Algebras of reduced E-Fountain semigroups generalizing the right ample identity

Itamar Stein

Shamoon College of Engineering

York Semigroup Seminar January 26, 2022

- Reduced E-Fountain semigroups (with the congruence condition)
- The generalized right ample property.
- Examples.
- Application to representation theory.

• Let S be a semigroup and let  $E \subseteq S$  be a subset of idempotents.

• 
$$a \tilde{\mathcal{L}}_E b \iff \forall e \in E \quad ae = a \iff be = b$$

• 
$$a\tilde{\mathcal{R}}_E b \iff \forall e \in E$$
  $ea = a \iff eb = b$ .

•  $\mathcal{L} \subseteq \tilde{\mathcal{L}}_E$   $\mathcal{R} \subseteq \tilde{\mathcal{R}}_E$ 

• S inverse semigroup, E = E(S).  $\tilde{\mathcal{L}}_E = \mathcal{L}$ ,  $\tilde{\mathcal{R}}_E = \mathcal{R}$ 

• 
$$S$$
 monoid,  $E=\{1\}$  .  $ilde{\mathcal{L}}_E= ilde{\mathcal{R}}_E=S imes S$ 

•  $S = \mathcal{B}_n$  (binary relations)  $S = \mathcal{PT}_n$  (partial functions). E = partial identities.  $f \tilde{\mathcal{L}}_{Eg} \iff \text{dom}(f) = \text{dom}(g), \quad f \tilde{\mathcal{R}}_{Eg} \iff \text{im}(f) = \text{im}(g).$ (composition right to left)

## Preliminaries - reduced *E*-Fountain semigroups

- S is called E-Fountain if every  $\tilde{\mathcal{L}}_E$  -class and every  $\tilde{\mathcal{R}}_E$ -class contains an idempotent from E.
- S is called reduced E-Fountain if in addition

$$\forall e, f \in E \quad ef = e \iff fe = e$$

- » In this case, every  $\tilde{\mathcal{L}}_E$  -class and every  $\tilde{\mathcal{R}}_E$ -class contains a unique idempotent from E (denoted  $a^*$  and  $a^+$  for  $a \in S$ ).
- »  $a^*(a^+)$  is the minimal right (resp. left) identity of a from E (with respect to the natural partial order on idempotents).
- S satisfies the congruence condition if  $\tilde{\mathcal{L}}_E$  is a right congruence and  $\tilde{\mathcal{R}}_E$  is a left congruence. Equivalently:  $(ab)^* = (a^*b)^*$  and  $(ab)^+ = (ab^+)^+$ .
  - » In this case we can associate with S a category C(S). Objects: E. Morphisms: S. dom $(a) = a^*$ , range $(a) = a^+$ .

## Preliminaries - reduced *E*-Fountain semigroups

- We consider the class of reduced *E* Fountain semigroups which satisfy the congruence condition.
- Subclass: If E is a subsemilattice (commutative subsemigroup) then S is called E-Ehresmann.
- Inverse semigroups,  $\mathcal{B}_n$  and  $\mathcal{PT}_n$  are all Ehresmann.

Itamar Stein (SCE)



reduced E - Fountain + congruence condition

- Let S be a reduced E-Fountain semigroup + congruence condition. S satisfies the **right ample identity** if  $ea = a(ea)^*$  for every  $e \in E$  and  $a \in S$ .
- Equivalent:  $Ea \subseteq aE$  for every  $a \in S$ .
- Equivalent: S can be embedded in  $\mathcal{PT}_n$  as an unary semigroup (with  $\cdot, *$ )

## Fact

If S satisfies the right ample identity then it is E-Ehresmann (aka E-Ehresmann right restriction).

## Proof.

 $\frac{\text{Right ample}}{\text{For } e, f \in E, \text{ note that } eff = ef \text{ so } (ef)^* \leq f$ 

$$ef = f(ef)^* = (ef)^* \in E$$

 $\frac{E \text{ subband} \implies E \text{ subsemilattice:}}{eff = ef \implies fef = ef}$  $ffe = fe \implies fef = fe \text{ so}$ 

#### reduced E - Fountain + congruence condition



Let S be a reduced E-Fountain semigroup + congruence condition.
 We say that S satisfies the generalized right ample identity if for every e, f ∈ E and a ∈ S

$$(e(a(eaf)^*)^+)^* = (a(eaf)^*)^+$$





### Claim

If S is Ehresmann then: generalized right ample  $\iff$  right ample

## reduced E - Fountain + congruence condition



## Generalized right ample identity - What does it mean??

Let  $\widetilde{\mathcal{L}}_{E}(e)$  be the  $\widetilde{\mathcal{L}}_{E}$ -class of  $e \in E$ . Then  $\widetilde{\mathcal{L}}_{E}(e)$  is a partial left S-act (= S acts on the left of  $\widetilde{\mathcal{L}}_{E}(e)$  by partial functions)

$$s * x = \begin{cases} sx & sx \in \widetilde{\mathcal{L}}_E(e) \\ undefined & sx \notin \widetilde{\mathcal{L}}_E(e) \end{cases} \quad (x \in \widetilde{\mathcal{L}}_E(e), \quad s \in S) \end{cases}$$



## Generalized right ample identity - What does it mean??

### Fact

Every  $\alpha \in S$  induces a function  $r_{\alpha} : \widetilde{\mathcal{L}}_{E}(\alpha^{+}) \to \widetilde{\mathcal{L}}_{E}(\alpha^{*})$  defined by  $r_{\alpha}(x) = x\alpha$ .

## Proof.

Assume 
$$x \in \widetilde{\mathcal{L}}_{E}(\alpha^{+}) \implies x^{*} = \alpha^{+}$$
. Then  
 $(x\alpha)^{*} = (x^{*}\alpha)^{*} = (\alpha^{+}\alpha)^{*} = \alpha^{*}$  so  $x\alpha \in \widetilde{\mathcal{L}}_{E}(\alpha^{*})$ .

## Proposition (IS)

S is generalized right ample if and only if for every  $\alpha \in S$ ,  $r_{\alpha}$  is a homomorphism of partial left S-acts.

## Corollary

Assume S is E-Ehresmann. S is right ample if and only if for every  $\alpha \in S$ ,  $r_{\alpha}$  is a homomorphism of partial left S-acts.

Itamar Stein (SCE)

This gives a concrete interpretation of the associated category C(S).

## Proposition

Let S be a reduced E-Fountain semigroup + congruence condition + generalized right ample. The category  $C(S)^{op}$  is isomorphic to the category whose objects are left S-acts of the form  $\widetilde{\mathcal{L}}_{E}(e)$  for  $e \in E$ , and whose morphisms are all homomorphisms of left partial S-acts between them.

## Modules and homomorphisms

• Let  $\Bbbk$  be a field and let  $\Bbbk S$  be the associated semigroup algebra.

$$\Bbbk S = \{ \sum k_i s_i \mid k_i \in \Bbbk \quad s_i \in S \}$$

Let *L̃<sub>E</sub>(e)* be the *L̃<sub>E</sub>*-class of *e* ∈ *E*. Let k*̃<sub>L</sub>(e)* be a k-vector space of formal linear combinations with basis *L̃<sub>E</sub>(e)*. Then k*̃<sub>L</sub>(e)* is a left k*S*-module according to

$$s * x = egin{cases} sx & sx \in \widetilde{\mathcal{L}}_E(e) \ 0 & sx \notin \widetilde{\mathcal{L}}_E(e) \end{pmatrix} (x \in \widetilde{\mathcal{L}}_E(e), \quad s \in S)$$

Now, r<sub>α</sub> is a linear transformation r<sub>α</sub> : k *L̃*<sub>E</sub>(α<sup>+</sup>) → k *̃*<sub>E</sub>(α<sup>\*</sup>), defined on basis elements r<sub>α</sub>(x) = xα.

#### Proposition

Let S be a reduced E-Fountain semigroup + congruence condition. S is generalized right ample if and only if for every  $\alpha \in S$ ,  $r_{\alpha}$  is a homomorphism of left &S-modules.

### Corollary

In this case, the category  $C(S)^{op}$  is isomorphic to the category whose objects are left &S-modules of the form  $\&\widetilde{\mathcal{L}}_E(e)$  for  $e \in E$ , and whose morphisms are homomorphisms of left &S-modules of the form  $r_{\alpha}$ .

## Proposition (95% sure)

If S is finite. The category  $\& C(S)^{\text{op}}$  is isomorphic to the category whose objects are left &S-modules of the form  $\& \widetilde{\mathcal{L}}_E(e)$  for  $e \in E$ , and whose morphisms are all homomorphisms of left &S-modules between them.

## Remark

Non interesting examples:  $\mathcal{PT}_n$ , inverse semigroups. These are also right ample. We want generalized right ample semigroups which are not right ample (*E* is not a subsemilattice).

• The Catalan monoid -  $C_n$ .

$$\{f:\{1,\ldots,n\}\to\{1,\ldots,n\}\mid i\leq f(i),\quad i\leq j\implies f(i)\leq f(j)\}$$

 $E = E(C_n)$ . Idempotents does not commute.  $C_n$  satisfies the generalized right ample condition - Margolis& Steinberg (2018).

 $r_{\alpha}$  are  $\Bbbk S$ -module homomorphisms - Steinberg (2016).

• Order preserving functions with a fixed point -  $\mathcal{OPF}_n$ .

 $\{f:\{1,\ldots,n\}\to\{1,\ldots,n\}\mid f(n)=n,\quad i\leq j\implies f(i)\leq f(j)\}$  $E=E(\mathcal{C}_n) \text{ (Note that } \mathcal{C}_n\subseteq \mathcal{OPF}_n\text{)}.$ 

Let V be a Hilbert space (e.g. V = ℝ<sup>n</sup>). Let S = {T : V → V | T bounded}. For every closed subspace U ⊆ V, let P<sub>U</sub> be the associated orthogonal projection P<sub>U</sub> : V → U.Choose E = {P<sub>U</sub> | U ⊆ V, U closed}. Note that E is not a subsemilattice.

#### reduced E - Fountain + congruence condition



- Fix S a finite reduced E-Fountain + congruence condition. Define a relation a ≤<sub>1</sub> b if a = be for some e ∈ E. (Beware! ≤<sub>1</sub> is not even a pre-order).
- Let C be a category and let k be a field. The category algebra kC is the k-Vector space of all linear combinations

$$\{\sum_{i=1}^n k_i m_i \mid k_i \in \mathbb{k}, m_i \text{ morphism}\}$$

with multiplication being extension of

$$m' \cdot m = egin{cases} m'm & \mathsf{r}(m) = \mathsf{d}(m') \\ 0 & \mathsf{r}(m) \neq \mathsf{d}(m') \end{cases}$$

• Let  $\varphi : \Bbbk S \to \Bbbk C(S)$  be the linear transformation defined (on basis elements) by

$$\varphi(\alpha) = \sum_{\beta \trianglelefteq_l \alpha} \beta$$

## Theorem (IS)

 $\varphi$  is a homomorphism of  $\Bbbk$  - algebras if and only if S satisfies the generalized right ample identity. If  $\trianglelefteq_I$  is contained in a partial order then  $\varphi$  is an isomorphism.

Quite often & C(S) much easier to handle than & S!

# History of $\Bbbk S \simeq \& C(S)$



### Remark

The case of the Catalan monoid  $C_n$  has 5 different proofs! (Hivert&Thiéry, Grensing, SteinbergX2, Margolis&Steinberg)

Itamar Stein (SCE)

reduced E-Fountain semigroups

## Proposition (IS)

Let S be a reduced E-Fountain semigroup + congruence condition + generalized right ample +  $\leq_I$  contained in a partial order. Then for every  $e \in E$ ,  $\Bbbk \widetilde{\mathcal{L}}_E(e)$  is a projective module. (Not necessarily indecomposable).

- The *E*-Ehresmann case was proved by Margolis&IS (2021) with description of the indecomposables in certain cases.
- It is known that  $\mathbb{k}\widetilde{\mathcal{L}}_{E}(e)$  is indecomposable projective for every  $\mathcal{R}$ -trivial monoid (with E = E(S)). Example:  $\mathcal{C}_{n}$ .

#### Question

Find a theorem that implies both the reduced E-Fountain case and the  $\mathcal{R}$ -trivial case.

# Thank you!