PROPER WEAKLY LEFT AMPLE SEMIGROUPS

Gracinda M. S. Gomes and Victoria Gould

ABSTRACT. Much of the structure theory of inverse semigroups
is based on constructing arbitrary inverse semigroups from groups
and semilattices. FE-unitary (or proper) inverse semigroups are
known to be P-semigroups (McAlister), or inverse subsemigroups
of semidirect products of a semilattice by a group (O’Carroll)
or Cy-semigroups built over an inverse category acted upon by
a group (Margolis and Pin). On the other hand, every inverse
semigroup is known to have an E-unitary inverse cover (McAlis-
ter).

The aim of this paper is to develop a similar theory for proper
weakly left ample semigroups, a class with properties echoing those
of inverse semigroups. We show how the structure of semigroups
in this class is based on constructing semigroups from unipotent
monoids and semilattices. The results corresponding to those of
McAlister, O’Carroll and Margolis and Pin are obtained.

INTRODUCTION

The relation R is defined on a semigroup S by the rule that a R b if and
only if a and b have the same set of idempotent left identities, that is, for all
e € E(5), ea = aif and only if eb = b. Green’s relation R is contained in R,
indeed R C R* C R where a R* b if and only if @ R b in some oversemigroup
of S. When restricted to the regular elements of S all three relations R, R*
and R coincide.
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A semigroup S is said to be left [semi]abundant if each [R-class] R*-class
contains an idempotent. A left [semiJabundant semigroup S such that E(S)
is a semilattice is said to be left [semi]adequate. It is easy to show that if S
is left [semi]adequate then the idempotent in the R*-class [R-class] of a € S
is unique: we denote this idempotent by a™. Notice that in a left adequate
semigroup R* = R and so there is no ambiguity in this notation. Notice also
that a™ is the least element in the set of idempotents that are left identities
of a.

In a semigroup S both equivalence relations R* and R are left compatible
but that may not be the case for R (see [8]). A semigroup S is said to satisfy
condition (CL) if R is a left congruence on S.

A left semiadequate semigroup S that satisfies condition (CL) and in
which, for all @ € S and e € E(S),

ae = (ae)ta (AL)

is said to be weakly left ample.

In papers [9] and [10] we give a number of examples of left semiabundant
and weakly left ample semigroups. We content ourselves here by remarking
that any inverse semigroup is weakly left ample, but the class of weakly
left ample semigroups is much wider, containing, for example, all unipotent
monoids, and all Bruck-Reilly extensions or Brandt extensions of such.

When S is left adequate condition (CL) holds and S is said to be left
ample (formerly left type-A, see for example [6]) when it satisfies condition
(AL). Notice that the class of all inverse semigroups is properly contained in
the class of all left ample semigroups. On a semigroup S with semilattice of
idempotents E(S) the relation o defined as follows, for all a, b € S,

a o b if and only if ea = eb, for some e € E(S),

is a right compatible equivalence. It is well known that when S is inverse o
is the least group congruence on S [14] and that when S is left ample o is
the least right cancellative monoid congruence on S [3].

In a sister paper [10], we show that when S is a weakly left ample monoid
then o is the least unipotent congruence on S. This proof can easily be
modified to prove that if S is a weakly left ample semigroup, then o is the
least unipotent monoid congruence on S.

Inspired by the fact that an inverse semigroup S is F-unitary (formerly,
proper) if and only if R N o = ¢, the identity relation on S [12, 13, 15],
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Fountain [3] introduced the class of proper left ample semigroups. A [weakly]
left ample semigroup is said to be proper if RNo = Such semigroups are
necessarily E-unitary but the converse, as proved in [3], is not true. Proper
left ample semigroups have been widely studied, see for example [2, 3, 6, 16].

In the present paper our objective is to extend to proper weakly left ample
semigroups the techniques of Margolis and Pin, introduced in [11]. These
are used in [11] to describe F-unitary E-dense semigroups in terms of groups
acting on categories. They are further developed by Fountain and Gomes
[5, 6, 7] to study proper left ample monoids in terms of right cancellative
monoids acting on categories. We aim to characterise proper weakly left
ample semigroups by means of unipotent monoids acting on semigroupoids.
By a semigroupoid we mean a category possibly without local identities [17]
(or a “quiver” in the sense of [1]). Subsequently, we describe proper weakly
left ample semigroups as certain subsemigroups of the semidirect product of a
semilattice by a unipotent monoid. Clearly, by analogy with the inverse and
the left ample cases we aim to finish by proving the existence of proper covers
for arbitrary weakly left ample semigroups, an aim we achieve in Theorem
5.2.

Section 1 contains the main definitions and technical results used in the
paper. Section 2 deals with the representation a proper weakly left ample
semigroup S as a semigroup C; built from a proper 1-weakly left ample
semigroupoid C acted upon 1-transitively and l-injectively by a unipotent
monoid M. We prove that, o being the least unipotent monoid congruence
on S, the semigroup S is isomorphic to the semigroup C built from the
derived semigroupoid of the canonical epimorphism 6 : S — S/o, s +— [s],
acted upon by the unipotent monoid S/o.

Section 3 answers the question of whether or not every proper weakly left
ample semigroup can be embedded in the semidirect product of a semilattice
by a unipotent monoid. Given a semigroupoid C and a unipotent monoid M
under the above conditions, we prove that C is embeddable into the wreath
product ) ® M, where ) is the semilattice of all ideals of Mor (1, 1).

In Section 4 proper weakly left ample semigroups are described as strong
M-semigroups M(M, X)), where X is a semilattice, } is a subsemilattice
of X and M is a unipotent monoid acting on X.

The last section deals with the construction of a proper weakly left ample
cover of an arbitrary weakly left ample semigroup, following the techniques
of [4] for E-dense monoids.



1. PRELIMINARIES

Throughout this paper we regard weakly left ample semigroups [monoids| as
algebras of type (2,1) [(2,1,0)], respectively. Here the unary operation is the
map a — at, where a* is the unique idempotent in the R-class of a. With
this signature, weakly left ample semigroups (monoids) are a quasivariety,
axiomatised by X, (X U {zl = 1z = z}), where ¥ is the set

{(zy)z = x(yz); (a® =z AN y* = y) = 3y = ya;
(@) =ab et =0 (P =xAry=y) =y =y"
et =yt = (22)" = (2y)t; 2* = v = yz = (y2) Ty}

of quasi-identities. One of the uses of this approach is that, consequently, a
morphism between weakly left ample semigroups must preserve R.

In what follows C is always a small semigroupoid in the sense of [17],
that is, a category possibly without local identities, with set of objects ObjC
and set of morphisms MorC. For all v € ObjC, the set of all morphisms
with domain [codomain] v is denoted by Mor (v, —) [Mor (—,v)]. Asin [11],
we adopt additive notation for the composition of morphisms, though the
operation is generally not commutative.

A morphism p is said to be idempotent whenever p + p is defined and
p = p+ p. Clearly, if p is idempotent, then p € Mor (u, u) for some object
u. We denote by E(Mor (u,u)) the set of all idempotents of the semigroup
Mor (u, u) and by E(MorC) the set of all idempotents of Mor C. Notice that
as C is simply a semigroupoid Mor (u,u) may not be a monoid.

In a natural way we extend the definitions of left semiadequate and weakly
left ample given for a semigroup. A semigroupoid C is said to be left semi-
adequate if and only if F(Mor (u,u)) is a semilattice for any object u, and
for every pair of objects u and v, and every p € Mor (u,v), there exists an
idempotent p* in Mor (u, u) such that

p=p"+p, and
p=r+p implies pt =r+p", forall re E(Mor (u,u)).

Since E(Mor (u,u)) is a semilattice for each object u, it is easy to show
that such an idempotent is necessarily unique. Notice also that (p*)* = p*
for any p € MorC, and that p* = ¢* implies p,q € Mor (u,—) for some
u € ObjC.

A left semiadequate semigroupoid C is said to be weakly left ample if it
satisfies the following conditions:



(CL) p* = ¢* implies (r +p)* = (r+¢)*,
for all u € ObjC, p,q € Mor (u, —) and r € Mor (—, u);

(AL) pts=(p+s)" +p,
for all u,v € ObjC, p € Mor (u,v) and s € E(Mor (v,v)).

The following lemma is easy to check and will be used frequently.

Lemma 1.1. Let C be a weakly left ample semigroupoid and p,q € MorC
be such that p+ q is defined. Then

(@) p+a)" =@+q")";

b) p+a)*+p=p+q".

A category is a semigroupoid with local identities and we may therefore
consider weakly left ample categories. On the other hand, a monoid can be
regarded as a category with a single object and in this case the definitions
of weakly left ample monoid and weakly left ample category coincide. Also,
a semigroup without identity can be looked upon as a semigroupoid with a
single object and without a local identity. As in the monoid case, the defi-
nitions of weakly left ample for semigroupoids and for semigroups coincide.
Clearly, in both cases, we may define the relation R on Mor C as follows: for
all p,qg € MorC, p R ¢ if and only if p™ = ¢™.

Notice that every left type-A category in the sense of [4], or left ample in
the new terminology, is weakly left ample as for all p,q € MorC, p R* ¢ if
and only if p™ = ¢*.

By a l-weakly left ample semigroupoid C we mean a weakly left ample
semigroupoid with a distinguished object 1, such that Mor (1,1) is a semi-
lattice. Such a semigroupoid is said to be proper if, for all u € ObjC, p,q €
Mor (1, u),

pT=q implies p=gq.

Lemma 1.2. Let C be a proper 1-weakly left ample semigroupoid. Let p,q €
Mor (1,v), for some v € ObjC. Then p™ +q=q" + p.

Proof. As C is a 1-weakly left ample semigroupoid, we have

T+t =p"+q =q¢"+p"=(¢" +p)7,



with p™ + ¢, ¢ + p € Mor (1,v). Hence p* + ¢ = ¢q* + p, since C is proper.

A monoid M acts (on the left) on a semigroupoid C if there are maps
(t,u) — tu from M x ObjC into ObjC and (¢,p) — tp from M x Mor (u, v)
into Mor (tu, tv), for all objects u, v of C, such that the following conditions
are satisfied, where u,v,w € ObjC, p € Mor (u,v), ¢ € Mor (v,w) and
t,h € M:

t(hu) = (th)u,

lu = wu,
tlp+q) = tp+ig,
(th)p = t(hp),
Ip = p,

and if C is a category t0, = Oy,.
When C is left semiadequate it is also required that

(tp)™ = tp™,

for all t € M and p € MorC.

When C has distinguished object 1, the action is said to be 1-transitive if
for all uw € ObjC there exists ¢ € M such that v = t1, so that ObjC = M1;
and it is said to be 1-injective if, for all t,h € M,

tl1 =hl implies t=h.

Clearly, in the case when the action is both 1-transitive and 1-injective
the correspondence ¢ — t1 gives a bijection from M into ObjC and so we
may identify ObjC with M.

2. E-UNITARY AND PROPER WEAKLY LEFT AMPLE SEMIGROUPS

In this section, we present a structure theorem for E-unitary and for
proper weakly left ample semigroups in terms of semigroupoids acted upon
by unipotent monoids. We recall that by an E-unitary semigroup S we mean
a semigroup such that for all a € S and e € E(S), ae € E(S) or ea € E(S)
implies a € E(S).



Let M be a monoid acting on a 1-weakly left ample semigroupoid C. As
in [11], the set
Cy={(p,t) :t € M, p€ Mor(1,t)}

is a semigroup under the operation defined by, for all (p,t), (¢, h) € C4,
(p,t)(q,h) = (p + tg, th).

Lemma 2.1. Let C be a 1-weakly left ample semigroupoid |category| and M
a unipotent monoid acting on C. Then Cy is an E-unitary weakly left ample
semigroup [monoid], with E(Cy) ~ Mor (1,1).

Proof. Once proved that
E(Cy) ={(p,1) : p € Mor (1,1)} ~ Mor (1,1)

and that, for any (p,t) € C, we have (p,t)™ = (p™, 1), the rest of the proof
is a routine matter.

Let S be a semigroup and M a monoid. Let ¢ : S — M be a morphism
from S onto M. As in [11] we define the (left) derived semigroupoid D of ¢
as follows:

ObjD = M and, for u,v € ObjD,
Mor (u,v) = {(u, m,v) : m € S,u(me) = v};

composition is given by
(uw,m,v) + (v,n,w) = (u, mn, w).

It is easy to prove that D is a semigroupoid and that, in particular, when S

is a monoid D is a category.
We define an action (on the left) of M on D as follows: M acts on Obj D
by multiplication and for (u, m,v) € Obj (u,v) and t € M
t(u, m,v) = (tu, m, tv).
Let S be a weakly left ample semigroup. Recall from the Introduction
that the relation o defined on S by the rule that a ¢ b if and only if ea = eb
for some e € E(S), is a right compatible equivalence relation. In [10] we

prove that if S is a monoid, then ¢ is the least unipotent congruence on S.
Minor observations yield the following result for semigroups.
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Lemma 2.2. Let S be a weakly left ample semigroup. Then o is the least
unipotent monoid congruence on S.

Proof. As in [10], use of (AL) gives that o is a congruence and S/o is
unipotent. For any a € S, ata = a and

aat = (aa")tacata=a

so that the idempotent of S/o is the identity. It is then clear that o is the
least unipotent monoid congruence on S.

As in [3] for right ample semigroups (the dual case), we say that a weakly
left ample semigroup S is proper if RNo = L, the identity relation on S. In
[3] it is proved that proper implies F-unitary, but the converse is not true.

The same arguments as in [6] for the left ample case can be used to prove
the following lemma.

Lemma 2.3. Let S be a weakly left ample semigroup. The following con-
ditions are equivalent:

(a) S is E-unitary,

(b) for alla € S, e € E(S), ae € E(S) [ea € E(S)] implies a € E(S),

(¢) E(S) is a o-class, the unique idempotent in S/o.

Next, we characterize the derived semigroupoid of the canonical epimor-
phism associated with o.

Lemma 2.4. Let S be an E-unitary [proper| weakly left ample semigroup.
Then the derived semigroupoid D of the canonical epimorphism associated
with o, is a [proper| 1-weakly left ample semigroupoid. Moreover, the action
of S/o on D is both 1-transitive and I1-injective.

Proof. First notice that, for any u € S/o
E(Mor (u,u)) = {(u,e,u) : e € E(S)} ~ E(S5).
In particular, when S is F-unitary by Lemma 2.3 we have

Mor (1,1) = {(1,e,1) : e € E(5)}.
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Next, show that (v, m,v)" = (u,m™*,u), for any (u,m,v) € Mor (u,v). Tt is
then clear that the action of S/o on D respects the unary operation *. The
rest of the proof is easy to check.

Theorem 2.5. A semigroup S is an E-unitary [proper| weakly left ample
semigroup if and only if S is isomorphic to a semigroup Cy, where C is a
[proper | 1-weakly left ample semigroupoid acted upon 1-transitively and 1-
injectively by a unipotent monoid M.

Proof. Suppose that S is an F-unitary [proper| weakly left ample semi-
group. In view of Lemma 2.4, it suffices to show that ¢ : S — C defined
by

map = ((1, m, mo), mo)

is an isomorphism. This follows by the usual argument as in [5, 6].

Conversely, by Lemma, 2.1 it remains to show that C'; is proper whenever
C is proper. Suppose that C is proper. Let (p,t),(q,h) € C; be such that
(p,t) R 0 o (q,h). Then (p,t)" = (¢,h)* and (r,1)(p,t) = (r,1)(g,h)
for some idempotent (r,1). Hence, (p™,1) = (¢*,1) and ¢t = h. Thus,
p,q € Mor (1,t) and p* = g™, whence p = ¢ since C is proper.

In the particular case of S being a left ample monoid, our Theorem 2.5
gives a new version of Theorem 2.2 of [6], where the action is on the left
instead of being on the right. There are very significant differences when
we change the side of the action. Assuming the action on the right, in [6]
it is proved that any proper left ample monoid is embeddable into a special
submonoid of a semidirect product T x Y where T is a right cancellative
monoid acting on the right on a semilattice Y. On the other hand, in [2]
every proper left ample semigroup is proved to be embeddable into a wreath
product Y ® T, where T acts on the left on Y, on the lines of Theorem
4.10 of [5], which concerns the E-dense case. Notice however that, in both
approaches, when dealing with the monoid case the embedding obtained is
only a (2,1)-morphism. In the next section, having fixed the action on the
left, we show how to extend Billhardt’s result [2] for proper weakly left ample
semigroups.

Another possible way of looking at E-unitary [proper| weakly left ample
semigroups is as extensions of unipotent monoids by semilattices [injective
on R-classes].



A semigroup S is an extension of a unipotent monoid M by a semilattice
Y if and only if there exists a morphism ¢ : S — M from S onto M such that
1¢ ' ~ Y. In the next theorem we prove that every E-unitary weakly left
ample semigroup S can be regarded as an extension of a unipotent monoid
(~ S/o) by a semilattice Y (~ E(S5)).

Theorem 2.6. Let S be a weakly left ample semigroup. The following
conditions are equivalent:

(a) S is E-unitary [proper];

(b) there exists a morphism ¢ : S — M from S onto a unipotent monoid
M, such that 1¢~' = E(S) [and ¢ is injective on R-classes].

Proof. Suppose that (a) holds. Consider the unipotent monoid M = S/o.
As S is E-unitary, by Lemma 2.3, E'(S) is the identity of M and the canonical
epimorphism ¢ : S — M, a + [a], is such that 1¢ ! = E(S). Let S be proper
and a,b € S be such that ap = b¢ and «a R b. Then a = b, since RNo =1
Conversely, suppose that (b) holds. Let e € E(S) and a € S be such that
ea € FE(S). Then (ea)p = 1 = a¢ since ¢ is a morphism and M is unipotent.
Thus a € 1¢! = E(S) and so S is E-unitary. Assume also that ¢ is injective
on R-classes. First notice that o C Ker ¢ since Ker ¢ is a unipotent monoid

congruence on S and o is the least such. Hence if a,b € S are such that
a RNobthen a R b and ap = b¢p. Thus a = b and S is proper.

3. SEMIDIRECT PRODUCTS OF UNIPOTENT MONOIDS BY SEMILATTICES

In this section we prove that any proper weakly left ample semigroup can
be embedded in a semidirect product Y x M of a unipotent monoid M by a
semilattice Y, where M acts on the left on Y.

To obtain our result we use wreath products as in [2], however our proofs
are based on graphical/categorical methods as in [6, 11].

Let Y be a semilattice and M a monoid. As usual, we say that M acts
(on the left) on Y if we have a map M x Y — Y, (¢,a) — ta, such that for
allt,h € M and a,b €Y,
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t(aNb) = taAtb,
t(ha) = (th)a,

la = a.

If M acts on Y then we can form the semidirect product Y « M of Y by M,
by defining an operation on Y x M as follows: for all (a,t), (b,h) € Y x M,

(a,8)(b, h) = (a A th, th).

It is easy to check that the following proposition holds.

Proposition 3.1. Let S =Y x M be the semidirect product of a semilattice
Y by a unipotent monoid M, then

a) E(S)={(a,1):a €Y} ~Y;

b) for all (a,t),(b,h) € S, (a,t) R (b,h) if and only if a = b;

c) for all (a,t) € S, (a,t)" = (a,1);

e) Sjo~ M;

S is a proper weakly left ample semigroup;

f

g) if Y has a greatest element w such that tw = w for all t € M, then S

18 a monoid.

)
)
d) for all (a,t), (b,h) € S, (a,t) & (b,h) if and only if t = h;
)
)
)

Corollary 3.2. LetY be a semilattice [with greatest element w] and M be a
right cancellative monoid [such that tw = w for allt € M|. Then S =Y x M
is a proper left ample semigroup [monoid).

Proof. In this case, we have (a,t) R* (a, 1), for all (a,t) € S, and it follows
that R = R*. Thus the result is a consequence of the previous proposition.

Clearly, the next natural step is to show that every proper weakly left
ample semigroup [monoid] is embeddable in the semidirect product of a semi-
lattice [with greatest element| by a unipotent monoid. The usual technique
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of using a set of ideals as the semilattice [6, 11] does not seem to work
here, essentially because the maximum unipotent monoid image of a proper
weakly left ample semigroup need be neither left nor right cancellative. How-
ever we may reformulate Billhardt’s wreath product [2] in terms of cate-
gories/semigroupoids and introduce the necessary readjustments to obtain
the desired result.

First recall the definition of the wreath product Y ® M of a semilattice
Y by a monoid M.

Let F = Y™ be the set of all maps from M into Y. On F we define an
operation A as follows: for all x € M and f,g € F,

z(fANg)=zfAxg.

Clearly (F,A) is a semilattice. Next, we can define an action (on the left) of
M on F as follows: for allt, z € M and f € F

w(tf) = (at)f.

The wreath product Y ® M is defined to be the semidirect product F' x M of
F by M.

Let C be a proper 1-weakly left ample semigroupoid and M a unipotent
monoid acting (on the left) 1-transitively and 1-injectively on C. Let ) denote
the set of all ideals of the semilattice Mor (1,1). Notice that as Mor (1, 1) is
a semilattice the operations of sum and intersection coincide on ) and under
this operation ) is a semilattice. Further, if p € Mor (1, 1), the principal
ideal I(p) generated by p is Mor (1,1) 4+ p and has unique generator p. In the
following, for a subset P of Mor C, P* denotes the set {p* : p € P}.

Theorem 3.5. Let C be a proper 1-weakly left ample semigroupoid acted
upon 1-transitively and 1-injectively by a unipotent monoid M. Then the

proper weakly left ample semigroup Cy 1s embeddable into the wreath product
Y ® M of the semilattice Y of all ideals of Mor (1,1) by the monoid M.

Proof. For each (p,t) € Cy, we define a map

f(p’t) M —Y
h +— (Mor (1,h) + hp)™.
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In fact (Mor (1, k) + hp)™ C Mor (1,1) and
Mor (1,1) + (Mor (1, 2) + hp)™ C (Mor (1, h) + hp)™*
since for all » € Mor (1,1) and ¢ € Mor (1, h),

r+(g+hp)" =0+ (@+hph)"
=(r+q+hp)".

Thus f(, ) is well defined and so we may consider the map

1/) : Cl — y ® M
.1) = ()

To prove that v is injective let (p,t), (¢, h) € C be such that (p,t)y =
(q,h)Y. Then t = h and f,4) = fgn- Thus, in particular, 1fy,) = 1f4.0,
that is,

(Mor (1,1) +p)* = (Mor (1,1) +¢) ™.

From Lemma 1.1, I(p™) = I(¢") so that p* = ¢*. As C is proper, it follows
that p = q. Therefore v is injective.
Next, we show that ¢ is a morphism. Let (p,t), (¢,h) € C;. Then

((p,1)(q, W) = (p+ tq, th) = (f(p+tgum), th)

and
(pa t),lvb(qa h)ﬂ’ = (f(p,t)a t) (f(q,h)a h) = (f(p,t) A tf(q,h)a th)
To prove that fi,1iq0n) = fip) A tfgn), according to the definition of the
wreath product, we need to show that, for all m € M,
(Mor (1,m) +m(p +tq))* = (Mor (1,m) + mp)* + (Mor (1, mt) + mtq)".
Now, since Mor (1, m) + mp C Mor (1, mt) we have, by Lemmas 1.1 and 1.2,

(Mor (1,m) + mp)* + (Mor (1, mt) + mtq)*
= ((Mor (1,m) + mp)™ + Mor (1, mt) + mtq)
= ((Mor (1,mt))" 4+ Mor (1, m) + mp + mtq)™*
C (Mor (1,m) +m(p +tq))".

+
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Conversely, to prove the other inclusion, let r € Mor (1, m). Then, using
condition (AL),

(r+mp+tq)" = (r+mp+mtq)t = (r +mp+mtqh)*
= ((r +mp+mtgH)t +r+mp)"
+mp +mtq)" + (r +mp)"

+mp)T + (r +mp +mtq)"

Mor (1,m) +mp)™ + (Mor (1, mt) + mtq)*

=(r
=(r
€ (

Thus the required equality. Hence ) preserves multiplication.
[t remains to prove that v respects the unary operation +. Let (p,t) € C;.
Then

(2, )0)" = (foou, )" = (o> 1)
and

(P, 1) Y = (p", 1)t = (for1), 1)-
For any h € M,

hf(p’t) = (Mor (1,h) + hp)+ = (Mor (1,h) + hp+)+ = hf(p+’1).
Thus ((p,t))" = (p,t)T¢ and ¢ is an embedding.

Finally, we can state our main result, that follows from Theorems 2.5 and
3.5.

Theorem 3.6. FEvery proper weakly left ample semigroup is embeddable into
a semidirect product of a semilattice by a unipotent monoid.

Corollary 3.7. FEvery proper left ample semigroup is embeddable into a
semidirect product of a semilattice by a right cancellative monoid.

The semigroups that arise in Theorem 3.6 are rather large as compared
with the original semigroup. If S is a proper weakly left ample semigroup,
then we have shown that S is embeddable in Y M, where ) is (isomorphic
to) the semilattice of ideals of E(S) and M = S/o. The cardinality of Y™
is potentially as large as 2/°l. However one can always find a subsemilattice
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Z of Y™ such that MZ C Z, if S is infinite |Z] < |S], and S is embedded
in Zx M. Forif :S — YM x M is an embedding, let

X ={acY":(a,u) € im 0 for some u € M}.

Then |MX| < |S|; denoting now by Z the subsemilattice of Y generated
by M X, we have that M Z C Z and |Z| < |S|. Clearly im § C Z x M.

Alternatively we can construct a semilattice U directly from S, without
the use of wreath product, such that S is embedded in a semidirect product
UM and this embedding is ‘universal’ in the sense that if S is embedded in a
semidirect product V'« N, where V is a semilattice acted upon by a unipotent
monoid N, then there is a morphism from U « M to V « N. Further, if S
is infinite, then |U| < |S|. The construction of & has the advantages of
directness and universality but looses the connection with ideals. This latter
connection clarified the proof of Theorem 3.6; indeed we use Theorem 3.6 to
show that S is embedded in U x M.

Let S and M be as above; put E = E(S). Certainly M acts on the direct
product E x M by m(e,n) = (e,mn), for all m,n € M and e € E. Let F be
the free semilattice on E x M, so that F consists of finite subsets of £ x M
under union. Clearly the action of M on E x M extends to an action on F.
Let p be the congruence on F generated by X, where

X ={({* 1), (¢t} {((pa)",1)}) : p,q € S,t € M}.

Notice that if (A, B) € X, then (mA,mB) € X for all m € M. It follows
that M acts on the quotient semilattice U = F/p, where m[A] = [mA].
Define v : S — U = M by
sv = ([{(s", D} [s]).

Lemma 3.8 The function v is a morphism.

Proof. Let p,q € S. Then

prqv = ([{(p*, D}, [P ({(¢", 1)} [g])
= ({" DY AP 1)}, plla))
= ({(»*, 1), (¢", D}, [pa])
= ({((pg)", 1)}, [pal)
= (pq)v.



Further, using Proposition 3.1,
()" = ({", DI D" = ({p", D}, 1)
= ({(")" D}, ") =p"v

so that v is a morphism.

If S is infinite, the cardinality of &/ above is no greater than that of F,
which is bounded above by |S|.

Proposition 3.9 Let S be a proper weakly left ample semigroup with M =
S/o, and let v : S — U x M be defined as above.

Let V be a semilattice acted upon by a unipotent monoid N and suppose
that ¢+ S — V«N is a morphism. Then there exists a morphism ¢ : UM —
YV« N such that vp = ¢.

Proof. Suppose that V, N and ¢ exist as given. Let ¢ : S — N be the
composition of ¢ with the projection onto the second coordinate. Then ¢ is
a morphism, so that as /N is unipotent o C ker 1) and there is a morphism
7 : M — N such that o%7 = 1.

For any s € S we write s¢ = (A, s1). Notice that as ¢ preserves +,

(AS"'? 1) = S+¢ = (S¢)+ = (Am S¢)+ = (A87 1)7

using Proposition 3.1. Thus A, = A,+. An easy computation using the fact
that ¢ is a semigroup morphism yields

A(st)+ = A+ A (S?/))AtwL (*),

for any s,t € S.
Recalling that F is the free semilattice on E x M, we may define o : F —
V by
{(e,m)}a = (m7)A..

Then for any m € M and f € F we have that

(mfla= (m7)(fa) ().

Using () we see that X C ker a, so that p C ker o and there is a (semigroup)
morphism 3 : U = F/p — V such that p"3 = a.
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We now define ¢ : U + M — V « N by

([f1,m)é = ([f18, m7).
Let ([f],m), ([g],n) € U x M. Then

(([f1,m)([g),n))d = ([f] A'mlg], mn)¢
= ((FTAmlg)) B, (mn)7) = (([f] A [mg]) 8, (mn)T) = ([f]5 A [mg]B3, (mn)T).

But, using (xx),
[mg]B = (mg)p*B = (mg)a = (m7)(ga) = (m7)[g]5.

Hence

(([11,m)([g], )¢ = ([F18 A (m7)][g)8, mTnr)
= ([£18,m7)([g]8, n7) = ([f],m)¢ ([g], n)¢.

It is clear from Proposition 3.1 that ¢ preserves +. Thus ¢ is a morphism.
To see that vp = ¢, let s € S. Then

svp = ([{(s*, D}, [s)o = ({(s*, 1)}, [s]7)
= ({(s". D)}, sv)) = (At 590) = ¢

as required.

Corollary 3.10 Let S be a proper weakly left ample semigroup. Put M =
S/o and let U,v be defined as above. Then v : S — U * M is an embedding.

Proof. It remains to show that v is one-one.

By Theorem 3.6, there is an embedding, say ¢, of S into a semidirect
product of a semilattice by a unipotent monoid. By Proposition 3.9, v¢ = ¢,
so that v is one-one as required.

4. M-SEMIGROUPS

In this section we present a different characterisation of a proper weakly
left ample semigroup [monoid] S as a strong M-semigroup [M-monoid|
M(M,X,Y), where X is a semilattice, ) is a certain subsemilattice of X
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with an upper bound ¢ € X and M is a unipotent monoid acting (on the
left) on X.

Let X be a partially ordered set and ) a subset of X with an upper bound
e € X. Let M be a unipotent monoid acting (on the left) on X, in such a
way that

(1) Ya e X, la=a,

(2) Va,be X, Vte M, a<b= ta<tb,

(3) Ya € X, Vh,t € M, (ht)a = h(ta)
and

(A)Vte M, Ja €Y, a<te,

(B) Ya,be Y, Vt € M, a<te= aAtbexists and is in ),

(C) Ya,b,c € Y, Vh,t € M,

a <te,b<he= (aAtb) ANthc=aAt(bA he).

A triple (M, X, ) satisfying the above conditions is said to be an M-triple.
Given an M-triple (M, X)), define

MM, X,Y)={(a,t) €Y X M :a<te}
with multiplication given by
(a,t)(b,h) = (a A tb,th).

Notice that, for all a,b € Y, we have a Ab € ) in view of condition (B) since
a < e. Thus Y is a subsemilattice of X .

On the other hand, if £ € ) then £ is the maximum element of ).

It is a routine matter to prove the following result.

Lemma 4.1 Let (M, X,Y) be a M-triple. Then M(M,X,)) is a proper
weakly left ample semigroup such that

EM(M,X,Y)) =Y and M(M,X,Y)/o ~ M.
Moreover, if € € Y then M(M,X,Y) is a monoid with identity (¢,1).

Next, consider the particular case of X a semilattice rather than simply
a partially ordered set. We suppose that the action of M over X satisfies
the stronger condition
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(2") Va,be X, VYt € M, t(aAb)=taAtd.

Notice that in this case, condition (C) always holds.

Let X be a semilattice, ) a subsemilattice of X with an upperbound
e € X and M a unipotent monoid acting on X in such a way that conditions
(1), (2), (3), (A) and (B) hold. Then the triple (M, X,)) is said to be a
strong M-triple and M (M, X,}Y) is a strong M-monoid.

Observe that given a strong M-triple (M, X', }) the semigroup M (M, X, Y)
is a subsemigroup of the semidirect product X" % M.

In the next theorem we show that any proper weakly left ample semigroup
[monoid] is isomorphic to a strong M-semigroup [M-monoid], obtaining the
analogue of [3, Theorem 4.4] for proper left ample monoids.

Theorem 4.2. A semigroup [monoid| is proper weakly left ample if and
only if it is isomorphic to a strong M-semigroup [monoid].

Proof. Let S be a proper weakly left ample semigroup. Then, by Theorem
2.5, we have S ~ (| where C is a proper 1-weakly left ample semigroupoid
acted upon 1-transitively and 1-injectively by the unipotent monoid M =
S/o. At this point, notice that we may assume C to be such that, for all
t € M, Mor (1,t) # 0 since this is clearly true in the derived semigroupoid.

By Theorem 3.5, the map ¢ : C; — Y™ « M, (p,t) — (fipu,t), is an
embedding.

We prove that the image C'1) of the semigroup C'; under v is isomorphic
to the strong M-semigroup M (M, Y™ ), where

Y ={fp1) :p € Mor (1,1)}

and ¢ € YM is defined by he = (Mor (1,h))T, for all h € M. Certainly ¢ €
YM since (Mor (1,h))* € Y, for any h € M. To see this, let p € Mor (1, h)
and let ¢ € Mor (1,1). Then

p T +q=q+pt=(q+p")" = (¢+p)" € (Mor(1,h))".

Recall that, by Theorem 3.5, for all (p,t) € C} we have that f,, = fp+1)
with p* € Mor (1,1). Thus C17) €Y x M and Y is a subsemilattice of Y™
since Y ~ Y x {1} = (E(C))).

We are assuming that M acts on Y™ as in the definition of the wreath
product Y ® M. Hence to prove that (M,Y™,Y) is a strong M-triple it
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remains to show that ¢ is an upper bound of } and that conditions (A) and
(B) hold.
First, let p € Mor (1,1) and h € M. Then

hfp1y = (Mor (1, h) + hp)™ C (Mor (1,h))" = he

hence f(,1) < € and so ¢ is an upper bound of V.

To prove that condition (A) holds, let ¢ € M. As Mor (1,t) # () there
exists ¢ € Mor (1,%). Thus ¢* € Mor (1,1) and so f+1) € V. Let h € M.
Then

hfg+1) = (Mor (1,h) + hq*’)+ = (Mor (1,h) + hq)Jr C (Mor (1, ht))™ = h(te).

Therefore fi,+ 1) < te.
To prove that condition (B) holds, suppose that ¢ € M and p € Mor (1, 1)
is such that f(, 1) < te. Then, for all h € M, we have

hfpay = (Mor (1,h) + hp)*t C (Mor (1, ht))™ = h(te).
In particular, putting h = 1, we obtain
Mor (1,1) +p = (Mor (1,1) +p)* € (Mor (1,1))™.

Thus p € (Mor(1,t))". Let » € Mor(1,¢) be such that p = r*. Then
fw) = fap- Now, let ¢ € Mor (1,1). Then (r,t), (¢,1) € Cy and, as ¢ is a
morphism,

(frttay t) = (r+tq, )¢ = ((r,1)(q,1)) ¢
= (r,t)e(g, v
= (fo, ) (1), 1)
(frt Atfig),t)-

Hence
Ffony Atfqn) = fon Atfiqn) = foran €V,
and so condition (B) holds. Therefore (M, YY) is a strong M-triple and

MM, YY) = {(fp),t) €V X M : fp1) < te}.

Next, we prove that C1¢p = M(M, YM V). As in the verification of
condition (A), Ci¢p € M(M,Y™,Y). On the other hand, if (f1),t) €
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M(M,YMY) then fwn < te and, as proved before, there exists r €
Mor (1, t) such that f,1) = fry. Hence (r,t) € Cy and (fi1),t) = (firp), t) =
(r,t)1. Therefore C, is isomorphic to M (M, Y, Y).

If S is a monoid then C is a monoid with identity (04,1). For all h € M,

hfo.1) = (Mor (1, h) + h0y)™ = (Mor (1, h) + 0,)" = (Mor (1,h))" = he.

Hence ¢ € Y. By Lemma 4.1, (g,1) is the identity of M(M,YM Y); of
course, 1 is a (2, 1,0)-morphism.

5. COVERS

In this section we prove that every weakly left ample semigroup has a proper
weakly left ample cover. Our proof follows the technique presented in [4] by
Fountain for E-dense monoids and used in [7] for left ample semigroups.

We leave to the reader the checking of specific details for the weakly left
ample case.

Definition. Let S and T be weakly left ample semigroups [monoids]. We
say that T is a cover of S if there exists an idempotent separating (2, 1)-
morphism [(2,1,0)- morphism] from 7" onto S.

We start by showing that every weakly left ample monoid has a monoid
cover.

Let S be a weakly left ample monoid with identity 15 and set of idempo-
tents £ = E(S). Put X = S\ {ls}.

Let X* be the free monoid on X with identity 1. We write the non-identity

elements as sequences (x1,...,2,), wheren>1land z; € X (i=1,...,n).
To each word w € X* we associate a subset Sy, of S in the following way:
g _ E ifw=1
Y| ExyExyE ... Ex,E ifw=(x1,...,1,).

Clearly, for all v,w € X*, we have
Svw = SpSu-
Now, we define a category C as follows:
ObjC = X~

21



and, for all v, w € X*,

_J A{(v,s,w) 1 s € Sy, }, if w=ovw,, for some w; € X*.
Mor (v, w) = { 0, otherwise.

The composition law is given by
(v, 8,w) + (w,t,u) = (v, st,u).

Clearly, the composition is well defined and associative. Also, for any object
u we have

Mor (u,u) = {(u,e,u) : e € E}.

Next, we consider a (left) action of the unipotent monoid X* on the
category C defined as follows, the action of X* on Obj C is given by the
multiplication on X* and, for all w € X* and (v, s, w) € MorC,

u(v, s, w) = (uv, s, uw).
Choose the empty word 1 as the distinguished object of C.

As in [7] it is a routine matter to prove that C is a proper 1-weakly left
ample category and that X* acts 1-transitively and 1-injectively on C. To
prove this result we need as in the left ample case a technical lemma that
follows from the fact that condition (CL) holds in a weakly left ample monoid.

Lemma 5.1. Let S be a weakly left ample monoid and s € S. If s =
€T1€] .. .En_1Tpen, for somen € Nx; € S (i =1,...,n) and e¢; € E(S)
(j=0,...,n), then

Our main result of this section is the following.

Theorem 5.2. FEvery weakly left ample monoid has a proper weakly left
ample cover.
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Proof. Let S be a weakly left ample monoid and consider the proper 1-
weakly left ample category C defined above. By Theorem 2.5, ('} is a proper
weakly left ample monoid, where

Ci ={((1,s,u),u):u e X* s € S,}
with multiplication given by
(1, s,u),u) ((1,t,0),v) = ((1, st,uv),uv) .
Then the map 6 defined as follows:

0 : C, — S
(1,s,u),u)) — s

is an idempotent separating (2, 1, 0)-morphism from C; onto S. Hence C is
a proper weakly left ample cover of S.

Corollary 5.3. Fvery weakly left ample semigroup has a proper weakly left
ample cover.

Proof. Let S be a weakly left ample semigroup without identity. Consider
the monoid S'. Clearly, S! is a weakly left ample monoid and we may con-
sider the monoid cover C; together with the surjective idempotent separating
(2,1,0)-morphism 6 : C; — S, ((1,s,u),u)d = s, defined above. As 0 is, in
particular, a (2, 1)-morphism the inverse image S6~! is a (2, 1)-subalgebra of
C:. Now, (] is certainly in the class of all proper weakly left ample semi-
groups. This class forms a quasivariety [10], so that SO~' is a proper weakly
left ample semigroup. Then 9‘5971 : S0~' — S is the required surjective
idempotent separating (2, 1)-morphism.
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