n = 1, we then have that sz1 ≤ tz1. Otherwise, sz1 ≤ u2p2z1 and we pick z2 ∈ P
with p2z1z2 = q2z1z2. Then

sz1z2 ≤ u2p2z1z2 = u2q2z1z2.

If n = 2 we obtain that sz1z2 ≤ tz1z2, if not we continue in this manner, until we
obtain that sz1 . . . zn ≤ tz1 . . . zn. As z1 . . . zn ∈ P , and P ⊆ [1], we have that S/ρ is
strongly flat by Corollary 2.8. �

We can now verify the ordered analogue of Theorem 2.3 of [14].

Lemma 5.3. Let S be a pomonoid. All strongly flat cyclic left S-posets are projective
if and only if S satisfies Condition (K).

Proof. Suppose that all strongly flat cyclic S-posets are projective. Let P ⊆ S be
a right collapsible subpomonoid. By the above lemma we can construct a left po-
congruence ρ on S such that S/ρ is strongly flat and P ⊆ [1]. By assumption, S/ρ
is projective, and so there exists an idempotent e ∈ S with e ρ 1 and such that for all
s, t ∈ S, if [s] ≤ [t] then se ≤ te.

As in Lemma 5.2, we know that if s ρ t, then there exists z ∈ P with sz ≤ tz. We
have that 1 ρ e and so z ≤ ez for some z ∈ P . Now ez ρ z, and so there exists w ∈ P
with ezw ≤ zw. We therefore have

ezw ≤ zw ≤ ezw

and so ezw = zw. Let x ∈ P ; since 1 ρ x for all x ∈ P , we will have e = xe from
Lemma 2.5.

Now let x ∈ P be an arbitrary element and let l = zw. Then

xl = xel = el = l,

so that l is a right zero for P .
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Conversely, suppose that (K) holds. Let ρ be a left po-congruence on S such that S/ρ
is strongly flat; we must show that S/ρ is isomorphic to some Se, where e ∈ E(S), as
an S-poset. Let P = [1]; then P is a right collapsible subpomonoid of S by Lemma 5.1.
By assumption there exists a right zero say e ∈ P . Then e is an idempotent and 1 ρ e.

Suppose [s] ≤ [t] for some s, t ∈ S. As S/ρ is strongly flat, there exists u ∈ S such
that u ρ 1 and su ≤ tu. Note that

se = s(ue) ≤ t(ue) = te,

hence S/ρ is projective by Lemma 2.5. �

6. Left poperfect pomonoids and SF = P

The aim of this section is to show that a pomonoid is left poperfect if and only if
SF = P. The same result has recently appeared in [18]. For completeness, we provide
a full proof. In view of Corollary 3.13 and Lemma 6.1 this amounts to showing that
in the presence of Condition (Ao), Condition (Do) is equivalent to (MR). It will then
follow immediately that a pomonoid is left poperfect if and only if it is left perfect.

Lemma 6.1. If S satisfies Condition (Do), then every strongly flat cyclic left S-poset
is projective.

Proof. As in Theorem 3.10 a strongly flat cyclic S-poset is isomorphic to S/ρ where ρ
is some strongly flat left po-congruence and B = [1] is a left po-unitary subpomonoid
of S. Condition (Do) gives that B has a minimal left ideal say Be generated by an
idempotent e. By Lemma (8.12) in [7], eB is a minimal right ideal of B.

Suppose now that d ∈ B and dS ⊆ eS. Then d = ed, so that dB ⊆ eB and so the
minimality of eB gives that dB = eB. Consequently, eS = dS, so that eS is minimal
in I = {dS : d ∈ B}. The result now follows from Lemma 3.9. �

Let S be a pomonoid. Given that we proved in Section 3 that Conditions (A) and
(Ao) are equivalent, the proof of the next result could essentially be taken from [13].
However, a significant part of the proof of Result 1.7 of that article relies on categorical
techniques that we have avoided below. Our argument is in some sense a clarification
of that in [13]. As stated above, it also follows from the strategy given in [18].

Theorem 6.2. Let S be a pomonoid such that S satisfies Condition (MR) and Condi-
tion (Ao). Then S has Condition (Do).

Proof. If S has (MR) and (Ao), then as every strongly flat S-poset is projective, it
follows from Theorem 2.6 of Section 2, that every direct limit of copies of S, regarded
as a left S-poset, is projective.

Let S/ρ be a cyclic S-poset; to avoid ambiguity in this proof we denote the ρ-class
of a ∈ S by [a]ρ. Let B = [1]ρ.

Suppose v ∈ E(S) ∩ B and t ∈ B with St ⊆ Sv. As t ∈ B and B is a submonoid it
is clear that tn ∈ B.

Let

Sx1 → Sx2 → . . .

be a direct sequence of copies of S, where xiαi = txi+1 for all i ∈ N. Put

t = (t, t, . . .)
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so that by Lemma 3.1, the direct limit is F (t). By assumption, F (t) is projective,
so as it is indecomposable, F (t) = S[pxi] for some pxi where [pxi] is ordered right
e-cancellable for some e ∈ E(S).

Let νi : Sxi → S/ρ be defined by xiνi = [1]ρ.
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We note that

xi αi νi+1 = (txi+1)νi+1 = t[1]ρ = [t]ρ = [1]ρ = xiνi

which implies that αiνi+1 = νi. By definition of direct limit, there exists an S-
pomorphism γ : S[pxi] → S/ρ such that βiγ = νi for all i ∈ N.

Define τ : S[pxi] → Sxi by (u[pxi])τ = uepxi. As [pxi] is ordered right e-cancellative,
it follows that τ is well defined. It is easy to see τ is an S-pomorphism.

Now

[pxi]τβi = (epxi)βi = [epxi] = e[pxi] = [pxi],

so that

τ βi = IS[pxi].

Put ψ = βi+1ταi : Sxi+1 → Sxi+1; then

ψ2 = (βi+1ταi)(βi+1ταi) = βi+1τ(αiβi+1)ταi = βi+1τβiταi = βi+1IS[pxi]ταi = βi+1ταi = ψ.

It is then easy to see that

xi+1ψ = hxi+1

for some h ∈ E(S).
Calculating,

hxi+1 = xi+1ψ = xi+1βi+1ταi = (wxi)αi = wtxi+1

for some w ∈ S and therefore h = wt, giving that Sh ⊆ St.
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We check that

βi+1 τ αi νi+1 = βi+1 τ αi βi+1 γ = βi+1 γ = νi+1

and
[h]ρ = (h xi+1)νi+1 = xi+1ψνi+1 = xi+1νi+1 = [1]ρ

thus h ∈ B.

Suppose now that
Se1 ⊇ Se2 ⊇ Se3 · · ·

is a desending chain of principal left ideals generated by idempotents ei ∈ S. From
Lemma 1.2.10 of [12], there are idempotents g1, g2, . . . such that for all i ∈ N, we have
that Sgi = Sei and

g1 ≥ g2 ≥ . . .

under the natural partial order on E(S). Higgins remarks on [12, page 28] that if S
is regular and satisfies MR, then it also satisfies ML. Here we do not know that S is
regular, but certainly

g1S ⊇ g2S ⊇ . . .

and as S has MR we deduce that for some n ∈ N,

gnS = gn+1S = . . .

and hence gn = gn+1 = . . .. Consequently,

Sen = Sen+1 = . . . .

Certainly 1 ∈ B and we have shown that every principal left ideal St where t ∈ B
contains a principal left ideal Sh where h ∈ E(S) ∩ B. It follows from the above that
there is an idempotent e′ ∈ B such that Se′ is minimal with respect to being generated
by an element of B. By Lemma 4.4, Be′ is a minimal left ideal of B. Hence S satisfies
Condition (Do). �

We can now give our final result. Some of the equivalences appear in Section 3 of
[18].

Theorem 6.3. For a pomonoid S, the following are equivalent:
(i) every strongly flat left S-poset is projective;
(ii) S satisfies Conditions (Ao) and (MR);
(iii) S satisfies Conditions (Ao) and (Do);
(iv) S is left poperfect;
(v) S satifies Conditions (Ao) and (K);
(vi) every strongly flat left S-act is projective;
(vii) S satisfies Conditions (A) and (MR);
(viii) S satisfies Conditions (A) and (D);
(ix) S is left perfect;
(x) S satifies Conditions (A) and (K).

Proof. In view of Theorems 1.2, 3.14, 4.9, 6.2 and Corollary 3.3, we need only to show
that (ii) and (iii) are equivalent.

If (iii) holds, by Corollary 3.13, every strongly flat S-poset can be written as a
disjoint union of cyclic strongly flat S-posets which are projective by Lemma 6.1 as
S satisfies Condition (Do), hence every strongly flat S-poset is projective. By Theo-
rem 3.14, S satisfies (ii).
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Conversely, suppose that (ii) holds, then (iii) follows from Theorem 6.2.
�

We remark that it is clear that Condition (D) implies (Do), and in view of Lemma 6.1,
(Do) implies (K). It is known [15] that (K) does not imply (D), and the same example
(of the free monogenic monoid) with length as partial order, shows that (K) does not
imply (Do). It remains to show whether (D) and (Do) are equivalent.
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