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G−sets

Let X be a G−set.
The G−stabilizer of x ∈ X is the set of elements of G that
‘fix’ x , i.e.

Gx = {g ∈ G : gx = x}

Gx is a subgroup of G
g ∈ G,Ggx ' gGxg−1

G is said the act freely on X if Gx = {1} for all x ∈ X
The G−orbit of x is the set Gx = {gx : g ∈ G} which is a
G−subset of X
The quotient set for the G−set X is the set of G−orbits,
G\X = {Gx : x ∈ X} which clearly has a natural map
X → G\X , x 7→ Gx .
A G−transversal in X is a subset Y of X which contains
exactly one element of each G−orbit of X .
Hence the composite Y ⊆ X → G\X is a bijection.
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G−sets

A G−graph (X ,V ,E , ι, τ) is a non-empty G−set X with disjoint
non-empty G−subsets V and E such that

X = V ∪̇ E

and two G−maps ι, τ : E → V .
Pictorially we have,

ιe τe//e

The quotient graph, G\X , is the graph

(G\X ,G\V ,G\E , ῑ, τ̄)

where
ῑ(Ge) = Gιe, τ̄(Ge) = Gτe

for all Ge ∈ G\E .
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G−sets

If G\X is connected then it can be shown that there exist
subsets

Y0 ⊆ Y ⊆ X

such that Y is a G−transversal in X , Y0 is a subtree of X with
VY0 = VY and for each e ∈ EY , ι(e) ∈ VY .
In this case, Y is called a fundamental transversal in X .
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Cayley Graphs

The Cayley graph of G with respect to a subset T of G is the
G−graph, X (G,T ), with vertex set V = G, edge set E = G × T
and incidence function ι(g, t) = g, τ(g, t) = gt for all (g, t) ∈ E .
For example, consider the cyclic group C4 = 〈s : s4〉 and
T = {s} then the Cayley graph can be represented as

◦◦

◦ ◦

//e

�� se

oo
s2e

OOs3e

where e = (1, s) ∈ G × T .
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Cayley Graphs

The quotient graph is

OO
e 1

and a corresponding fundamental G−transversal is

//e
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Graphs of Groups

A graph of groups (G(−),Y ), is a connected graph

(Y ,V ,E , ι, τ)

together with a function G(−) which assigns to each v ∈ V a
group G(v) and to each edge e ∈ E a subgroup

G(e) ⊆ G(ιe)

and a group monomorphism

te : G(e)→ G(τe).
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Graph of Groups - Standard example

G−graph X such that G\X is connected
fundamental transversal Y with subtree Y0

For each edge e in EY , there are unique vertices
ιe ∈ Gιe, τe ∈ Gτe in VY . In fact ιe = ιe.
ι, τ : EY → VY make Y into a graph (isomorphic to G\X )
For each e in EY , τe and τe belong to the same G−orbit and
so there exists te in G such that

teτe = τe

if e ∈ Y0 then τe = τe and we take te = 1.

Gτe = teGτet−1
e

Ge ⊆ Gιe,Gτe and so there is an embedding

Ge → Gτe

given by g 7→ t−1
e gte.
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Graph of Groups - Standard example

◦◦

◦ ◦

//e

�� se

oo
s2e

OOs3e

The quotient graph is

OO
e 1

with fundamental G−transversal

//e

ι(e) = 1, τ(e) = s, τ(e) = 1,G1 = {1},Gs = {1}
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The Fundamental Group

The fundamental group π(G(−),Y ,Y0) is the group with
generating set

{te : e ∈ E} ∪
⋃

v∈V

G(v)

and relations :
the relations for G(v), for each v ∈ VY ;

t−1
e gte = te(g) for all e in EY\EY0;

te = 1 for all e ∈ EY0



Background Inverse acts Graphs of Inverse semigroups Ordered Graphs

The Fundamental Group

Given G = π(G(−),Y ,Y0), we construct a standard G−graph
as follows:
Let T be the G−set generated by Y and relations

gy = y , for each y ∈ Y ,g ∈ G(y)

Then T has G−subsets VT = GV and ET = GE .
Define ι, τ : ET → VT by

ι(ge) = gιe, τ(ge) = gteτe

Then T is a G−graph with fundamental transversal Y .
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The Fundamental Group

The graph of groups associated to this G−graph is isomorphic
to the original graph of groups.

Conversely, given a group, G, acting on a tree we can form the
graph of groups and the fundamental group, π, is then
isomorphic to G and the standard graph is isomorphic to the
original G−tree.
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G−sets

The two classic examples of fundamental groups arise from the
following two graphs of groups:

A B//C

and

OO
C

A

In the former case, the fundamental group is the amalgamated
free product A ∗C B while in the later case it is the
HNN-extension A ∗C t .
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Inverse semigroup actions

Throughout, S will denote an inverse semigroup. By a (left)
S−act, X , we mean an (partial) action of S on the set X such
that (st)x exists if and only if s(tx) exists and then

(st)x = s(tx).

In addition, we require that whenever sx = sy then x = y .
Right S−acts are defined dually and bi-acts can be defined in a
fairly obvious way.

Example
Let S be an inverse semigroup and let s ∈ S. Define s · x = sx
for x ∈ {s−1sS}. This is the act induced by the Preston-Wagner
representation of S.
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Inverse semigroup actions

We denote by Ds = {x ∈ X : sx ∈ X} the domain of the
element s.

Lemma
If s ∈ S,e ∈ E(S), x , y ∈ X then

1 If sx = y then x = s−1y;
2 if x ∈ Ds then s−1sx = x;
3 if x ∈ De then ex = x.

Define Dx = {s ∈ S : x ∈ Ds} the domain of the element x .
x is said to be effective if Dx 6= Ø.
X is transitive if for all x , y ∈ X , there exists s ∈ S, y = sx .
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Stabilisers and ω−cosets

For an inverse semigroup S define the natural partial ordering
≤ on S by

a ≤ b if and only if a = eb for some e ∈ E(S)

Let H be a subset of an inverse semigroup S. Denote by Hω

the set
Hω = {s ∈ S : s ≥ h, for some h ∈ H}.

This is called the closure of H and we say that H is closed if
Hω = H.

If H is an inverse subsemigroup of S then the sets (sH)ω, for
s ∈ DH , are called the left ω−cosets of H in S. The set of all left
ω−cosets is denoted by S/H.
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Stabilisers and ω−cosets

As before define the stabiliser of x ∈ X as

Sx = {s ∈ S : sx = x}.

Theorem
For all x ∈ X, Sx is either empty or a closed inverse
subsemigroup of S.

If H is a closed inverse subsemigroup of an inverse semigroup
S then S/H is a left S−act with action given by s · X = (sX )ω
whenever X , sX ∈ S/H. Moreover, it is easy to establish that
SH = H.
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Stabilisers and ω−cosets

If H and K are two closed inverse subsemigroups of S then we
say that H and K are conjugate if S/H ∼= S/K (as S−acts).

Theorem
Let H and K be closed inverse subsemigroups of an inverse
semigroup S. Then H and K are conjugate if and only if there is
an element s ∈ S such that

(s−1Hs)ω = K and (sKs−1)ω = H.
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Stabilisers and ω−cosets

If ss−1 ∈ H then s−1Hs is an inverse subsemigroup of H.

Theorem

Let S be an inverse semigroup, s ∈ S and suppose that H is a
closed inverse subsemigroup with ss−1 ∈ H. Then there exists
an embedding φ′ : H → s−1Hs if and only if ss−1 is the identity
of H.

Notice that ss−1 is the identity of H if and only if H ⊆ sSs−1, if
and only if e = ss−1 ∈ H ⊆ eSe.
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Stabilisers and ω−cosets

Theorem
Let S be an inverse semigroup and X a left S−act. Let s ∈ S
and x ∈ Ds. Then sSxs−1 is an inverse subsemigroup of S.

Theorem

Let S be an inverse semigroup and X an S−act. Let s ∈ S and
x ∈ Ds. Then Sx and Ssx are conjugate.
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graded actions

Let X be a left S−act. Say that X is graded if there exits a
function p : X → E(S) such that

1 for all e ∈ E(S),De = P−1([e]);
2 for x ∈ X , t ∈ Dx if t−1t = p(x) then tt−1 = p(tx).

Theorem
Let X be a left S−act. Then X is graded if and only if X is
effective and for each x ∈ X ,Sx contains a minimum
idempotent.

In fact it turns out that condition (2) is unnecessary.
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S−graphs

If X is a S−biact, the (left) Schützenberger graph of X with
respect to a subset T of S, is denoted Γ = Γ(X ,T ), and is the
(left) S−graph with vertex set V = X , edge set
E = {(x , t) ∈ X × T : xt exists and xt 6= x} and incidence
functions ι(x , t) = x , τ(x , t) = xt for all (x , t) ∈ E . The action is
that induced by the left action of S on X .

x t// xt

In particular, we are interested in the case X = SSS.

Theorem
Let S be an inverse semigroup with generating set T . Then S is
bisimple if and only if S \ Γ = S \ Γ(S,T ) is a connected graph.
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S−graphs

For example, let S be the inverse subsemigroup of I{1,2,3,4,5}
generated by

α =

(
1 2 3 4
2 3 1 5

)
.

S = {α, α−1, α2, α−2, αα−1, α−1α, α2α−2} and
E(S) = {αα−1, α−1α, α2α−2}.
Let T = {α}. Then the Schützenberger graph, Γ = Γ(S,T ), of S
with respect to T is

α α2
α−2α−1α

α−1αα−1 α2α−2

��α ??α �� α

oo
α

��α
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S−graphs

The action of S (induced by the Preston-Wagner
representation) on the graph is as follows

α α2
α−2α−1α

α−1αα−1 α2α−2

��e ??f �� αf

oo
α−1f

��α−1e

Also, we can calculate the orbits of Γ. The edge orbits are

Se = {e, α−1e},Sf = {f , αf , α−1f}

while the vertex orbits are

S · α = {α, α−1α}, S · α−1 = {α−1, αα−1}

and
S · α2 = {α2, α−2, α2α−2}.
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S−graphs

The quotient graph S \ Γ, then looks like

α

α−1

α2��e ��
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First the good news

Let S be the free inverse semigroup on one generators {x}. Let
V = {a,b, c} and define an action on V from the representation

S → IV generated by x → ρx where ρx =

(
a c
b a

)
. Define an

S−graph G, as follows

c a b//x−1e //e

and note that the quotient graph, S \G is

a �� e
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First the good news

with a fundamental transversal Y

a

??e

To construct the associated graph of inverse semigroups, notice
that ιe = a, τe = b, τe = a,
Se = {xx−1},Sιe = {x−1x , xx−1, xx−1x−1x} = Sτe,
Sτe = {x2x−2, xx−1} and that xx−1 is the identity of Sτe.
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First the good news

Hence the graph of inverse semigroups is given by

Sιe �� {xx−1}

and there is an embedding {xx−1} → Sιe given by
xx−1 7→ x−1(xx−1)x = x−1x .
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First the good news

Let (S(−),Y ) be a graph of inverse semigroups in which for
each e ∈ EY ,S(e) is a monoid. Choose a spanning subtree Y0
of Y . It follows that VY0 = VY . The ‘fundamental inverse
semigroup’ π(S(−),Y ,Y0) is the inverse semigroup defined by

1 The generating set is {te : e ∈ EY} ∪
⋃

v∈VY S(v).
2 The relations are

(a) the relations for S(v), for each v ∈ VY ;
(b) t−1

e ste = te(s) for all e in EY , s ∈ S(e) ⊆ S(ιe);
(c) tet−1

e is the identity in S(e) for all e in EY ;
(d) te = t2

e for all e in EY0.
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First the good news

So in our example that equates to

π = Inv〈x , y , z, t |x2 = x , y2 = y , z = yx , t−1yt = x , tt−1 = y〉
= Inv〈t〉
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... now the bad news

Consider the previous example where S be the inverse
subsemigroup of I{1,2,3,4,5} generated by

α =

(
1 2 3 4
2 3 1 5

)
.

Then S = 〈α|αα−2 = α2〉 and that if we put V = {a,b, c,d ,e}
then the representation S → IV given by

α 7→ ρα =

(
a b c d
b c a e

)
generates a S−action on V .

Consider the S−tree T = (S,V ,E) given by

b e a d c//αx ooy //x ooα−1y



Background Inverse acts Graphs of Inverse semigroups Ordered Graphs

... now the bad news

The quotient graph is

a d

//x

//
y

with an S−transversal Y

a doo
y

//x

The stabilisers are given by Sa = {αα−1, α−1α, α2α−2},Sd =
{α−1α} = Sx ,Se = {αα−1} = Sy .
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... now the bad news

The graph of inverse semigroups is

Sa Sd

//Sx

//
Sy

with connecting monomorphism Sy → Sd given by
αα−1 7→ α−1αα−1α = α−1α. The ‘fundamental inverse
semigroup’ is then given by the presentation

π = 〈β, γ, δ, t |β2 = β, γ2 = γ, δ2 = δ, β = δ, t−1γt = δ, tt−1 = γ〉

which reduces to 〈t |〉 with γ = tt−1, β = t−1t .
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... now the bad news

The standard graph on π is then

ta td a d t−1a//tx ooy //x oot−1y

Notice that we cannot recover the original action from this as t2

does not act on a. However, the stabilisers are Sa =
{tt−1, t−1t , tt−1t−1t},Sd = {t−1t},Sx = {t−1t},Sy = {tt−1} and
the graph of inverse semigroups is isomorphic to the previous
one.
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Ordered Graphs

A Yamamura (2004)

X a graph, E a semilattice
For each e ∈ E there is a unique connected component Xe
of X and X =

⋃̇
Xe

for each f ≤ e, graph morphism ρe
f : Xe → Xf satisfying

1 ρe
e = 1Xe

2 ρd
f = ρe

f ◦ ρd
e , f ≤ e ≤ d .

v1, v2 ∈ VX define v1 ≤ v2 if there exists f ≤ e with
v1 ∈ V (Xf ), v2 ∈ V (Xe) and v1 = ρe

f (v2) - similarly for edges.
This defines an ordering on the graph.

Schützenberger graphs are ordered ....
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Ordered Graphs

S = {α, α−1, α2, α−2, αα−1, α−1α, α2α−2} and
E(S) = {αα−1, α−1α, α2α−2}.
Let T = {α}. Then the Schützenberger graph, Γ = Γ(S,T ), of S
with respect to T is

α α2
α−2α−1α

α−1αα−1 α2α−2

��α ??α �� α

oo
α

��α

Γαα−1 Γα−1α Γα2α−2

if f ≤ e then ρe
f : Γe → Γf , x 7→ fx In this case

α2α−2 ≤ αα−1, α−1α.
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Actions on Ordered Graphs

S and inverse monoid and E = E(S), X a graph ordered
by E
[Xe] = order ideal generated by Xe
[Xe] = {x ∈ X : x ≤ y , y ∈ Xe}
Te,f = set of all graph isomorphisms [Xe]→ [Xf ]

TX =
⋃

Te,f ⊆ IX and an action of S on X is given by a
homomorphism θ : S → TX

θs : [Xs−1s]→ [Xss−1 ], sXe = Xses−1 if e ≤ s−1s plus a few
other axioms

Under certain conditions Yamamura has shown that similar
results from the Bass-Serre theory of groups carry over to
inverse monoids acting on ordered forests.
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