# Inverse semigroups acting on graphs and trees

Jim Renshaw

May 17, 2011

# Outline

# Background

- The group case taken from "Groups acting on Graphs" by Warren Dicks & Martin Dunwoody (available in all good bookshops ...)
- Inverse semigroups
- 2 Inverse acts
  - $\omega$ -cosets
  - S-graphs
- 3 Graphs of Inverse semigroups
- Ordered Graphs

Let X be a G-set.

• The *G*-stabilizer of  $x \in X$  is the set of elements of *G* that 'fix' *x*, i.e.

$$G_x = \{g \in G : gx = x\}$$

 $G_x$  is a subgroup of G

$$g \in G, G_{g_X} \simeq g G_X g^{-1}$$

- *G* is said the act *freely* on *X* if  $G_x = \{1\}$  for all  $x \in X$
- The *G*-*orbit* of *x* is the set  $Gx = \{gx : g \in G\}$  which is a *G*-subset of *X*
- The *quotient set* for the *G*-set *X* is the set of *G*-orbits,  $G \setminus X = \{Gx : x \in X\}$  which clearly has a natural map  $X \to G \setminus X, x \mapsto Gx$ .
- A *G*−*transversal in X* is a subset *Y* of *X* which contains exactly one element of each *G*−orbit of *X*.
   Hence the composite *Y* ⊆ *X* → *G*\*X* is a bijection.

*G*–sets

A *G*-graph (*X*, *V*, *E*,  $\iota$ ,  $\tau$ ) is a non-empty *G*-set *X* with disjoint non-empty *G*-subsets *V* and *E* such that

$$X = V \dot{\cup} E$$

and two *G*-maps  $\iota, \tau : E \to V$ . Pictorially we have,

The *quotient graph*,  $G \setminus X$ , is the graph

$$(G \setminus X, G \setminus V, G \setminus E, \overline{\iota}, \overline{\tau})$$

where

$$ar{\iota}(\mathit{Ge}) = \mathit{G\iotae}, ar{ au}(\mathit{Ge}) = \mathit{G\taue}$$

for all  $Ge \in G \setminus E$ .



If  $G \setminus X$  is connected then it can be shown that there exist subsets

$$Y_0 \subseteq Y \subseteq X$$

such that *Y* is a *G*-transversal in *X*, *Y*<sub>0</sub> is a subtree of *X* with  $VY_0 = VY$  and for each  $e \in EY$ ,  $\iota(e) \in VY$ . In this case, *Y* is called a *fundamental transversal* in *X*. Cayley Graphs

The *Cayley graph* of *G* with respect to a subset *T* of *G* is the *G*–graph, *X*(*G*, *T*), with vertex set *V* = *G*, edge set *E* = *G* × *T* and incidence function  $\iota(g, t) = g, \tau(g, t) = gt$  for all  $(g, t) \in E$ . For example, consider the cyclic group  $C_4 = \langle s : s^4 \rangle$  and  $T = \{s\}$  then the Cayley graph can be represented as



where  $e = (1, s) \in G \times T$ .



The quotient graph is



and a corresponding fundamental G-transversal is



# Graphs of Groups

A graph of groups (G(-), Y), is a connected graph

$$(Y, V, E, \overline{\iota}, \overline{\tau})$$

together with a function G(-) which assigns to each  $v \in V$  a group G(v) and to each edge  $e \in E$  a subgroup

$$G(e) \subseteq G(\overline{\iota} e)$$

and a group monomorphism

$$t_e: G(e) \to G(\overline{\tau}e).$$

# Graph of Groups - Standard example

Inverse acts

- G-graph X such that  $G \setminus X$  is connected
- fundamental transversal Y with subtree Y<sub>0</sub>

For each edge *e* in *EY*, there are unique vertices  $\overline{\iota} e \in G\iota e, \overline{\tau} e \in G\tau e$  in *VY*. In fact  $\overline{\iota} e = \iota e$ .  $\overline{\iota}, \overline{\tau} : EY \to VY$  make *Y* into a graph (isomorphic to  $G \setminus X$ ) For each *e* in *EY*,  $\tau e$  and  $\overline{\tau} e$  belong to the same *G*-orbit and so there exists  $t_e$  in *G* such that

$$t_{e}\overline{\tau}e = \tau e$$

if  $e \in Y_0$  then  $\overline{\tau}e = \tau e$  and we take  $t_e = 1$ .

$$G_{\tau e} = t_e G_{\overline{\tau} e} t_e^{-1}$$

 $G_e \subseteq G_{\iota e}, G_{\tau e}$  and so there is an embedding

$$G_e 
ightarrow G_{\overline{ au}} e$$

given by  $g \mapsto t_e^{-1}gt_e$ .

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# Graph of Groups - Standard example



# The Fundamental Group

The fundamental group  $\pi(G(-), Y, Y_0)$  is the group with generating set

$$\{t_{e}: e \in E\} \cup \bigcup_{v \in V} G(v)$$

and relations :

the relations for G(v), for each  $v \in VY$ ;

$$t_e^{-1}gt_e = t_e(g)$$
 for all  $e$  in  $EYackslash EY_0$   
 $t_e = 1$  for all  $e \in EY_0$ 

# The Fundamental Group

Given  $G = \pi(G(-), Y, Y_0)$ , we construct a *standard* G-graph as follows:

Let T be the G-set generated by Y and relations

$$gy = y$$
, for each  $y \in Y, g \in G(y)$ 

Then T has G-subsets VT = GV and ET = GE. Define  $\iota, \tau : ET \to VT$  by

$$\iota(ge) = g\overline{\iota}e, \tau(ge) = gt_e\overline{\tau}e$$

Then T is a G-graph with fundamental transversal Y.

### The Fundamental Group

The graph of groups associated to this G-graph is isomorphic to the original graph of groups.

Conversely, given a group, *G*, acting on a *tree* we can form the graph of groups and the fundamental group,  $\pi$ , is then isomorphic to *G* and the standard graph is isomorphic to the original *G*-tree.



The two classic examples of fundamental groups arise from the following two graphs of groups:



and



In the former case, the fundamental group is the amalgamated free product  $A *_C B$  while in the later case it is the HNN-extension  $A *_C t$ .

### Inverse semigroup actions

Throughout, *S* will denote an inverse semigroup. By a (left) S-act, *X*, we mean an (partial) action of *S* on the set *X* such that (st)x exists if and only if s(tx) exists and then

(st)x = s(tx).

In addition, we require that whenever sx = sy then x = y. Right *S*-acts are defined dually and bi-acts can be defined in a fairly obvious way.

#### Example

Let *S* be an inverse semigroup and let  $s \in S$ . Define  $s \cdot x = sx$  for  $x \in \{s^{-1}sS\}$ . This is the act induced by the Preston-Wagner representation of *S*.

### Inverse semigroup actions

We denote by  $D_s = \{x \in X : sx \in X\}$  the *domain* of the element *s*.

#### Lemma

If  $s \in S$ ,  $e \in E(S)$ ,  $x, y \in X$  then

1 If 
$$sx = y$$
 then  $x = s^{-1}y$ ;

2) if 
$$x \in D_s$$
 then  $s^{-1}sx = x$ ;

3) if 
$$x \in D_e$$
 then  $ex = x$ .

Define  $D^x = \{s \in S : x \in D_s\}$  the *domain* of the element *x*. *x* is said to be *effective* if  $D^x \neq \emptyset$ . *X* is *transitive* if for all  $x, y \in X$ , there exists  $s \in S, y = sx$ .

# Stabilisers and $\omega$ -cosets

For an inverse semigroup S define the natural partial ordering  $\leq$  on S by

$$a \leq b$$
 if and only if  $a = eb$  for some  $e \in E(S)$ 

Let *H* be a subset of an inverse semigroup *S*. Denote by  $H\omega$  the set

$$H\omega = \{ \boldsymbol{s} \in \boldsymbol{S} : \boldsymbol{s} \ge \boldsymbol{h}, \text{for some } \boldsymbol{h} \in \boldsymbol{H} \}.$$

This is called the *closure* of *H* and we say that *H* is *closed* if  $H\omega = H$ .

If *H* is an inverse subsemigroup of *S* then the sets  $(sH)\omega$ , for  $s \in D_H$ , are called the *left*  $\omega$ -cosets of *H* in *S*. The set of all left  $\omega$ -cosets is denoted by *S*/*H*.

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# Stabilisers and $\omega$ -cosets

As before define the *stabiliser* of  $x \in X$  as

$$S_x = \{s \in S : sx = x\}.$$

#### Theorem

For all  $x \in X$ ,  $S_x$  is either empty or a closed inverse subsemigroup of S.

If *H* is a closed inverse subsemigroup of an inverse semigroup *S* then *S*/*H* is a left *S*-act with action given by  $s \cdot X = (sX)\omega$  whenever  $X, sX \in S/H$ . Moreover, it is easy to establish that  $S_H = H$ .

Graphs of Inverse semigroups

Ordered Graphs

# Stabilisers and $\omega$ -cosets

If *H* and *K* are two closed inverse subsemigroups of *S* then we say that *H* and *K* are *conjugate* if  $S/H \cong S/K$  (as *S*-acts).

#### Theorem

Let H and K be closed inverse subsemigroups of an inverse semigroup S. Then H and K are conjugate if and only if there is an element  $s \in S$  such that

$$(s^{-1}Hs)\omega = K$$
 and  $(sKs^{-1})\omega = H$ .

## Stabilisers and $\omega$ -cosets

### If $ss^{-1} \in H$ then $s^{-1}Hs$ is an inverse subsemigroup of H.

#### Theorem

Let *S* be an inverse semigroup,  $s \in S$  and suppose that *H* is a closed inverse subsemigroup with  $ss^{-1} \in H$ . Then there exists an embedding  $\phi' : H \to s^{-1}Hs$  if and only if  $ss^{-1}$  is the identity of *H*.

Notice that  $ss^{-1}$  is the identity of *H* if and only if  $H \subseteq sSs^{-1}$ , if and only if  $e = ss^{-1} \in H \subseteq eSe$ .

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

### Stabilisers and $\omega$ -cosets

#### Theorem

Let *S* be an inverse semigroup and *X* a left *S*-act. Let  $s \in S$  and  $x \in D_s$ . Then  $sS_xs^{-1}$  is an inverse subsemigroup of *S*.

#### Theorem

Let S be an inverse semigroup and X an S-act. Let  $s \in S$  and  $x \in D_s$ . Then  $S_x$  and  $S_{sx}$  are conjugate.

# graded actions

Let X be a left S-act. Say that X is graded if there exits a function  $p: X \to E(S)$  such that

• for all  $e \in E(S), D_e = P^{-1}([e]);$ 

2) for 
$$x \in X, t \in D^x$$
 if  $t^{-1}t = p(x)$  then  $tt^{-1} = p(tx)$ .

#### Theorem

Let X be a left S-act. Then X is graded if and only if X is effective and for each  $x \in X$ ,  $S_x$  contains a minimum idempotent.

In fact it turns out that condition (2) is unnecessary.

If *X* is a *S*-biact, the (left) *Schützenberger* graph of *X* with respect to a subset *T* of *S*, is denoted  $\Gamma = \Gamma(X, T)$ , and is the (left) *S*-graph with vertex set V = X, edge set  $E = \{(x, t) \in X \times T : xt \text{ exists and } xt \neq x\}$  and incidence functions  $\iota(x, t) = x, \tau(x, t) = xt$  for all  $(x, t) \in E$ . The action is that induced by the left action of *S* on *X*.

$$x \rightarrow xt$$

In particular, we are interested in the case  $X = {}_{S}S_{S}$ .

#### Theorem

Let *S* be an inverse semigroup with generating set *T*. Then *S* is bisimple if and only if  $S \setminus \Gamma = S \setminus \Gamma(S, T)$  is a connected graph.

For example, let *S* be the inverse subsemigroup of  $\mathcal{I}_{\{1,2,3,4,5\}}$  generated by

$$\alpha = \left(\begin{array}{rrrr} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{5} \end{array}\right).$$

 $S = \{\alpha, \alpha^{-1}, \alpha^2, \alpha^{-2}, \alpha\alpha^{-1}, \alpha^{-1}\alpha, \alpha^2\alpha^{-2}\}$  and  $E(S) = \{\alpha\alpha^{-1}, \alpha^{-1}\alpha, \alpha^2\alpha^{-2}\}.$ Let  $T = \{\alpha\}$ . Then the Schützenberger graph,  $\Gamma = \Gamma(S, T)$ , of Swith respect to T is



# S-graphs

# The action of S (induced by the Preston-Wagner representation) on the graph is as follows



Also, we can calculate the orbits of  $\Gamma$ . The edge orbits are

$$Se = \{e, \alpha^{-1}e\}, Sf = \{f, \alpha f, \alpha^{-1}f\}$$

while the vertex orbits are

$$\boldsymbol{S} \cdot \boldsymbol{\alpha} = \{\alpha, \alpha^{-1}\alpha\}, \ \boldsymbol{S} \cdot \alpha^{-1} = \{\alpha^{-1}, \alpha \alpha^{-1}\}$$

and

$$\boldsymbol{S} \cdot \boldsymbol{\alpha}^{2} = \{ \boldsymbol{\alpha}^{2}, \boldsymbol{\alpha}^{-2}, \boldsymbol{\alpha}^{2} \boldsymbol{\alpha}^{-2} \}.$$

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs



### The quotient graph $S \setminus \Gamma$ , then looks like



# First the good news

Let *S* be the free inverse semigroup on one generators  $\{x\}$ . Let  $V = \{a, b, c\}$  and define an action on *V* from the representation  $S \rightarrow \mathcal{I}_V$  generated by  $x \rightarrow \rho_x$  where  $\rho_x = \begin{pmatrix} a & c \\ b & a \end{pmatrix}$ . Define an *S*-graph *G*, as follows

$$c \xrightarrow{x^{-1}e} a \xrightarrow{e} b$$

and note that the quotient graph,  $S \setminus G$  is



Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# First the good news

with a fundamental transversal Y



To construct the associated graph of inverse semigroups, notice that  $\iota e = a, \tau e = b, \overline{\tau} e = a,$  $S_e = \{xx^{-1}\}, S_{\iota e} = \{x^{-1}x, xx^{-1}, xx^{-1}x^{-1}x\} = S_{\overline{\tau} e},$  $S_{\tau e} = \{x^2x^{-2}, xx^{-1}\}$  and that  $xx^{-1}$  is the identity of  $S_{\tau e}$ .

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# First the good news

Hence the graph of inverse semigroups is given by



and there is an embedding  $\{xx^{-1}\} \rightarrow S_{\iota e}$  given by  $xx^{-1} \mapsto x^{-1}(xx^{-1})x = x^{-1}x$ .

# First the good news

Let (S(-), Y) be a graph of inverse semigroups in which for each  $e \in EY$ , S(e) is a monoid. Choose a spanning subtree  $Y_0$ of Y. It follows that  $VY_0 = VY$ . The *'fundamental inverse semigroup'*  $\pi(S(-), Y, Y_0)$  is the inverse semigroup defined by

- The generating set is  $\{t_e : e \in EY\} \cup \bigcup_{v \in VY} S(v)$ .
- O The relations are
  - (a) the relations for S(v), for each  $v \in VY$ ;
  - (b)  $t_e^{-1}st_e = t_e(s)$  for all e in EY,  $s \in S(e) \subseteq S(\overline{\iota}e)$ ;
  - (c)  $t_e t_e^{-1}$  is the identity in S(e) for all e in  $\overrightarrow{EY}$ ;
  - (d)  $t_e = t_e^2$  for all e in  $EY_0$ .

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# First the good news

#### So in our example that equates to

$$\pi = Inv\langle x, y, z, t | x^2 = x, y^2 = y, z = yx, t^{-1}yt = x, tt^{-1} = y \rangle$$
$$= Inv\langle t \rangle$$

# ... now the bad news

Consider the previous example where S be the inverse subsemigroup of  $\mathcal{I}_{\{1,2,3,4,5\}}$  generated by

$$\alpha = \left(\begin{array}{rrrr} \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} \\ \mathbf{2} & \mathbf{3} & \mathbf{1} & \mathbf{5} \end{array}\right).$$

Then  $S = \langle \alpha | \alpha \alpha^{-2} = \alpha^2 \rangle$  and that if we put  $V = \{a, b, c, d, e\}$ then the representation  $S \to \mathcal{I}_V$  given by  $\alpha \mapsto \rho_\alpha = \begin{pmatrix} a & b & c & d \\ b & c & a & e \end{pmatrix}$  generates a *S*-action on *V*. Consider the *S*-tree T = (S, V, E) given by

$$b \xrightarrow{\alpha x} e \xrightarrow{y} a \xrightarrow{x} d \xrightarrow{\alpha^{-1}y} c$$

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# ... now the bad news

The quotient graph is



with an S-transversal Y



The stabilisers are given by  $S_a = \{\alpha \alpha^{-1}, \alpha^{-1} \alpha, \alpha^2 \alpha^{-2}\}, S_d = \{\alpha^{-1} \alpha\} = S_x, S_e = \{\alpha \alpha^{-1}\} = S_y.$ 

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

# ... now the bad news

The graph of inverse semigroups is



with connecting monomorphism  $S_y \to S_d$  given by  $\alpha \alpha^{-1} \mapsto \alpha^{-1} \alpha \alpha^{-1} \alpha = \alpha^{-1} \alpha$ . The 'fundamental inverse semigroup' is then given by the presentation

$$\pi = \langle \beta, \gamma, \delta, t | \beta^2 = \beta, \gamma^2 = \gamma, \delta^2 = \delta, \beta = \delta, t^{-1} \gamma t = \delta, tt^{-1} = \gamma \rangle$$

which reduces to  $\langle t | \rangle$  with  $\gamma = tt^{-1}$ ,  $\beta = t^{-1}t$ .

Inverse acts

Graphs of Inverse semigroups

Ordered Graphs

### ... now the bad news

The standard graph on  $\pi$  is then



Notice that we cannot recover the original action from this as  $t^2$  does not act on *a*. However, the stabilisers are  $S_a = \{tt^{-1}, t^{-1}t, tt^{-1}t^{-1}t\}, S_d = \{t^{-1}t\}, S_x = \{t^{-1}t\}, S_y = \{tt^{-1}\}$  and the graph of inverse semigroups is isomorphic to the previous one.

# **Ordered Graphs**

#### A Yamamura (2004)

- X a graph, E a semilattice
- For each e ∈ E there is a unique connected component X<sub>e</sub> of X and X = ∪X<sub>e</sub>
- for each  $f \leq e$ , graph morphism  $\rho_f^e : X_e \to X_f$  satisfying

$$\begin{array}{ccc} \bullet & \rho_e^e = \mathbf{1}_{X_e} \\ \bullet & \rho_f^d = \rho_f^e \circ \rho_e^d, \, f \leq e \leq d. \end{array}$$

 $v_1, v_2 \in VX$  define  $v_1 \leq v_2$  if there exists  $f \leq e$  with  $v_1 \in V(X_f), v_2 \in V(X_e)$  and  $v_1 = \rho_f^e(v_2)$  - similarly for edges. This defines an ordering on the graph.

Schützenberger graphs are ordered ....

Graphs of Inverse semigroups

Ordered Graphs

# **Ordered Graphs**

$$S = \{\alpha, \alpha^{-1}, \alpha^2, \alpha^{-2}, \alpha\alpha^{-1}, \alpha^{-1}\alpha, \alpha^2\alpha^{-2}\} \text{ and } E(S) = \{\alpha\alpha^{-1}, \alpha^{-1}\alpha, \alpha^2\alpha^{-2}\}.$$

Let  $T = \{\alpha\}$ . Then the Schützenberger graph,  $\Gamma = \Gamma(S, T)$ , of *S* with respect to *T* is



 $\begin{array}{ll} \text{if } f \leq e \text{ then } \rho_f^e: \Gamma_e \to \Gamma_f, \quad x \mapsto \textit{fx In this case} \\ \alpha^2 \alpha^{-2} \leq \alpha \alpha^{-1}, \alpha^{-1} \alpha. \end{array}$ 

Ordered Graphs

# Actions on Ordered Graphs

- S and inverse monoid and E = E(S), X a graph ordered by E
- $[X_e]$  = order ideal generated by  $X_e$  $[X_e] = \{x \in X : x \le y, y \in X_e\}$
- $T_{e,f}$  = set of all graph isomorphisms  $[X_e] \rightarrow [X_f]$
- $T_X = \bigcup T_{e,f} \subseteq I_X$  and an action of *S* on *X* is given by a homomorphism  $\theta : S \to T_X$
- $\theta_s : [X_{s^{-1}s}] \to [X_{ss^{-1}}], sX_e = X_{ses^{-1}}$  if  $e \le s^{-1}s$  plus a few other axioms

Under *certain conditions* Yamamura has shown that similar results from the Bass-Serre theory of groups carry over to inverse monoids acting on ordered forests.