About the generalised star-height problem and profinite identities

Laure Daviaud

City, University of London

University of York, 22/01/2020

Automata

Rational languages-

Automata

Rational languages

$$
(a b)^{*}
$$

Rational Expressions

- starts with an a
. ends with a b
- the successor of an a is $a b$
- the successor of $a b$ is an a

$$
(a b)^{*}
$$

- starts with an a
. ends with a b
- the successor of an a is $a b$
- the successor of $a b$ is an a

Rational languages

Finite monoids

$(a b)^{*}$

$$
\{a, b\}^{*} \xrightarrow{\varphi} M
$$

$$
\cdot M=\{1, a, b, a b, b a, 0\}
$$

$$
\text { - } a . b=a b, a . a=0, \ldots
$$

$$
\varphi^{-1}(a b)=(a b)^{*}
$$

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^{*}

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^{*} is star-free $\quad\left[=\emptyset^{c}\right]$

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^{*} is star-free $\quad\left[=\emptyset^{c}\right]$
- $(a b)^{*}$

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^{*} is star-free
$\left[=\emptyset^{c}\right]$
- $(a b)^{*}$ is star-free
$\left[=\left(b A^{*} \cup A^{*} a \cup A^{*} a a A^{*} \cup A^{*} b b A^{*}\right)^{c}\right]$

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^{*} is star-free $\quad\left[=\emptyset^{c}\right]$
- $(a b)^{*}$ is star-free $\quad\left[=\left(b A^{*} \cup A^{*} a \cup A^{*} a a A^{*} \cup A^{*} b b A^{*}\right)^{c}\right]$
- $\left(\left((a b)^{*} a\left(\left(b^{c} a^{*}\right)^{c}\right)^{*} a\left(a(b a)^{*}\right)^{c}\right)^{*} \operatorname{aaab}(b a b)^{c}(a b)^{*}\right)^{*}$

Star-free languages

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Are the following languages star-free?

- A^{*} is star-free $\quad\left[=\emptyset^{c}\right]$
- $(a b)^{*}$ is star-free $\quad\left[=\left(b A^{*} \cup A^{*} a \cup A^{*} a a A^{*} \cup A^{*} b b A^{*}\right)^{c}\right]$
- $\left(\left((a b)^{*} a\left(\left(b^{c} a^{*}\right)^{c}\right)^{*} a\left(a(b a)^{*}\right)^{c}\right)^{*} \operatorname{aaab}(b a b)^{c}(a b)^{*}\right)^{*}$
- (aa)*

Varieties and identities

Class of star-free languages

Varieties of languages

A variety of languages is a class of rational languages

$$
\nu\left(A_{1}\right) \cup \nu\left(A_{2}\right) \cup \nu\left(A_{3}\right) \ldots
$$

such that:

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties of languages

A variety of languages is a class of rational languages

$$
\nu\left(A_{1}\right) \cup \nu\left(A_{2}\right) \cup \nu\left(A_{3}\right) \ldots
$$

such that:
. for each alphabet $A_{i}, \nu\left(A_{i}\right)$ is a boolean algebra over A_{i} (closed under finite union, intersection, complement)

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties of languages

A variety of languages is a class of rational languages

$$
\nu\left(A_{1}\right) \cup \nu\left(A_{2}\right) \cup \nu\left(A_{3}\right) \ldots
$$

such that:

- for each alphabet $A_{i}, \nu\left(A_{i}\right)$ is a boolean algebra over A_{i} (closed under finite union, intersection, complement)
. for each alphabet $A_{i}, \nu\left(A_{i}\right)$ is closed under quotient: if $L \in \nu\left(A_{i}\right)$ and $u \in A_{i}^{*}$ then $L u^{-1}$ and $u^{-1} L \in \nu\left(A_{i}\right)$

The set of the star-free languages is the smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties of languages

A variety of languages is a class of rational languages

$$
\nu\left(A_{1}\right) \cup \nu\left(A_{2}\right) \cup \nu\left(A_{3}\right) \ldots
$$

such that:

- for each alphabet $A_{i}, \nu\left(A_{i}\right)$ is a boolean algebra over A_{i} (closed under finite union, intersection, complement)
- for each alphabet $A_{i}, \nu\left(A_{i}\right)$ is closed under quotient: if $L \in \nu\left(A_{i}\right)$ and $u \in A_{i}^{*}$ then $L u^{-1}$ and $u^{-1} L \in \nu\left(A_{i}\right)$
. it is closed under inverse image: for each monoid morphism
$\varphi: A_{i}^{*} \rightarrow A_{j}^{*}, L \in \nu\left(A_{j}\right)$ implies $\varphi^{-1}(L) \in \nu\left(A_{i}\right)$
The set of the star-free languages is the smallest set:
- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Varieties and identities

Class of star-free languages

A distance on the set of finite words

A distance on the set of finite words

$$
d(u, v)=2^{-n}
$$

where n : size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

A distance on the set of finite words

$$
d(u, v)=2^{-n}
$$

where n : size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Or n : size of a smallest monoid that separates u and v.

A distance on the set of finite words

$$
d(u, v)=2^{-n}
$$

where n : size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Or n : size of a smallest monoid that separates u and v.
d is an ultrametric distance:
. $d(u, v)=0$ iff $u=v$

- $d(u, v)=d(v, u)$
. $d(u, v) \leqslant \max (d(u, w), d(w, v))$

How far are those pairs of words?

$d(u, v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

How far are those pairs of words?

$d(u, v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v ?$

How far are those pairs of words?

$d(u, v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?
At least $2^{-(|u|+1)}$

How far are those pairs of words?

$d(u, v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?
At least $2^{-(|u|+1)}$

Example 2: $a \in A-a^{99}$ and a^{100} ?

How far are those pairs of words?

$d(u, v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?
At least $2^{-(|u|+1)}$
Example 2: $a \in A-a^{99}$ and a^{100} ?
$\frac{1}{4}$

How far are those pairs of words?

$d(u, v)=2^{-n}$ where n is the size of a smallest deterministic complete automaton \mathcal{A} such that $u \in L(\mathcal{A})$ and $v \notin L(\mathcal{A})$.

Example 1: $u \neq v$?
At least $2^{-(|u|+1)}$

Example 2: $a \in A-a^{99}$ and a^{100} ?
$\frac{1}{4}$
Example 3: $u \in A^{*}, n \in \mathbb{N}-u^{n!}$ and $u^{(n+1)!}$?

The profinite world

Profinite monoid $\widehat{A^{*}}$:

 completion of A^{*} with respect to the distance d.. Monoid if u and v sequences of words, $(u . v)_{n}=u_{n} v_{n}$

- Metric space
- A^{*} dense subset
. Compact

VIP (very important profinite) words

VIP (very important profinite) words

Idempotent power of $u \in A^{*}$

$$
u^{\omega}=\lim _{n \rightarrow \infty} u^{n!}
$$

Identities

Profinite identity: $u=v$ with $u, v \in \widehat{A^{*}}$.

Identities

Profinite identity: $u=v$ with $u, v \in \widehat{A^{*}}$.
Rational language $L \in A^{*} \longrightarrow \bar{L} \in \widehat{A^{*}}$ is the closure of L.

Identities

Profinite identity: $u=v$ with $u, v \in \widehat{A^{*}}$.
Rational language $L \in A^{*} \longrightarrow \bar{L} \in \widehat{A^{*}}$ is the closure of L.
A language L satisfies a profinite identity $u=v$ with $u, v \in \widehat{A^{*}}$, if for all profinite words $w, w^{\prime}, w u w^{\prime} \in \bar{L}$ if and only if $w v w^{\prime} \in \bar{L}$.

Identities

Profinite identity: $u=v$ with $u, v \in \widehat{A^{*}}$.
Rational language $L \in A^{*} \longrightarrow \bar{L} \in \widehat{A^{*}}$ is the closure of L.
A language L satisfies a profinite identity $u=v$ with $u, v \in \widehat{A^{*}}$, if for all profinite words w, w^{\prime}, $w u w^{\prime} \in \bar{L}$ if and only if $w v w^{\prime} \in \bar{L}$.

Example: for all $u, v \in\{a, b\}^{*}$ such that $|u|_{a}=|v|_{a}$ and $|u|_{b}=|v|_{b}, u \in L$ if and only if $v \in L$

Identities

Profinite identity: $u=v$ with $u, v \in \widehat{A^{*}}$.
Rational language $L \in A^{*} \longrightarrow \bar{L} \in \widehat{A^{*}}$ is the closure of L.
A language L satisfies a profinite identity $u=v$ with $u, v \in \widehat{A^{*}}$, if for all profinite words $w, w^{\prime}, w u w^{\prime} \in \bar{L}$ if and only if $w v w^{\prime} \in \bar{L}$.

Example: for all $u, v \in\{a, b\}^{*}$ such that $|u|_{a}=|v|_{a}$ and $|u|_{b}=|v|_{b}, u \in L$ if and only if $v \in L$
Commutative languages: If $w u v w^{\prime} \in L$ then $w_{v u w^{\prime}} \in L$

Identities

Profinite identity: $u=v$ with $u, v \in \widehat{A^{*}}$.
Rational language $L \in A^{*} \longrightarrow \bar{L} \in \widehat{A^{*}}$ is the closure of L.
A language L satisfies a profinite identity $u=v$ with $u, v \in \widehat{A^{*}}$, if for all profinite words $w, w^{\prime}, w u w^{\prime} \in \bar{L}$ if and only if $w v w^{\prime} \in \bar{L}$.

Example: for all $u, v \in\{a, b\}^{*}$ such that $|u|_{a}=|v|_{a}$ and $|u|_{b}=|v|_{b}, u \in L$ if and only if $v \in L$
Commutative languages: If $w u v w^{\prime} \in L$ then $w_{v u w^{\prime}} \in L$ $a b=b a$

Languages with a zero

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003) $|A| \geqslant 2$

u_{0}, u_{1}, \ldots an enumeration of the words of A^{*}
$v_{0}=u_{0}, \quad v_{n+1}=\left(v_{n} u_{n+1} v_{n}\right)^{(n+1)!}$

$$
\rho_{A}=\lim _{n \rightarrow \infty} v_{n}
$$

Languages with a zero

Zero (Reilly-Zhang 2000, Almeida-Volkov 2003)

 $|A| \geqslant 2$$u_{0}, u_{1}, \ldots$ an enumeration of the words of A^{*}
$v_{0}=u_{0}, \quad v_{n+1}=\left(v_{n} u_{n+1} v_{n}\right)^{(n+1)!}$

$$
\rho_{A}=\lim _{n \rightarrow \infty} v_{n}
$$

Languages with a sink state: $\rho_{A} u=u \rho_{A}=\rho_{A}$

Correspondance

> A class of languages is a variety if and only if it is defined by a set of profinite identities.

Varieties and identities

Class of star-free languages

What about the star-free languages

The set of the star-free languages is the smallest set:
. containing the finite languages (including the empty language),

- closed under finite union, concatenation and complement.

What about the star-free languages

The set of the star-free languages is the smallest set:
. containing the finite languages (including the empty language),

- closed under finite union, concatenation and complement.

Theorem [Schützenberger]
A language is star-free if and only if it satisfies the profinite identity $x^{\omega+1}=x^{\omega}$.

What about the star-free languages

The set of the star-free languages is the smallest set:
. containing the finite languages (including the empty language),

- closed under finite union, concatenation and complement.

Theorem [Schützenberger]
A language is star-free if and only if it satisfies the profinite identity $x^{\omega+1}=x^{\omega}$.
$\rightarrow(a b)^{*}$ is star-free.
$\rightarrow(a a)^{*}$ is not star-free.

Counter-free automata

FO[<] on finite words

(Schützenberger)

Smallest set:

- containing the finite languages (including the empty language),
- closed under finite union, concatenation and complement.

Rational Expressions
Algebra

The generalised star-height problem

. One can decide if a given rational language is star-free.

- $(a a)^{*}$ is not star-free.

The generalised star-height problem

. One can decide if a given rational language is star-free.

- $(a a)^{*}$ is not star-free.
- Generalised star-height: minimal number of nested stars in a generalised expression $\left(\cup, \cdot{ }^{c},{ }^{*}\right)$ representing a rational language.

> Examples of rational languages of a given generalised star-height?

The generalised star-height problem

. One can decide if a given rational language is star-free.

- $(a a)^{*}$ is not star-free.
- Generalised star-height: minimal number of nested stars in a generalised expression $\left(\cup, \cdot{ }^{c},{ }^{*}\right)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

\longrightarrow OPEN : we do not even know if there exist a rational language with star-height at least 2.

Equations

Definition Given two profinite words u, v, a rational language L satisfies
 $$
u \rightarrow v
$$
 $$
\text { if } u \in \bar{L} \text { implies } v \in \bar{L}
$$

$a, b \in A$
Equation $a b \rightarrow a b a$
$\left\{L \subseteq A^{*} \mid a b \notin L\right\} \cup\left\{L \subseteq A^{*} \mid a b, a b a \in L\right\}$

Equations

Definition Given two profinite words u, v, a rational language L satisfies
 $$
u \leftrightarrow v
$$
 $$
\text { if } u \in \bar{L} \text { if and only if } v \in \bar{L}
$$

$a, b \in A$
Equation $a b \leftrightarrow a b a$
$\left\{L \subseteq A^{*} \mid a b, a b a \notin L\right\} \cup\left\{L \subseteq A^{*} \mid a b, a b a \in L\right\}$

Equations

Definition Given two profinite words u, v, a rational language L satisfies
 $$
u \leqslant v
$$
 if for all $w, w^{\prime} \in \widehat{A^{*}}, w u w^{\prime} \in \bar{L}$ implies $w v w^{\prime} \in \bar{L}$

$a, b \in A$

Equation $a b \leqslant a b a$

$\left\{L \subseteq A^{*} \mid\right.$ for all $w, w^{\prime} \in A^{*}$, if $w a b w^{\prime} \in L$ then $\left.w a b a w^{\prime} \in L\right\}$

Equations

— Definition Given two profinite words u, v, a rational language L satisfies
 $$
u=v
$$
 if for all $w, w^{\prime} \in \widehat{A^{*}}, w u w^{\prime} \in \bar{L}$ if and only if $w v w^{\prime} \in \bar{L}$

$a, b \in A$
Equation $a b=a b a$
$\left\{L \subseteq A^{*} \mid\right.$ for all $w, w^{\prime} \in A^{*}, w a b w^{\prime} \in L$ iff $\left.w a b a w^{\prime} \in L\right\}$

Equations

— Theorem [Gehrke, Grigorieff, Pin 2008]
Classes of rational languages
. Lattice (union, intersection): \rightarrow
. Boolean algebra (lattice, complement): \leftrightarrow

- Lattice closed under quotient: \leqslant
. Boolean algebra closed under quotient: =
quotient : $u^{-1} L v^{-1}=\{w \mid u w v \in L\}$

Equations for u^{*} [joint work with C.Paperman]

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

Equations for u^{*} [joint work with C.Paperman]

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Lattice

Equations for u^{*} [joint work with C.Paperman]

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Lattice closed under quotients

Equations for u^{*} [joint work with C.Paperman]

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Boolean algebra closed under quotients

Equations for u^{*} [joint work with C.Paperman]

$$
\begin{align*}
& P_{u}=\bigcup_{p \text { prefix of } u} u^{*} p \quad \text { and } \quad S_{u}=\bigcup_{s \text { suffix of } u} s u^{*} \\
& x^{\omega} y^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } x y \neq y x \tag{1}\\
& x^{\omega} y=0 \text { for } x, y \in A^{*} \text { such that } y \notin P_{x} \tag{2}\\
& y x^{\omega}=0 \text { for } x, y \in A^{*} \text { such that } y \notin S_{x} \tag{3}\\
& x^{\omega} \leqslant 1 \text { for } x \in A^{*} \tag{4}\\
& x^{\ell} \leftrightarrow x^{\omega+\ell} \text { for } x \in A^{*}, \ell>0 \tag{5}\\
& x \rightarrow x^{\ell} \text { for } x \in A^{*}, \ell>0 \tag{6}\\
& x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{align*}
$$

DECIDABLE Boolean algebra

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\begin{gathered}
\left.c a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4} \\
1 \quad a \quad a^{2} \quad a^{3} \quad a^{4} \quad a^{5} \quad a^{6} \quad a^{7} a^{8} a^{9} a^{10} \quad a^{11} \quad a^{12} \quad a^{13} \quad a^{14} \ldots
\end{gathered}
$$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\begin{gathered}
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4} \\
1 a a^{2} a^{3} \quad a^{4} a^{5} a^{6} a^{7} a^{8} a^{9} a^{10} \quad a^{11} a^{12} \quad a^{13} \quad a^{14} \ldots
\end{gathered}
$$

Equivalence relation over the integers
$r \equiv_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\begin{gathered}
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4} \\
1 a a^{2} \quad a^{3} \quad a^{4} a^{5} a^{6} \quad a^{7} a^{8} \quad a^{9} \quad a^{10} \quad a^{11} \quad a^{12} \quad a^{13} \quad a^{14} \ldots
\end{gathered}
$$

Equivalence relation over the integers
$r \equiv{ }_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$

$$
\begin{aligned}
& 2 \equiv_{6} 4 \text { since } \operatorname{gcd}(2,6)=2=\operatorname{gcd}(4,6) \\
& \left(u^{6}\right)^{*} u^{2} \subseteq L \text { if and only if }\left(u^{6}\right)^{*} u^{4} \subseteq L
\end{aligned}
$$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\begin{gathered}
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4} \\
1 a a^{2} \quad a^{3} \quad a^{4} a^{5} a^{6} \quad a^{7} a^{8} \quad a^{9} \quad a^{10} \quad a^{11} \quad a^{12} \quad a^{13} \quad a^{14} \ldots
\end{gathered}
$$

Equivalence relation over the integers
$r \equiv{ }_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$
$x^{\alpha} \leftrightarrow x^{\beta}$ for α and β representing sequences of integers $(k m+r)_{k}$ and $(k m+s)_{k}$ with $r \equiv{ }_{m} s \ldots$

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4}
$$

$$
\begin{array}{lllllllllllllllll}
1 & a & a^{2} & a^{3} & a^{4} & a^{5} & a^{6} & a^{7} & a^{8} & a^{9} & a^{10} & a^{11} & a^{12} & a^{13} & a^{14} & \ldots
\end{array}
$$

Equivalence relation over the integers
$r \equiv{ }_{m} s$ if and only if $\operatorname{gcd}(r, m)=\operatorname{gcd}(s, m)$
$\left(u^{m}\right)^{*} u^{r} \subseteq L$ if and only if $\left(u^{m}\right)^{*} u^{s} \subseteq L$
$x^{\alpha} \leftrightarrow x^{\beta}$ for α and β profinite numbers in $\widehat{\mathbb{N}}=\widehat{\{a\}^{*}}$ satisfying some specific conditions...

The Boolean algebra

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

An example:

$$
\begin{gathered}
\left(a^{2}\right)^{*}-\left(a^{6}\right)^{*}=\left(a^{6}\right)^{*} a^{2} \cup\left(a^{6}\right)^{*} a^{4} \\
1 a a^{2} a^{3} \quad a^{4} a^{5} a^{6} a^{7} a^{8} a^{9} a^{10} a^{11} a^{12} \quad a^{13} \quad a^{14} \ldots
\end{gathered}
$$

Γ is the set of all the pairs of profinite numbers $\left(d z^{\mathcal{P}}, d p z^{\mathcal{P}}\right)$ s.t.:
. \mathcal{P} is a cofinite sequence of prime numbers $\left\{p_{1}, p_{2}, \ldots\right\}$
. $z^{\mathcal{P}}=\lim _{n}\left(p_{1} p_{2} \ldots p_{n}\right)^{n!}$

- $p \in \mathcal{P}$
- if q divides d then $q \notin \mathcal{P}$

$$
\begin{equation*}
x^{\alpha} \leftrightarrow x^{\beta} \text { for all }(\alpha, \beta) \in \Gamma \tag{7}
\end{equation*}
$$

The generalised star-height problem

. One can decide if a given rational language is star-free.

- $(a a)^{*}$ is not star-free.
- Generalised star-height: minimal number of nested stars in a generalised expression $\left(\cup, \cdot{ }^{c},{ }^{*}\right)$ representing a rational language.

Examples of rational languages of a given generalised star-height?

\longrightarrow OPEN : we do not even know if there exist a rational language with star-height at least 2.

