
The diameter of endomorphism monoids

Thomas Quinn-Gregson
August 2023

Joint work with Victoria Gould (G), James East (E), Craig Miller (M), and
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Right congruences

Definition

A right congruence on a semigroup S is an equivalence relation ρ such
that for every a, b, c ∈ S,

a ρ b⇒ ac ρ bc.

If U ⊆ S × S, then the right congruence generated by U , denoted
⟨U⟩, is the smallest right congruence containing U .

Definition

A semigroup S is right Noetherian if every right congruence is finitely
generated (f.g).



Generating right congruences

Lemma (Kilp, Knauer, Mikhalev, 2000)

Let U ⊆ S × S. Then a ⟨U⟩ b if and only if either a = b or there exists a
U -path from a to b, that is,

a = u1s1, v1s1 = u2s2, . . . , vnsn = b

where (ui, vi) ∈ U ∪ U−1 and si ∈ S1.

a = u1s1

s1

v1s1 = u2s2

s2

vn−1sn−1 = unsn

snsn−1

vnsn = b

u1 v1 u2 v2 un vnvn−1



Pseudo-finite semigroups

Pseudo-finite: the semigroup finiteness condition of the universal
right congruence ωSr being finitely generated and there being a bound
on the length of sequences required to relate any two elements.

First studied by Dales and White in 2017 with regards to Banach
algebras.

Boring property for groups: pseudo-finite groups are finite.

Kobyashi (2007): ωMr is f.g. if and only if M is of type right-FP1.

I first joined the project for “Semigroups with finitely generated
universal left congruence” (2019, Dandan, G, Q-G, Zenab).

Clear picture for key classes including inverse semigroups, completely
regular, and Rees matrix.

Far more complex then first thought: there exists pseudo-finite
regular semigroups without a completely simple minimal ideal “On
minimal ideals in pseudo-finite semigroups” (2022, G,M, Q-G, R).

Pseudo-finite transformation semigroups studied in “On the diameter
of semigroups of transformations and partitions” (2023, E,G,Q-G,R).



Diameter

Lemma

Let S be a semigroup. Then ωSr is f.g. if and only if there exists a subset
U of S × S such that for any a, b ∈ S, we have a = b or there exists a
U -path from a to b, that is,

a = u1s1, v1s1 = u2s2, . . . , vnsn = b

where (ui, vi) ∈ U and si ∈ S1.

Definition

Let S be a semigroup in which ωSr is f.g.

If ωSr = ⟨U⟩, then define Dr(S;U) =sup{length of the smallest
U -path from a to b : a, b ∈ S}.
The right diameter of S is then
Dr(S) =min{Dr(S;U) : ωSr = ⟨U⟩, |U | <∞}.
If Dr(S) is finite, then S is called right pseudo-finite.



Diameter 1

Having right diameter 1 is equivalent to the well-studied notion of the
diagonal right act being f.g.

For a semigroup S, the diagonal right S-act is the set S × S under
the right action given by (a, b)c = (ac, bc).

First studied implicitly by Bulman-Fleming and McDowell (1990), and
formalized by Robertson et al (2001).

Gallagher and N (2005) studied this property for many natural
semigroups, including subsemigroups of TX , endomorphisms of
chains, and endomorphisms of independence algebras.

Also considered the stronger property of the diagonal right act being
monogenic, i.e. there exists a, b ∈ S such that S × S = (a, b)S.



Hierarchy of conditions

ωSr is finitely generated.~w
S is pseudo-finite.~w

Dr(S) = 1~�
The diagonal right S-act is finitely generated.~w

The diagonal right S-act is monogenic.



The Meta Problem

Problem (Meta)

Which “characteristics” of a semigroup determines its left/right diameter.

A “characteristic” of a semigroup could mean the existence of special
elements, its properties (such as algebraic identities), or properties
inherited from some other structure.

Which characteristic is best suited for building a global theory of
pseudo-finite semigroups?



Previous methods

Previous work can be broadly broken down into two methods depending on
if we view a semigroup as a transformation semigroup or abstractly (e.g.
variety of semigroups).

Transformation semigroups: Discussed in my talk last summer.

- Pro: Able to manipulate concrete elements to give bounds on the
diameter. Great success when a degree of transitivity is added.

- Con: Global structure often mysterious or unhelpful.

Abstractly: Which properties hold for all semigroups of a particular
diameter? Most widely used method.

- Pro: Global structure obtained by restricting to semigroups satisfying
certain conditions. E.g. no infinite diameter 1 semigroup can be
commutative (Gallagher).

- Con: Elements are not concrete, and so can be harder to manipulate.



Having our Baumkuchen and eating it

Restrict to transformation monoids which have an inherited global
structure to keep the benefits of both methods: Endomorphism
monoids!

Definition

A (first order) structure A = (A;K) is a set A together with a collection
K of textbfbasic relations and functions defined on A.

A semigroup is considered as a set together with a binary
(associative) operation.

Both partially ordered sets (posets) and graphs can be considered as
sets together with a single binary relation.

A semilattice can also be considered as the structure (Y ;∧,≤) where
a ≤ b if and only if a ∧ b = a.



Endomorphisms

Definition

Let A = (A;K) be a structure. Then a map θ : A→ A is an
endomorphism of A if it preserves each function and relation from K,
that is, for each function f ∈ K, relation R ∈ K, and a1, . . . , an ∈ A,

((a1, . . . , an)f)θ = (a1θ, . . . , anθ)f,

(a1, . . . , an) ∈ R⇒ (a1θ, . . . , anθ) ∈ R.

The set of all endomorphisms of A is denoted End(A), and forms a
submonoid of TA.

E.g. If Y = (Y ;∧,≤) is a semilattice then θ ∈ End(Y) if

(x ∧ y)θ = xθ ∧ yθ and x ≤ y ⇒ xθ ≤ yθ.



Endomorphisms

Warning: How we consider our structure (its signature) can change its
endomorphism monoid. E.g. If Y is a semilattice then:

End(Y ;∧) = End(Y ;∧,≤) ⊆ End(Y ;≤).



Endomorphisms

The philosophy behind this method is that the properties of End(A) often
depend solely on those of the underlying structure A, which is easier to
work with.

- Pro: Global structure inherited from A?
- Pro: Local structure (concrete maps) inherited from A and the
closure property.

- Con: Not all transformation monoids are the endomorphism monoid
of some structure.

Theorem

Given a monoid monoid M ≤ TX , t.f.a.e.:
(1) M is the endomorphism monoid of some (first order) structure;

(2) M is the endomorphism monoid of some relational structure;

(3) M is closed in the topology of pointwise convergence. That is,
whenever α ∈ TX is such that for each finite A ⊆ X there exists
γ ∈M with α|A = γ|A then α ∈M .

Consequence: Suffices to consider relational structures!



Original motivation

Tackling the problem via endomorphism monoids was briefly
examined by Gallagher and R. in the diameter 1 case.

(Mostly) classified those independence algebras with endomorphism
monoids being of diameter 1.

No infinite chain (totally ordered set) can have endomorphism monoid
of left or right diameter 1.

Problem (Motivation)

Determine why chains cannot have endomorphisms of diameter 1 (or
stronger). What determines their left/right diameter?



Chains Part 1:

Explaining the lower bound of 2.



Left and right units

The diagonal right act of TX is monogenic and generated by any
injective maps α, β with disjoint images (Gallagher, R).

The injective maps of TX correspond its right units i.e. elements
a ∈ S such that there exists b ∈ S with ab = 1.

The submonoid of right units of a monoid is the R-class R1 of the
identity.

The group of units is the H-class H1.

Proposition

R1 = H1 ⇔ L1 = H1 ⇔ J1 = H1 ⇔ S does not contain a copy of the
bicyclic monoid B = ⟨a, b | ab = 1⟩.

A monoid satisfying one (and hence all) of these conditions is called
Dedekind-finite. E.g. TX is not Dedekind-finite.

Lemma (EGMQ-GR)

A Dedekind-finite monoid has right/left diameter 1 if and only if it is finite.



Left and right units

Problem

Does the right diameter of End(A) depend only on its right units?

We restrict our attention to relational structures in which there is an
easy way to pass from the endomorphisms to its elements.



Reflexive structures

Given an n-ary relation R of a set A, we define an R-loop to be an
element x ∈ A with (x, x, . . . , x) ∈ R.

We call R reflexive if each x ∈ A is an R-loop.

A relational structure A is called reflexive if each of its basic relations
are reflexive.

Lemma

If A is reflexive then the constant map cx : A→ A (a 7→ x) is an
endomorphism of A for each x ∈ A. Moreover, CA = {cx : x ∈ A} is the
minimum ideal of End(A).

Example

Posets (P ;≤), chains, prosets, looped graphs, and bands(!) are all
reflexive.



Posets

We restrict to posets - the results extend to any reflexive structure (but
with added ugliness).

Proposition (EGMQ-GR)

Let P be a non-trivial poset. If S = End(P) has monogenic diagonal right
act then there exists α, β ∈ R1 such that their images are unrelated under
≤, i.e. there exists no x, y ∈ P with xα ≥ yβ or xα ≤ yβ.

Proof.

Suppose xα ≤ yβ.

Fix any u, v ∈ P .

Then (cu, cv) = (α, β)δ for some δ ∈ S.

Hence
u = xcu = (xα)δ ≤ (yβ)δ = ycv = v.

u and v chosen arbitrarily, so P is trivial, a contradiction.



Posets

Proposition

Let P be a non-trivial poset. If S = End(P) has monogenic diagonal right
act then there exists α, β ∈ R1 such that their images are unrelated under
≤,

Corollary

If P is a non-trivial chain then End(P) does not have monogenic diagonal
right act.

Conjecture

Let P be a poset. If S = End(P) has right diameter 1, then there exists
right units which are “finitely related”.



Chains Part 2:

Finding upper-bounds



Higher diameters: left

Lemma (EGMQ-GR)

Let S = End(A) for some reflexive structure A. Then Dℓ(S) ≤ 2.

Proof.

For any x ∈ A we have Dℓ(S; {(1, cx)}) ≤ 2: If θ, ψ ∈ S then

θ = θ ◦ 1, θ ◦ cx = cx = ψ ◦ cx, ψ ◦ 1 = ψ.

Succinct:
(θ, cx) = θ(1, cx), ψ(cx, 1) = (cx, ψ).

Corollary

Let P be an infinite chain. Then Dℓ(End(P)) = 2.



Higher diameters: right

Let S = End(A) for some infinite reflexive structure A.
Recall C = CA is a (right zero) minimum ideal of S, and thus
ω = ωSr |C×C is a right congruence of S.

Let DS
r (C) denote the right diameter of C corresponding to ωSr |C×C .

Lemma (EGMQ-GR)

Let S = End(A) for some reflexive structure A and let C = CA. Then

DS
r (C) ≤ Dr(S) ≤ DS

r (C) + 2.



Swapping to orbits

Let S = End(A) for some reflexive A and let C = CA.
Paths in ωSr |C×C = ⟨U⟩ are of the form cuδ = cvδ

′ (δ, δ′ ∈ S).

But cuδ = cvδ
′ if and only if uδ = vδ′.

Hence any U -path from cx to cy is equivalent to a
Ū = {(u, v) ∈ A2 : (cu, cv) ∈ U}-path

x = u1δ1, v1δ1 = u2δ2, . . . , vnδn = y.

Lemma

DS
r (C) = 1 if and only if there exists a finite collection

(u1, v1), . . . , (un, vn) ∈ A×A such that for each x, y ∈ A there exists
1 ≤ i ≤ n and δ ∈ End(A) with (x, y) = (ui, vi)δ.

We arrive at a central concept to transformation monoids:
(2-)oligomorphicity!



Oligomorphic transformation monoid

Let S ≤ TX be a transformation monoid.
S acts on the right of Xn by (x1, . . . , xn)θ = (x1θ, . . . , xnθ).
We call (x1, . . . , xn)S an n-orbit.

Definition

S is called n-oligomorphic if it has only finitely many n-orbits. If S is
n-oligomorphic for each n then S is oligomorphic.

Studied extensively by P. Cameron, M. Pech, J. Nešeťril, D.
Mašulović etc.
Oligomorphic groups are central in a number of model theoretic
conceps e.g. ω-categoricity, quantifier elimination, and homogeneity.
Oligomorphic transformation monoids give an endomorphism-dual to
these concepts.

Corollary (EGMQ-GR)

Let A be a reflexive structure. Then DS
r (CA) = 1 if and only if A is

2-oligomorphic. In which case Dr(End(A)) ≤ 3.



Oligomorphic transformation monoid

Theorem (Mašulović, 2007)

The endomorphism of a tree (and hence a chain) is oligomorphic. Not all
posets have oligomorphic endomorphism monoids.

Lemma (EGMQ-GR)

The endomorphism monoid of a poset is 2-oligomorphic, with at most
eight 2-orbits.

Corollary (EGMQ-GR)

If P is a poset then Dr(End(P)) ≤ 3. If, further, P is a chain we have
Dr(End(P)) ∈ {2, 3}.



Chains Part 3:

The dichotomy on the right



Classifying chains

Let C be a chain with minimum z and let S = End(C).

We call C min-shiftable if there exists a right unit α ∈ S with
zα > z.

Then for each θ ∈ S we may construct δθ ∈ S such that θ = αδθ and
zδθ = z.

(α, cz)-paths of length 2:

θ = αδθ, czδθ = cz = czδψ, αδψ = ψ.

Theorem (GEM+QG)

Let C be an infinite chain and S = End(C). Then Dr(S) = 2 if and only
if C is either min-shiftable or max-shiftable. Otherwise, Dr(S) = 3.

Dr(End(N)) = 2.

Dr(End(1 + Z)) = 3.



The rough idea

Monogenic diagonal right act: ∃ α, β ∈ R1 with unrelated images (chains
discounted).w�

Dr(End(P)) = 1: ∃α, b ∈ R1 with only finitely entangled images(?)
(chains still discounted).w�

Dr(End(P)) = 2: ∃α ∈ R1 of a special type (chains: move min or max).w�
Otherwise: Dr(End(P)) = 3.

Thank you!


