The diameter of endomorphism monoids

Thomas Quinn-Gregson
August 2023

Joint work with Victoria Gould (G), James East (E), Craig Miller (M), and Nik Ruškuc (R).

Right congruences

Definition

A right congruence on a semigroup S is an equivalence relation ρ such that for every $a, b, c \in S$,

$$
a \rho b \Rightarrow a c \rho b c
$$

- If $U \subseteq S \times S$, then the right congruence generated by U, denoted $\langle U\rangle$, is the smallest right congruence containing U.

Definition

A semigroup S is right Noetherian if every right congruence is finitely generated (f.g).

Generating right congruences

Lemma (Kilp, Knauer, Mikhalev, 2000)

Let $U \subseteq S \times S$. Then $a\langle U\rangle b$ if and only if either $a=b$ or there exists a U-path from a to b, that is,

$$
a=u_{1} s_{1}, v_{1} s_{1}=u_{2} s_{2}, \ldots, v_{n} s_{n}=b
$$

where $\left(u_{i}, v_{i}\right) \in U \cup U^{-1}$ and $s_{i} \in S^{1}$.

Pseudo-finite semigroups

- Pseudo-finite: the semigroup finiteness condition of the universal right congruence ω_{r}^{S} being finitely generated and there being a bound on the length of sequences required to relate any two elements.
- First studied by Dales and White in 2017 with regards to Banach algebras.
- Boring property for groups: pseudo-finite groups are finite.
- Kobyashi (2007): ω_{r}^{M} is f.g. if and only if M is of type right-FP1.
- I first joined the project for "Semigroups with finitely generated universal left congruence" (2019, Dandan, G, Q-G, Zenab).
- Clear picture for key classes including inverse semigroups, completely regular, and Rees matrix.
- Far more complex then first thought: there exists pseudo-finite regular semigroups without a completely simple minimal ideal "On minimal ideals in pseudo-finite semigroups" (2022, G,M, Q-G, R).
- Pseudo-finite transformation semigroups studied in "On the diameter of semigroups of transformations and partitions" (2023, E,G,Q-G,R).

Diameter

Lemma

Let S be a semigroup. Then ω_{r}^{S} is f.g. if and only if there exists a subset U of $S \times S$ such that for any $a, b \in S$, we have $a=b$ or there exists a U-path from a to b, that is,

$$
a=u_{1} s_{1}, v_{1} s_{1}=u_{2} s_{2}, \ldots, v_{n} s_{n}=b
$$

where $\left(u_{i}, v_{i}\right) \in U$ and $s_{i} \in S^{1}$.

Definition

Let S be a semigroup in which ω_{r}^{S} is f.g.

- If $\omega_{r}^{S}=\langle U\rangle$, then define $D_{r}(S ; U)=$ sup $\{$ length of the smallest U-path from a to $b: a, b \in S\}$.
- The right diameter of S is then

$$
D_{r}(S)=\min \left\{D_{r}(S ; U): \omega_{r}^{S}=\langle U\rangle,|U|<\infty\right\}
$$

- If $D_{r}(S)$ is finite, then S is called right pseudo-finite.

Diameter 1

- Having right diameter 1 is equivalent to the well-studied notion of the diagonal right act being f.g.
- For a semigroup S, the diagonal right S-act is the set $S \times S$ under the right action given by $(a, b) c=(a c, b c)$.
- First studied implicitly by Bulman-Fleming and McDowell (1990), and formalized by Robertson et al (2001).
- Gallagher and N (2005) studied this property for many natural semigroups, including subsemigroups of \mathcal{T}_{X}, endomorphisms of chains, and endomorphisms of independence algebras.
- Also considered the stronger property of the diagonal right act being monogenic, i.e. there exists $a, b \in S$ such that $S \times S=(a, b) S$.

Hierarchy of conditions

ω_{r}^{S} is finitely generated.

S is pseudo-finite.

$$
\begin{gathered}
\Uparrow \\
D_{r}(S)=1 \\
\Uparrow
\end{gathered}
$$

The diagonal right S-act is finitely generated.

The diagonal right S-act is monogenic.

The Meta Problem

Problem (Meta)

Which "characteristics" of a semigroup determines its left/right diameter.

- A "characteristic" of a semigroup could mean the existence of special elements, its properties (such as algebraic identities), or properties inherited from some other structure.
- Which characteristic is best suited for building a global theory of pseudo-finite semigroups?

Previous methods

Previous work can be broadly broken down into two methods depending on if we view a semigroup as a transformation semigroup or abstractly (e.g. variety of semigroups).

Transformation semigroups: Discussed in my talk last summer.

- Pro: Able to manipulate concrete elements to give bounds on the diameter. Great success when a degree of transitivity is added.
- Con: Global structure often mysterious or unhelpful.

Abstractly: Which properties hold for all semigroups of a particular diameter? Most widely used method.

- Pro: Global structure obtained by restricting to semigroups satisfying certain conditions. E.g. no infinite diameter 1 semigroup can be commutative (Gallagher).
- Con: Elements are not concrete, and so can be harder to manipulate.

Having our Baumkuchen and eating it

- Restrict to transformation monoids which have an inherited global structure to keep the benefits of both methods: Endomorphism monoids!

Definition

A (first order) structure $\mathbb{A}=(A ; \mathfrak{K})$ is a set A together with a collection \mathfrak{K} of textbfbasic relations and functions defined on A.

- A semigroup is considered as a set together with a binary (associative) operation.
- Both partially ordered sets (posets) and graphs can be considered as sets together with a single binary relation.
- A semilattice can also be considered as the structure $(Y ; \wedge, \leq)$ where $a \leq b$ if and only if $a \wedge b=a$.

Endomorphisms

Definition

Let $\mathbb{A}=(A ; \mathfrak{K})$ be a structure. Then a map $\theta: A \rightarrow A$ is an endomorphism of \mathbb{A} if it preserves each function and relation from \mathfrak{K}, that is, for each function $f \in \mathfrak{K}$, relation $R \in \mathfrak{K}$, and $a_{1}, \ldots, a_{n} \in A$,

$$
\begin{array}{r}
\left(\left(a_{1}, \ldots, a_{n}\right) f\right) \theta=\left(a_{1} \theta, \ldots, a_{n} \theta\right) f \\
\left(a_{1}, \ldots, a_{n}\right) \in R \Rightarrow\left(a_{1} \theta, \ldots, a_{n} \theta\right) \in R .
\end{array}
$$

The set of all endomorphisms of \mathbb{A} is denoted $\operatorname{End}(\mathbb{A})$, and forms a submonoid of \mathcal{T}_{A}.
E.g. If $\mathcal{Y}=(Y ; \wedge, \leq)$ is a semilattice then $\theta \in \operatorname{End}(\mathcal{Y})$ if

$$
(x \wedge y) \theta=x \theta \wedge y \theta \text { and } x \leq y \Rightarrow x \theta \leq y \theta
$$

Endomorphisms

Warning: How we consider our structure (its signature) can change its endomorphism monoid. E.g. If Y is a semilattice then:

$$
\operatorname{End}(Y ; \wedge)=\operatorname{End}(Y ; \wedge, \leq) \subseteq \operatorname{End}(Y ; \leq)
$$

Endomorphisms

The philosophy behind this method is that the properties of $\operatorname{End}(\mathbb{A})$ often depend solely on those of the underlying structure \mathbb{A}, which is easier to work with.

- Pro: Global structure inherited from \mathbb{A} ?
- Pro: Local structure (concrete maps) inherited from \mathbb{A} and the closure property.
- Con: Not all transformation monoids are the endomorphism monoid of some structure.

Theorem

Given a monoid monoid $M \leq \mathcal{T}_{X}$, t.f.a.e.:
(1) M is the endomorphism monoid of some (first order) structure;
(2) M is the endomorphism monoid of some relational structure;
(3) M is closed in the topology of pointwise convergence. That is, whenever $\alpha \in \mathcal{T}_{X}$ is such that for each finite $A \subseteq X$ there exists $\gamma \in M$ with $\left.\alpha\right|_{A}=\left.\gamma\right|_{A}$ then $\alpha \in M$.

Consequence: Suffices to consider relational structures!

Original motivation

- Tackling the problem via endomorphism monoids was briefly examined by Gallagher and R. in the diameter 1 case.
- (Mostly) classified those independence algebras with endomorphism monoids being of diameter 1.
- No infinite chain (totally ordered set) can have endomorphism monoid of left or right diameter 1 .

Problem (Motivation)

Determine why chains cannot have endomorphisms of diameter 1 (or stronger). What determines their left/right diameter?

Chains Part 1:

Explaining the lower bound of 2 .

Left and right units

- The diagonal right act of \mathcal{T}_{X} is monogenic and generated by any injective maps α, β with disjoint images (Gallagher, R).
- The injective maps of \mathcal{T}_{X} correspond its right units i.e. elements $a \in S$ such that there exists $b \in S$ with $a b=1$.
- The submonoid of right units of a monoid is the \mathcal{R}-class R_{1} of the identity.
- The group of units is the \mathcal{H}-class H_{1}.

Proposition

$R_{1}=H_{1} \Leftrightarrow L_{1}=H_{1} \Leftrightarrow J_{1}=H_{1} \Leftrightarrow S$ does not contain a copy of the bicyclic monoid $B=\langle a, b \mid a b=1\rangle$.

A monoid satisfying one (and hence all) of these conditions is called Dedekind-finite. E.g. \mathcal{T}_{X} is not Dedekind-finite.

Lemma (EGMQ-GR)

A Dedekind-finite monoid has right/left diameter 1 if and only if it is finite.

Left and right units

Problem

Does the right diameter of $\operatorname{End}(\mathbb{A})$ depend only on its right units?

- We restrict our attention to relational structures in which there is an easy way to pass from the endomorphisms to its elements.

Reflexive structures

- Given an n-ary relation R of a set A, we define an R-loop to be an element $x \in A$ with $(x, x, \ldots, x) \in R$.
- We call R reflexive if each $x \in A$ is an R-loop.
- A relational structure \mathbb{A} is called reflexive if each of its basic relations are reflexive.

Lemma

If \mathbb{A} is reflexive then the constant map $c_{x}: A \rightarrow A(a \mapsto x)$ is an endomorphism of \mathbb{A} for each $x \in A$. Moreover, $\mathcal{C}_{A}=\left\{c_{x}: x \in A\right\}$ is the minimum ideal of $\operatorname{End}(\mathbb{A})$.

Example

Posets $(P ; \leq)$, chains, prosets, looped graphs, and bands(!) are all reflexive.

Posets

We restrict to posets - the results extend to any reflexive structure (but with added ugliness).

Proposition (EGMQ-GR)

Let \mathcal{P} be a non-trivial poset. If $S=\operatorname{End}(\mathbb{P})$ has monogenic diagonal right act then there exists $\alpha, \beta \in R_{1}$ such that their images are unrelated under \leq, i.e. there exists no $x, y \in P$ with $x \alpha \geq y \beta$ or $x \alpha \leq y \beta$.

Proof.

- Suppose $x \alpha \leq y \beta$.
- Fix any $u, v \in P$.
- Then $\left(c_{u}, c_{v}\right)=(\alpha, \beta) \delta$ for some $\delta \in S$.
- Hence

$$
u=x c_{u}=(x \alpha) \delta \leq(y \beta) \delta=y c_{v}=v
$$

- u and v chosen arbitrarily, so P is trivial, a contradiction.

Posets

Proposition

Let \mathbb{P} be a non-trivial poset. If $S=\operatorname{End}(\mathbb{P})$ has monogenic diagonal right act then there exists $\alpha, \beta \in R_{1}$ such that their images are unrelated under \leq,

Corollary

If \mathbb{P} is a non-trivial chain then $\operatorname{End}(\mathbb{P})$ does not have monogenic diagonal right act.

Conjecture

Let \mathbb{P} be a poset. If $S=\operatorname{End}(\mathbb{P})$ has right diameter 1 , then there exists right units which are "finitely related".

Chains Part 2:

Finding upper-bounds

Higher diameters: left

Lemma (EGMQ-GR)

Let $S=\operatorname{End}(\mathbb{A})$ for some reflexive structure \mathbb{A}. Then $D_{\ell}(S) \leq 2$.

Proof.

For any $x \in A$ we have $D_{\ell}\left(S ;\left\{\left(1, c_{x}\right)\right\}\right) \leq 2$: If $\theta, \psi \in S$ then

$$
\theta=\theta \circ 1, \theta \circ c_{x}=c_{x}=\psi \circ c_{x}, \psi \circ 1=\psi .
$$

Succinct:

$$
\left(\theta, c_{x}\right)=\theta\left(1, c_{x}\right), \psi\left(c_{x}, 1\right)=\left(c_{x}, \psi\right)
$$

Corollary

Let \mathbb{P} be an infinite chain. Then $D_{\ell}(\operatorname{End}(\mathbb{P}))=2$.

Higher diameters: right

- Let $S=\operatorname{End}(\mathbb{A})$ for some infinite reflexive structure \mathbb{A}.
- Recall $\mathcal{C}=\mathcal{C}_{A}$ is a (right zero) minimum ideal of S, and thus $\omega=\left.\omega_{r}^{S}\right|_{\mathcal{C} \times \mathcal{C}}$ is a right congruence of S.
- Let $D_{r}^{S}(\mathcal{C})$ denote the right diameter of \mathcal{C} corresponding to $\left.\omega_{r}^{S}\right|_{\mathcal{C} \times \mathcal{C}}$.

Lemma (EGMQ-GR)
Let $S=\operatorname{End}(\mathbb{A})$ for some reflexive structure \mathbb{A} and let $\mathcal{C}=\mathcal{C}_{A}$. Then

$$
D_{r}^{S}(\mathcal{C}) \leq D_{r}(S) \leq D_{r}^{S}(\mathcal{C})+2
$$

Swapping to orbits

- Let $S=\operatorname{End}(\mathbb{A})$ for some reflexive \mathbb{A} and let $\mathcal{C}=\mathcal{C}_{A}$.
- Paths in $\left.\omega_{r}^{S}\right|_{\mathcal{C} \times \mathcal{C}}=\langle U\rangle$ are of the form $c_{u} \delta=c_{v} \delta^{\prime}\left(\delta, \delta^{\prime} \in S\right)$.
- But $c_{u} \delta=c_{v} \delta^{\prime}$ if and only if $u \delta=v \delta^{\prime}$.
- Hence any U-path from c_{x} to c_{y} is equivalent to a $\bar{U}=\left\{(u, v) \in A^{2}:\left(c_{u}, c_{v}\right) \in U\right\}$-path

$$
x=u_{1} \delta_{1}, v_{1} \delta_{1}=u_{2} \delta_{2}, \ldots, v_{n} \delta_{n}=y
$$

Lemma

$D_{r}^{S}(\mathcal{C})=1$ if and only if there exists a finite collection $\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right) \in A \times A$ such that for each $x, y \in A$ there exists $1 \leq i \leq n$ and $\delta \in \operatorname{End}(\mathbb{A})$ with $(x, y)=\left(u_{i}, v_{i}\right) \delta$.

We arrive at a central concept to transformation monoids: (2-)oligomorphicity!

Oligomorphic transformation monoid

- Let $S \leq \mathcal{T}_{X}$ be a transformation monoid.
- S acts on the right of X^{n} by $\left(x_{1}, \ldots, x_{n}\right) \theta=\left(x_{1} \theta, \ldots, x_{n} \theta\right)$.
- We call $\left(x_{1}, \ldots, x_{n}\right) S$ an n-orbit.

Definition

S is called n-oligomorphic if it has only finitely many n-orbits. If S is n-oligomorphic for each n then S is oligomorphic.

- Studied extensively by P. Cameron, M. Pech, J. Nešetřil, D. Mašulović etc.
- Oligomorphic groups are central in a number of model theoretic conceps e.g. ω-categoricity, quantifier elimination, and homogeneity.
- Oligomorphic transformation monoids give an endomorphism-dual to these concepts.

Corollary (EGMQ-GR)

Let \mathbb{A} be a reflexive structure. Then $D_{r}^{S}\left(\mathcal{C}_{A}\right)=1$ if and only if \mathbb{A} is 2-oligomorphic. In which case $D_{r}(\operatorname{End}(\mathbb{A})) \leq 3$.

Oligomorphic transformation monoid

Theorem (Mašulović, 2007)

The endomorphism of a tree (and hence a chain) is oligomorphic. Not all posets have oligomorphic endomorphism monoids.

Lemma (EGMQ-GR)

The endomorphism monoid of a poset is 2-oligomorphic, with at most eight 2-orbits.

Corollary (EGMQ-GR)

If \mathbb{P} is a poset then $D_{r}(\operatorname{End}(\mathbb{P})) \leq 3$. If, further, \mathbb{P} is a chain we have $D_{r}(\operatorname{End}(\mathbb{P})) \in\{2,3\}$.

Chains Part 3:

The dichotomy on the right

Classifying chains

- Let C be a chain with minimum z and let $S=\operatorname{End}(C)$.
- We call C min-shiftable if there exists a right unit $\alpha \in S$ with $z \alpha>z$.
- Then for each $\theta \in S$ we may construct $\delta_{\theta} \in S$ such that $\theta=\alpha \delta_{\theta}$ and $z \delta_{\theta}=z$.
- $\left(\alpha, c_{z}\right)$-paths of length 2 :

$$
\theta=\alpha \delta_{\theta}, c_{z} \delta_{\theta}=c_{z}=c_{z} \delta_{\psi}, \alpha \delta_{\psi}=\psi
$$

Theorem (GEM+QG)

Let C be an infinite chain and $S=\operatorname{End}(C)$. Then $D_{r}(S)=2$ if and only if C is either min-shiftable or max-shiftable. Otherwise, $D_{r}(S)=3$.

- $D_{r}(\operatorname{End}(\mathbb{N}))=2$.
- $D_{r}(\operatorname{End}(1+\mathbb{Z}))=3$.

The rough idea

Monogenic diagonal right act: $\exists \alpha, \beta \in R_{1}$ with unrelated images (chains discounted).

$$
\Downarrow
$$

$D_{r}(\operatorname{End}(\mathbb{P}))=1: \exists \alpha, b \in R_{1}$ with only finitely entangled images(?) (chains still discounted).
\Downarrow
$D_{r}(\operatorname{End}(\mathbb{P}))=2: \exists \alpha \in R_{1}$ of a special type (chains: move min or max).

$$
\Downarrow
$$

Otherwise: $D_{r}(\operatorname{End}(\mathbb{P}))=3$.
Thank you!

