About the generalised star-height problem and profinite identities

Laure Daviaud

City, University of London

University of York, 22/01/2020

Automata а Rational languages

AUTOMATA

Rational languages

 $(ab)^*$

RATIONAL EXPRESSIONS

Logic

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

• A*

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

• A^* is star-free $[=\emptyset^c]$

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[=\emptyset^c]$
- (ab)*

The set of the star-free languages is the smallest set:

- . containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

```
• A^* is star-free [=\emptyset^c]
```

• $(ab)^*$ is star-free $[=(bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c]$

The set of the star-free languages is the smallest set:

- . containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^* is star-free $[=\emptyset^c]$
- $(ab)^*$ is star-free $[=(bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c]$
- $(((ab)^*a((b^ca^*)^c)^*a(a(ba)^*)^c)^*aaab(bab)^c(ab)^*)^*$

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

```
• A^* is star-free [=\emptyset^c]
• (ab)^* is star-free [=(bA^* \cup A^*a \cup A^*aaA^* \cup A^*bbA^*)^c]
• (((ab)^*a((b^ca^*)^c)^*a(a(ba)^*)^c)^*aaab(bab)^c(ab)^*)^*
• (aa)^*
```

Varieties and identities

A variety of languages is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

- $\mbox{.}$ containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

A variety of languages is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

• for each alphabet A_i , $\nu(A_i)$ is a boolean algebra over A_i (closed under finite union, intersection, complement)

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

A variety of languages is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

- for each alphabet A_i , $\nu(A_i)$ is a boolean algebra over A_i (closed under finite union, intersection, complement)
- for each alphabet A_i , $\nu(A_i)$ is closed under quotient: if $L \in \nu(A_i)$ and $u \in A_i^*$ then Lu^{-1} and $u^{-1}L \in \nu(A_i)$

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

A variety of languages is a class of rational languages

$$\nu(A_1) \cup \nu(A_2) \cup \nu(A_3) \dots$$

such that:

- for each alphabet A_i , $\nu(A_i)$ is a boolean algebra over A_i (closed under finite union, intersection, complement)
- for each alphabet A_i , $\nu(A_i)$ is closed under quotient: if $L \in \nu(A_i)$ and $u \in A_i^*$ then Lu^{-1} and $u^{-1}L \in \nu(A_i)$
- it is closed under inverse image: for each monoid morphism $\varphi: A_i^* \to A_j^*, L \in \nu(A_j)$ implies $\varphi^{-1}(L) \in \nu(A_i)$

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties and identities

$$d(u,v)=2^{-n}$$

where n: size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

$$d(u,v)=2^{-n}$$

where n: size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Or n: size of a smallest monoid that separates u and v.

$$d(u,v)=2^{-n}$$

where n: size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Or n: size of a smallest monoid that separates u and v.

d is an ultrametric distance:

- d(u, v) = 0 iff u = v
- d(u,v) = d(v,u)
- $d(u,v) \leqslant \max(d(u,w),d(w,v))$

 $d(u,v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u\in L(\mathcal{A})$ and $v\notin L(\mathcal{A})$.

 $d(u,v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u\in L(\mathcal{A})$ and $v\notin L(\mathcal{A})$.

Example 1: $u \neq v$?

 $d(u,v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u\in L(\mathcal{A})$ and $v\notin L(\mathcal{A})$.

Example 1: $u \neq v$? At least $2^{-(|u|+1)}$

 $d(u,v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u\in L(\mathcal{A})$ and $v\notin L(\mathcal{A})$.

Example 1: $u \neq v$? At least $2^{-(|u|+1)}$

Example 2: $a \in A - a^{99}$ and a^{100} ?

 $d(u,v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u\in L(\mathcal{A})$ and $v\notin L(\mathcal{A})$.

```
Example 1: u \neq v?
At least 2^{-(|u|+1)}
Example 2: a \in A - a^{99} and a^{100}?
```

 $d(u,v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u\in L(\mathcal{A})$ and $v\notin L(\mathcal{A})$.

```
Example 1: u \neq v?
At least 2^{-(|u|+1)}
Example 2: a \in A - a^{99} and a^{100}?
\frac{1}{4}
Example 3: u \in A^*, n \in \mathbb{N} - u^{n!} and u^{(n+1)!}?
```

The profinite world

Definition

Profinite monoid $\widehat{A^*}$: completion of A^* with respect to the distance d.

- Monoid if u and v sequences of words, $(u.v)_n = u_n v_n$
- Metric space
- A* dense subset
- Compact

VIP (very important profinite) words

VIP (very important profinite) words

Idempotent power of $u \in A^*$

$$u^{\omega} = \lim_{n \to \infty} u^{n!}$$

Profinite identity: u = v with $u, v \in \widehat{A}^*$.

Profinite identity: u = v with $u, v \in \widehat{A}^*$.

Rational language $L \in A^* \longrightarrow \overline{L} \in \widehat{A^*}$ is the closure of L.

Profinite identity: u = v with $u, v \in \widehat{A}^*$.

Rational language $L \in A^* \longrightarrow \overline{L} \in \widehat{A^*}$ is the closure of L.

A language L satisfies a profinite identity u=v with $u,v\in\widehat{A}^*$, if for all profinite words w,w', $wuw'\in\overline{L}$ if and only if $wvw'\in\overline{L}$.

Profinite identity: u = v with $u, v \in \widehat{A}^*$.

Rational language $L \in A^* \longrightarrow \overline{L} \in \widehat{A^*}$ is the closure of L.

A language L satisfies a profinite identity u=v with $u,v\in\widehat{A^*}$, if for all profinite words w,w', $wuw'\in\overline{L}$ if and only if $wvw'\in\overline{L}$.

Example: for all $u, v \in \{a, b\}^*$ such that $|u|_a = |v|_a$ and $|u|_b = |v|_b$, $u \in L$ if and only if $v \in L$

Identities

Profinite identity: u = v with $u, v \in \widehat{A}^*$.

Rational language $L \in A^* \longrightarrow \overline{L} \in \widehat{A^*}$ is the closure of L.

A language L satisfies a profinite identity u=v with $u,v\in\widehat{A^*}$, if for all profinite words w,w', $wuw'\in\overline{L}$ if and only if $wvw'\in\overline{L}$.

Example: for all $u, v \in \{a, b\}^*$ such that $|u|_a = |v|_a$ and $|u|_b = |v|_b$, $u \in L$ if and only if $v \in L$ Commutative languages: If $wuvw' \in L$ then $wvuw' \in L$

Identities

Profinite identity: u = v with $u, v \in \widehat{A}^*$.

Rational language $L \in A^* \longrightarrow \overline{L} \in \widehat{A^*}$ is the closure of L.

A language L satisfies a profinite identity u=v with $u,v\in\widehat{A}^*$, if for all profinite words w,w', $wuw'\in\overline{L}$ if and only if $wvw'\in\overline{L}$.

Example: for all $u, v \in \{a, b\}^*$ such that $|u|_a = |v|_a$ and $|u|_b = |v|_b$, $u \in L$ if and only if $v \in L$ Commutative languages: If $wuvw' \in L$ then $wvuw' \in L$ ab = ba

Languages with a zero

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)

$$|A| \geqslant 2$$

 u_0, u_1, \ldots an enumeration of the words of A^*

$$v_0 = u_0, \quad v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$$

$$\rho_A = \lim_{n \to \infty} \mathbf{v}_n$$

Languages with a zero

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)

$$|A| \geqslant 2$$

 u_0, u_1, \ldots an enumeration of the words of A^*

$$v_0 = u_0, \quad v_{n+1} = (v_n u_{n+1} v_n)^{(n+1)!}$$

$$\rho_A = \lim_{n \to \infty} v_n$$

Languages with a sink state: $\rho_A u = u \rho_A = \rho_A$

Correspondance

- Theorem

A class of languages is a variety if and only if it is defined by a set of profinite identities.

Varieties and identities

What about the star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

What about the star-free languages

The set of the star-free languages is the smallest set:

- · containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

- Theorem [Schützenberger]

A language is star-free if and only if it satisfies the profinite identity $\mathbf{x}^{\omega+1}=\mathbf{x}^{\omega}.$

What about the star-free languages

The set of the star-free languages is the smallest set:

- · containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Theorem [Schützenberger]

A language is star-free if and only if it satisfies the profinite identity $\mathbf{x}^{\omega+1} = \mathbf{x}^{\omega}$.

- ightarrow (ab)* is star-free.
- \rightarrow (aa)* is not star-free.

FO[<] on finite words

Counter-free automata

(McNaughton-Papert)

Star-free languages

(McNaughton-Papert)
(Schützenberger)

Smallest set:

- containing the finite languages (including the empty language),
- closed under finite union,
- concatenation and complement.

RATIONAL EXPRESSIONS

Aperiodic monoids

$$x^{\omega} = x^{\omega+1}$$

Algebra

- One can decide if a given rational language is star-free.
- (aa)* is not star-free.

- One can decide if a given rational language is star-free.
- (aa)* is not star-free.
- Generalised star-height: minimal number of nested stars in a generalised expression $(\cup, \cdot, {}^c, {}^*)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

- One can decide if a given rational language is star-free.
- (aa)* is not star-free.
- Generalised star-height: minimal number of nested stars in a generalised expression $(\cup, \cdot, {}^c, {}^*)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

 \longrightarrow OPEN : we do not even know if there exist a rational language with star-height at least 2.

Definition

Given two profinite words u, v, a rational language L satisfies

$$u \rightarrow v$$

if $u \in \overline{L}$ implies $v \in \overline{L}$

$$a,b\in A$$
 Equation $ab\to aba$
$$\{L\subseteq A^*\mid ab\notin L\}\cup\{L\subseteq A^*\mid ab,aba\in L\}$$

Definition

Given two profinite words u, v, a rational language L satisfies

$$u \leftrightarrow v$$

if $u \in \overline{L}$ if and only if $v \in \overline{L}$

$$a,b\in A$$
 Equation $ab\leftrightarrow aba$
$$\{L\subseteq A^*\mid ab,aba\notin L\}\cup\{L\subseteq A^*\mid ab,aba\in L\}$$

Definition

Given two profinite words u, v, a rational language L satisfies

$$u \leq v$$

if for all $w, w' \in \widehat{A^*}, wuw' \in \overline{L}$ implies $wvw' \in \overline{L}$

$$a, b \in A$$

Equation ab ≤ aba

 $\{L \subseteq A^* \mid \text{for all } w, w' \in A^*, \text{ if } wabw' \in L \text{ then } wabaw' \in L\}$

Definition

Given two profinite words u, v, a rational language L satisfies

$$u = v$$

if for all $w, w' \in \widehat{A}^*$, $wuw' \in \overline{L}$ if and only if $wvw' \in \overline{L}$

$$a,b\in A$$
 Equation $ab=aba$
$$\{L\subseteq A^*\mid \text{for all } w,w'\in A^*,\ wabw'\in L \ \text{iff } wabaw'\in L\}$$

Theorem [Gehrke, Grigorieff, Pin 2008] -

Classes of rational languages

- **.** Lattice (union, intersection): \rightarrow
- **.** Boolean algebra (lattice, complement): \leftrightarrow
- Lattice closed under quotient: ≤
- Boolean algebra closed under quotient: =

quotient :
$$u^{-1}Lv^{-1} = \{w \mid uwv \in L\}$$

$$P_u = \bigcup_{p \text{ prefix of } u} u^*p \quad \text{ and } \quad S_u = \bigcup_{s \text{ suffix of } u} su^*$$

$$x^{\omega}y^{\omega}=0$$
 for $x,y\in A^*$ such that $xy\neq yx$ (E_1) $x^{\omega}y=0$ for $x,y\in A^*$ such that $y\notin P_x$ (E_2) $yx^{\omega}=0$ for $x,y\in A^*$ such that $y\notin S_x$ (E_3) $x^{\omega}\leqslant 1$ for $x\in A^*$ (E_4) $x^{\ell}\leftrightarrow x^{\omega+\ell}$ for $x\in A^*$, $\ell>0$

$$x \to x^{\ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₆)

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

DECIDABLE

$$P_u = \bigcup_{p \text{ prefix of } u} u^*p \quad \text{ and } \quad S_u = \bigcup_{s \text{ suffix of } u} su^*$$

$$x^{\omega}y^{\omega}=0$$
 for $x,y\in A^*$ such that $xy\neq yx$ (E₁)

$$x^{\omega}y = 0$$
 for $x, y \in A^*$ such that $y \notin P_x$ (E₂)

$$yx^{\omega} = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x$$
 (E₃)

$$x^{\omega} \leqslant 1 \text{ for } x \in A^*$$
 (E₄)

$$x^{\ell} \leftrightarrow x^{\omega + \ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₅)

$$x \to x^{\ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₆)

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

DECIDABLE Lattice

$$P_u = \bigcup_{p \text{ prefix of } u} u^*p \quad \text{ and } \quad S_u = \bigcup_{s \text{ suffix of } u} su^*$$

$$x^{\omega}y^{\omega}=0$$
 for $x,y\in A^*$ such that $xy\neq yx$ (E₁)

$$x^{\omega}y = 0$$
 for $x, y \in A^*$ such that $y \notin P_x$ (E₂)

$$yx^{\omega} = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x$$
 (E₃)

$$x^{\omega} \leqslant 1 \text{ for } x \in A^*$$
 (E₄)

$$x^{\ell} \leftrightarrow x^{\omega + \ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₅)

$$x \to x^{\ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₆)

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

DECIDABLE Lattice closed under quotients

$$P_u = \bigcup_{p \text{ prefix of } u} u^*p$$
 and $S_u = \bigcup_{s \text{ suffix of } u} su^*$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx$$
 (E_1)
 $x^{\omega}y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x$ (E_2)
 $yx^{\omega} = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x$ (E_3)
 $x^{\omega} \leqslant 1 \text{ for } x \in A^*$ (E_4)
 $x^{\ell} \leftrightarrow x^{\omega+\ell} \text{ for } x \in A^*, \ \ell > 0$ (E_5)
 $x \to x^{\ell} \text{ for } x \in A^*, \ \ell > 0$ (E_6)
 $x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$ (E_7)

DECIDABLE Boolean algebra closed under quotients

$$P_u = \bigcup_{p \text{ prefix of } u} u^*p \quad \text{ and } \quad S_u = \bigcup_{s \text{ suffix of } u} su^*$$

$$x^{\omega}y^{\omega} = 0 \text{ for } x, y \in A^* \text{ such that } xy \neq yx$$
 (E₁)
 $x^{\omega}y = 0 \text{ for } x, y \in A^* \text{ such that } y \notin P_x$ (E₂)

$$yx^{\omega} = 0 \text{ for } x, y \in A^* \text{ such that } y \notin S_x$$
 (E₃)

$$x^{\omega} \leqslant 1 \text{ for } x \in A^*$$
 (E₄)

$$x^{\ell} \leftrightarrow x^{\omega + \ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₅)

$$x \to x^{\ell} \text{ for } x \in A^*, \ \ell > 0$$
 (E₆)

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

DECIDABLE Boolean algebra

$$x^{\alpha} \leftrightarrow x^{\beta}$$
 for all $(\alpha, \beta) \in \Gamma$ (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

1 $a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} a^{12} a^{13} a^{14} \dots$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

1 $a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} a^{12} a^{13} a^{14} \dots$

Equivalence relation over the integers

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

1 $a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} a^{12} a^{13} a^{14} \dots$

Equivalence relation over the integers

$$r \equiv_m s$$
 if and only if $gcd(r, m) = gcd(s, m)$
 $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

$$2 \equiv_6 4$$
 since $gcd(2,6) = 2 = gcd(4,6)$
 $(u^6)^*u^2 \subseteq L$ if and only if $(u^6)^*u^4 \subseteq L$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

1 $a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} a^{12} a^{13} a^{14} \dots$

Equivalence relation over the integers,

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

 $x^{\alpha} \leftrightarrow x^{\beta}$ for α and β representing sequences of integers $(km+r)_k$ and $(km+s)_k$ with $r \equiv_m s...$

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

An example:

$$(a^{2})^{*} - (a^{6})^{*} = (a^{6})^{*} a^{2} \cup (a^{6})^{*} a^{4}$$

$$1 \quad a \quad a^{2} \quad a^{3} \quad a^{4} \quad a^{5} \quad a^{6} \quad a^{7} \quad a^{8} \quad a^{9} \quad a^{10} \quad a^{11} \quad a^{12} \quad a^{13} \quad a^{14} \quad \dots$$

Equivalence relation over the integers

 $r \equiv_m s$ if and only if gcd(r, m) = gcd(s, m) $(u^m)^*u^r \subseteq L$ if and only if $(u^m)^*u^s \subseteq L$

 $x^{\alpha} \leftrightarrow x^{\beta}$ for α and β profinite numbers in $\widehat{\mathbb{N}} = \{\widehat{a}\}^*$ satisfying some specific conditions...

$$x^{\alpha} \leftrightarrow x^{\beta} \text{ for all } (\alpha, \beta) \in \Gamma$$
 (E₇)

An example:

$$(a^2)^* - (a^6)^* = (a^6)^* a^2 \cup (a^6)^* a^4$$

1
$$a a^2 a^3 a^4 a^5 a^6 a^7 a^8 a^9 a^{10} a^{11} a^{12} a^{13} a^{14} \dots$$

 Γ is the set of all the pairs of profinite numbers $(dz^{\mathcal{P}}, dpz^{\mathcal{P}})$ s.t.:

- $oldsymbol{\cdot}$ \mathcal{P} is a cofinite sequence of prime numbers $\{\emph{p}_1,\emph{p}_2,\ldots\}$
- $\mathbf{z}^{\mathcal{P}} = \lim_{n} (p_1 p_2 \dots p_n)^{n!}$
- \cdot *p* ∈ \mathcal{P}
- $oldsymbol{\cdot}$ if q divides d then $q \notin \mathcal{P}$

$$x^{\alpha} \leftrightarrow x^{\beta}$$
 for all $(\alpha, \beta) \in \Gamma$ (E₇)

- One can decide if a given rational language is star-free.
- (aa)* is not star-free.
- Generalised star-height: minimal number of nested stars in a generalised expression $(\cup, \cdot, {}^c, {}^*)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

 \longrightarrow OPEN : we do not even know if there exist a rational language with star-height at least 2.