Semigroups of Left I-quotients

Nassraddin Ghroda

May 11, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

2 Inverse hull of left I-quotients of left ample semigroups

- 3 Extension of homomorphisms
- 4 Left I-orders in semilattices of inverse semigroups
- 5 Primitive inverse semigroups of left I-quotients

Background

• Ore (1940)

(ロ)、(型)、(E)、(E)、 E) の(の)

Background

- Ore (1940)
- Fountain and Petrich (1986)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Background

- Ore (1940)
- Fountain and Petrich (1986)
- Fountain and Gould (1986)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background

- Ore (1940)
- Fountain and Petrich (1986)
- Fountain and Gould (1986)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• MacAlister (1973)

Background

- Ore (1940)
- Fountain and Petrich (1986)
- Fountain and Gould (1986)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Clifford (1953)
- MacAlister (1973)

Background

- Ore (1940)
- Fountain and Petrich (1986)
- Fountain and Gould (1986)
- Clifford (1953)
- MacAlister (1973)
- Gould and Ghroda (2010)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Left I-order

Definition

A subsemigroup S of an inverse semigroup Q is a *left I-order* in Q or Q is a semigroup of *left I-quotients* of S if every element of Q can be written as $a^{-1}b$ where a and b are elements of S and a^{-1} is the inverse of a in the sense of inverse semigroup theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

Left I-order

Definition

A subsemigroup S of an inverse semigroup Q is a straight left *I-order* in Q or Q is a semigroup of left *I-quotients* of S if every element of Q can be written as $a^{-1}b$ where $a \mathcal{R} b$ in Q where a and b are elements of S and a^{-1} is the inverse of a in the sense of inverse semigroup theory.

Left ample semigroups

• $a \mathcal{R}^* b$ if and only if

$$xa = ya$$
 if and only if $xb = yb$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $x, y \in S^1$

Left ample semigroups

• $a \mathcal{R}^* b$ if and only if

$$xa = ya$$
 if and only if $xb = yb$

for all $x, y \in S^1$

A semigroup S is a left ample if and only if
(i) E(S) is a semilattice.
(ii) every R*-class contains an idempotent (a R* a⁺).
(iii) for all a ∈ S and all e ∈ E(S),

$$(ae)^+a = ae.$$

Left ample semigroups

• $a \mathcal{R}^* b$ if and only if

$$xa = ya$$
 if and only if $xb = yb$

for all $x, y \in S^1$

A semigroup S is a left ample if and only if
(i) E(S) is a semilattice.
(ii) every R*-class contains an idempotent (a R* a⁺).
(iii) for all a ∈ S and all e ∈ E(S),

$$(ae)^+a = ae.$$

• $\phi: S \longrightarrow \mathcal{I}_S$ defined by

$$a\phi = \rho_a$$

where $\rho_a: Sa^+ \longrightarrow Sa$ defined by $x\rho_a = xa$

Left ample semigroups

Theorem

If S is a left ample semigroup then, S is a left I-order in its inverse hull $\Sigma(S) \iff S$ satisfies (LC) condition.

Extension of homomorphisms

Let S be a subsemigroup of Q and let φ : S → P be a morphism from S to a semigroup P. If there is a morphism \$\overline{\phi}\$: Q → P such that \$\overline{\phi}|_S = φ\$, then we say that \$\phi\$ lifts to \$Q\$. If \$\phi\$ lifts to an isomorphism, then we say that \$Q\$ and \$P\$ are isomorphic over \$S\$.

Extension of homomorphisms

- On a straight left l-order semigroup S in a semigroup Q we define a relation T^Q_S on S as follows:

$$(a,b,c)\in\mathcal{T}_{\mathcal{S}}^{\mathcal{Q}}\Longleftrightarrow ab^{-1}Q\subseteq c^{-1}Q.$$

Theorem

Let S be a straight left I-order in Q and let T be a subsemigroup of an inverse semigroup P. Suppose that $\phi : S \to T$ is a morphism. Then ϕ lifts to a (unique) morphism $\overline{\phi} : Q \to P$ if and only if for all $(a, b, c) \in S$: (i) $(a, b) \in \mathcal{R}_S^Q \Rightarrow (a\phi, b\phi) \in \mathcal{R}_T^P$; (ii) $(a, b, c) \in \mathcal{T}_S^Q \Rightarrow (a\phi, b\phi, c\phi) \in \mathcal{T}_T^P$. If (i) and (ii) hold and $S\phi$ is a left I-order in P, then $\overline{\phi} : Q \to P$ is onto.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Corollary

Let S be a straight left l-order in Q and let $\phi : S \to P$ be an embedding of S into an inverse semigroup P such that $S\phi$ is a straight left l-order in P. Then Q is isomorphic to P over S if and only if for any $a, b, c \in S$: (i) $(a, b) \in \mathcal{R}_{S}^{Q} \Leftrightarrow (a\phi, b\phi) \in \mathcal{R}_{S\phi}^{P}$; and (ii) $(a, b, c) \in \mathcal{T}_{S}^{Q} \Leftrightarrow (a\phi, b\phi, c\phi) \in \mathcal{T}_{S\phi}^{P}$.

Corollary

Let S be a straight left I-order in semigroups Q and P and φ be the embedding of S in P. Then $Q \cong P$ if and only if for all $a, b \in S$,

$$a \mathcal{R} b \text{ in } Q \iff a \varphi \mathcal{R} b \varphi$$

and

$$(a,b,c)\in\mathcal{T}^{\mathcal{Q}}_{\mathcal{S}}\iff(aarphi,barphi,carphi)\in\mathcal{T}^{\mathcal{P}}_{\mathcal{S}arphi}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Semilattice of semigroups

Definition

Let Y be a semilattice. A semigroup S is called a *semilattice* Y of semigroups $S_{\alpha}, \alpha \in Y$, if $S = \bigcup_{\alpha \in Y} S_{\alpha}$ where $S_{\alpha}S_{\beta} \subseteq S_{\alpha\beta}$ and $S_{\alpha} \cap S_{\beta} = \emptyset$ if $\alpha \neq \beta$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Strong semilattices of semigroups

Definition

Let Y be a semilattice. Suppose to each $\alpha \in Y$ there is associated semigroup S_{α} and assume that $S_{\alpha} \cap S_{\beta} \neq \emptyset$ if $\alpha \neq \beta$. For each pair $\alpha, \beta \in Y$ with $\alpha \geq \beta$, let $\varphi_{\alpha,\beta} : S_{\alpha} \longrightarrow S_{\beta}$ be a homomorphism such that the following conditions hold: 1) $\varphi_{\alpha,\alpha} = \iota_{S_{\alpha}}$, 2) $\varphi_{\alpha,\beta}\varphi_{\beta,\gamma} = \varphi_{\alpha,\gamma}$ if $\alpha \geq \beta \geq \gamma$, On the set $S = \bigcup_{\alpha \in Y} S_{\alpha}$ define a multiplication by

$$a * b = (a \varphi_{lpha, lpha eta})(b \varphi_{eta, lpha eta})$$

if $a \in S_{\alpha}, b \in S_{\beta}$.

Left I-orders in semilattices of inverse semigroups

• $S = \bigcup_{\alpha \in Y} S_{\alpha}$ (S_{α} has (LC) and S has (LC))

Left I-orders in semilattices of inverse semigroups

•
$$S = \bigcup_{\alpha \in Y} S_{\alpha}$$
 (S_{α} has (LC) and S has (LC))

•
$$Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$$
 (Σ_{α} inverse hulls of S_{α})

Left I-orders in semilattices of inverse semigroups

•
$$S = \bigcup_{\alpha \in Y} S_{\alpha}$$
 (S_{α} has (LC) and S has (LC))
• $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ (Σ_{α} inverse hulls of S_{α})
•

$$a_{\alpha}^{-1}b_{\alpha}c_{\beta}^{-1}d_{\beta} = (ta_{\alpha})^{-1}(rd_{\beta})$$
 where $S_{\alpha\beta}b_{\alpha} \cap S_{\alpha\beta}c_{\beta} = S_{\alpha\beta}w$
and $tb = rc = w$ for some $t, r \in S_{\alpha\beta}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Left I-orders in semilattices of inverse semigroups

•
$$S = \bigcup_{\alpha \in Y} S_{\alpha}$$
 (S_{α} has (LC) and S has (LC))
• $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ (Σ_{α} inverse hulls of S_{α})

$$a_{\alpha}^{-1}b_{\alpha}c_{\beta}^{-1}d_{\beta}=(ta_{\alpha})^{-1}(rd_{\beta})$$
 where $S_{\alpha\beta}b_{\alpha}\cap S_{\alpha\beta}c_{\beta}=S_{\alpha\beta}w$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

and tb = rc = w for some $t, r \in S_{\alpha\beta}$.

• Q is a semigroup

•
$$S = \bigcup_{\alpha \in Y} S_{\alpha}$$
 (S_{α} has (LC) and S has (LC))
• $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ (Σ_{α} inverse hulls of S_{α})

$$a_{lpha}^{-1}b_{lpha}c_{eta}^{-1}d_{eta}=(ta_{lpha})^{-1}(rd_{eta})$$
 where $S_{lphaeta}b_{lpha}\cap S_{lphaeta}c_{eta}=S_{lphaeta}w$

and tb = rc = w for some $t, r \in S_{\alpha\beta}$.

• Q is a semigroup

• The multiplication on Q extends the multiplication on S.

•
$$S = \bigcup_{\alpha \in Y} S_{\alpha}$$
 (S_{α} has (LC) and S has (LC))
• $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ (Σ_{α} inverse hulls of S_{α})

$$a_{\alpha}^{-1}b_{\alpha}c_{\beta}^{-1}d_{\beta}=(ta_{\alpha})^{-1}(rd_{\beta})$$
 where $S_{\alpha\beta}b_{\alpha}\cap S_{\alpha\beta}c_{\beta}=S_{\alpha\beta}w$

and tb = rc = w for some $t, r \in S_{\alpha\beta}$.

- Q is a semigroup
- The multiplication on Q extends the multiplication on S.
- S is a left I-order in $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$.

Theorem

(Gantos) Let S be a semilattice of right cancellative monoids S_{α} . Suppose that S, and S_{α} , has (LC) condition. Then $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ is a semilattice of bisimple inverse monoids (Σ_{α} inverse hulls of S_{α}) and the multiplication in Q is defined by

$$a_{lpha}^{-1}b_{lpha}c_{eta}^{-1}d_{eta}=(ta_{lpha})^{-1}(\mathit{rd}_{eta})$$
 where $S_{lphaeta}b_{lpha}\cap S_{lphaeta}c_{eta}=S_{lphaeta}w$

and tb = rc = w for some $t, r \in S_{\alpha\beta}$.

Corollary

The semigroup S defined as above is a left I-order in $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$.

Theorem

Let $S = \bigcup_{\alpha \in Y} S_{\alpha}$ be a semilattice of right cancellative monoids with (LC) condition and S has (LC) condition. Let $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ where Σ_{α} is inverse hull of S_{α} . Then Q is a strong semilattice of monoids Σ_{α} and S is a left l-order in Q.

we say that a (2,1)-morphism φ : S → T, where S and T are left ample semigroups with Condition (LC) is (LC)-preserving if, for any b, c ∈ S with Sb ∩ Sc = Sw, we have that

$$T(b\phi) \cap T(c\phi) = T(w\phi).$$

we say that a (2,1)-morphism φ : S → T, where S and T are left ample semigroups with Condition (LC) is (LC)-preserving if, for any b, c ∈ S with Sb ∩ Sc = Sw, we have that

$$T(b\phi) \cap T(c\phi) = T(w\phi).$$

Lemma

Let S_{α} be a left ample semigroup with (LC) condition and $\varphi_{\alpha,\beta}, \alpha \geq \beta$, is (LC)-preserving. Then $S = \bigcup_{\alpha \in Y} S_{\alpha}$ is a left *I*-order in a strong semilattice $Q = \bigcup_{\alpha \in Y} \Sigma_{\alpha}$ where Σ_{α} is an inverse hull of S_{α} .

Primitive inverse semigroups of left I-quotients

Theorem

A semigroup S is a left l-order in a primitive inverse semigroup Q if S satisfies the following conditions;

- A) S is categorical at 0,
- B) S is 0-cancellative,

C) For any $a, b \in S^*$ $a \mathcal{R}^* b \iff xa \neq 0, xb \neq 0$ for some $x \in S^*$,

D) λ is transitive, ($a \lambda b \iff a = b = 0$ or $Sa \cap Sb \neq 0$)

E) $Sa \neq 0$ for all $a \in S$.

Primitive inverse semigroups of left l-quotients

Let S satisfies the conditions (A)-(E). Define
 Σ = {(a, b) ∈ S × S; a R* b}

Primitive inverse semigroups of left l-quotients

- Let S satisfies the conditions (A)-(E). Define
 Σ = {(a, b) ∈ S × S; a R* b}
- $(a, b) \sim (c, d) \iff a = b = c = d = 0$, or there exist $x, y \in S$ such that $xa = yc \neq 0$, $xb = yd \neq 0$.

Primitive inverse semigroups of left l-quotients

- Let S satisfies the conditions (A)-(E). Define
 Σ = {(a, b) ∈ S × S; a R* b}
- $(a,b) \sim (c,d) \iff a = b = c = d = 0$, or there exist $x, y \in S$ such that $xa = yc \neq 0$, $xb = yd \neq 0$.
- Let $Q = \Sigma / \sim$ define

$$[a, b][c, d] = \begin{cases} [xa, yd] & \text{if } b \lambda c \text{ and } xb = yc \neq 0 \\ 0 & \text{else} \end{cases}$$

and 0[a, b] = [a, b]0 = 00 = 0 where 0 = [0, 0].

Primitive inverse semigroups of left I-quotients

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• *Q* is a semigroup.

Primitive inverse semigroups of left I-quotients

- *Q* is a semigroup.
- *Q* is a regular semigroup.

Primitive inverse semigroups of left I-quotients

- Q is a semigroup.
- Q is a regular semigroup.
- $E(Q) = \{[a, a]; a \in S\} \cup \{0\}.$

Primitive inverse semigroups of left I-quotients

- Q is a semigroup.
- Q is a regular semigroup.
- $E(Q) = \{[a, a]; a \in S\} \cup \{0\}.$
- Q is primitive.

Primitive inverse semigroups of left I-quotients

- Q is a semigroup.
- Q is a regular semigroup.
- $E(Q) = \{[a, a]; a \in S\} \cup \{0\}.$
- Q is primitive.
- S is embedded in Q.

Primitive inverse semigroups of left I-quotients

- Q is a semigroup.
- Q is a regular semigroup.
- $E(Q) = \{[a, a]; a \in S\} \cup \{0\}.$
- Q is primitive.
- S is embedded in Q.

Primitive inverse semigroups of left I-quotients

- Q is a semigroup.
- Q is a regular semigroup.
- $E(Q) = \{[a, a]; a \in S\} \cup \{0\}.$
- Q is primitive.
- S is embedded in Q.
- S is a left I-order in Q.

Primitive inverse semigroups of left I-quotients

Theorem

A semigroup S is a left I-order in a primitive inverse semigroup Q if and only if S satisfies the following conditions;

- A) S is categorical at 0,
- B) S is 0-cancellative,

C) For any $a, b \in S^*$ a $\mathcal{R}^* b \iff xa \neq 0, xb \neq 0$ for some $x \in S^*$,

D) λ is transitive, ($a \lambda b \iff a = b = 0$ or $Sa \cap Sb \neq 0$)

E) $Sa \neq 0$ for all $a \in S$.

Brandt semigroups of left l-quotients

Lemma

A semigroup S is a left I-order in a primitive inverse semigroup Q. Then Q is a Brandt semigroup if and only if for all $a, b \in S$ there exist $c, d \in S$ such that $ca \mathcal{R}^* d \lambda b$.