Inverse semigroups acting on graphs and trees

Jim Renshaw

May 17, 2011

Outline

(9) Background

- The group case - taken from "Groups acting on Graphs" by Warren Dicks \& Martin Dunwoody (available in all good bookshops ...)
- Inverse semigroups
(2) Inverse acts
- ω-cosets
- S-graphs
(3) Graphs of Inverse semigroups

4 Ordered Graphs

G-sets

Let X be a G-set.

- The G-stabilizer of $x \in X$ is the set of elements of G that 'fix' x, i.e.

$$
G_{x}=\{g \in G: g x=x\}
$$

G_{x} is a subgroup of G $g \in G, G_{g x} \simeq g G_{x} g^{-1}$

- G is said the act freely on X if $G_{x}=\{1\}$ for all $x \in X$
- The G-orbit of x is the set $G x=\{g x: g \in G\}$ which is a G-subset of X
- The quotient set for the G-set X is the set of G-orbits, $G \backslash X=\{G x: x \in X\}$ which clearly has a natural map $X \rightarrow G \backslash X, x \mapsto G x$.
- A G-transversal in X is a subset Y of X which contains exactly one element of each G-orbit of X. Hence the composite $Y \subseteq X \rightarrow G \backslash X$ is a bijection.

G-sets

A G-graph (X, V, E, ι, τ) is a non-empty G-set X with disjoint non-empty G-subsets V and E such that

$$
X=V \dot{\cup} E
$$

and two G-maps $\iota, \tau: E \rightarrow V$.
Pictorially we have,

The quotient graph, $G \backslash X$, is the graph

$$
(G \backslash X, G \backslash V, G \backslash E, \bar{\iota}, \bar{\tau})
$$

where

$$
\bar{\iota}(G e)=G \iota e, \bar{\tau}(G e)=G \tau e
$$

for all $G e \in G \backslash E$.

G-sets

If $G \backslash X$ is connected then it can be shown that there exist subsets

$$
Y_{0} \subseteq Y \subseteq X
$$

such that Y is a G-transversal in X, Y_{0} is a subtree of X with $V Y_{0}=V Y$ and for each $e \in E Y, \iota(e) \in V Y$.
In this case, Y is called a fundamental transversal in X.

Cayley Graphs

The Cayley graph of G with respect to a subset T of G is the $G-$ graph, $X(G, T)$, with vertex set $V=G$, edge set $E=G \times T$ and incidence function $\iota(g, t)=g, \tau(g, t)=g t$ for all $(g, t) \in E$. For example, consider the cyclic group $C_{4}=\left\langle s: s^{4}\right\rangle$ and $T=\{s\}$ then the Cayley graph can be represented as

where $e=(1, s) \in G \times T$.

Cayley Graphs

The quotient graph is

and a corresponding fundamental G-transversal is

Graphs of Groups

A graph of groups $(G(-), Y)$, is a connected graph

$$
(Y, V, E, \bar{\iota}, \bar{\tau})
$$

together with a function $G(-)$ which assigns to each $v \in V$ a group $G(v)$ and to each edge $e \in E$ a subgroup

$$
G(e) \subseteq G(\bar{\iota} e)
$$

and a group monomorphism

$$
t_{e}: G(e) \rightarrow G(\bar{\tau} e)
$$

Graph of Groups - Standard example

- G-graph X such that $G \backslash X$ is connected
- fundamental transversal Y with subtree Y_{0}

For each edge e in $E Y$, there are unique vertices
$\bar{\iota} e \in G_{\iota} e, \bar{\tau} e \in G_{\tau} e$ in $V Y$. In fact $\bar{\iota} e=\iota e$.
$\bar{\iota}, \bar{\tau}: E Y \rightarrow V Y$ make Y into a graph (isomorphic to $G \backslash X$)
For each e in $E Y, \tau e$ and $\bar{\tau} e$ belong to the same G-orbit and so there exists t_{e} in G such that

$$
t_{e} \bar{\tau} e=\tau e
$$

if $e \in Y_{0}$ then $\bar{\tau} e=\tau e$ and we take $t_{e}=1$.

$$
G_{\tau e}=t_{e} G_{\bar{\tau} e} t_{e}^{-1}
$$

$G_{e} \subseteq G_{\iota e}, G_{\tau e}$ and so there is an embedding

$$
G_{e} \rightarrow G_{\bar{\tau} e}
$$

given by $g \mapsto t_{e}^{-1} g t_{e}$.

Graph of Groups - Standard example

The quotient graph is

with fundamental G-transversal

$\iota(e)=1, \tau(e)=s, \bar{\tau}(e)=1, G_{1}=\{1\}, G_{s}=\{1\}$

The Fundamental Group

The fundamental group $\pi\left(G(-), Y, Y_{0}\right)$ is the group with generating set

$$
\left\{t_{e}: e \in E\right\} \cup \bigcup_{v \in V} G(v)
$$

and relations : the relations for $G(v)$, for each $v \in V Y$;

$$
\begin{gathered}
t_{e}^{-1} g t_{e}=t_{e}(g) \text { for all } e \text { in } E Y \backslash E Y_{0} \\
\qquad t_{e}=1 \text { for all } e \in E Y_{0}
\end{gathered}
$$

The Fundamental Group

Given $G=\pi\left(G(-), Y, Y_{0}\right)$, we construct a standard G-graph as follows:
Let T be the G-set generated by Y and relations

$$
g y=y, \text { for each } y \in Y, g \in G(y)
$$

Then T has G-subsets $V T=G V$ and $E T=G E$.
Define $\iota, \tau: E T \rightarrow V T$ by

$$
\iota(g e)=g \bar{\iota} e, \tau(g e)=g t_{e} \bar{\tau} e
$$

Then T is a G-graph with fundamental transversal Y.

The Fundamental Group

The graph of groups associated to this G-graph is isomorphic to the original graph of groups.

Conversely, given a group, G, acting on a tree we can form the graph of groups and the fundamental group, π, is then isomorphic to G and the standard graph is isomorphic to the original G-tree.

G-sets

The two classic examples of fundamental groups arise from the following two graphs of groups:

and

In the former case, the fundamental group is the amalgamated free product $A{ }_{c} B$ while in the later case it is the HNN-extension $A{ }_{c} t$.

Inverse semigroup actions

Throughout, S will denote an inverse semigroup. By a (left) S-act, X, we mean an (partial) action of S on the set X such that $(s t) x$ exists if and only if $s(t x)$ exists and then

$$
(s t) x=s(t x)
$$

In addition, we require that whenever $s x=s y$ then $x=y$.
Right S-acts are defined dually and bi-acts can be defined in a fairly obvious way.

Example

Let S be an inverse semigroup and let $s \in S$. Define $s \cdot x=s x$ for $x \in\left\{s^{-1} s S\right\}$. This is the act induced by the Preston-Wagner representation of S.

Inverse semigroup actions

We denote by $D_{s}=\{x \in X: s x \in X\}$ the domain of the element s.

Lemma

If $s \in S, e \in E(S), x, y \in X$ then
(1) If $s x=y$ then $x=s^{-1} y$;
(2) if $x \in D_{s}$ then $s^{-1} s x=x$;
(3) if $x \in D_{e}$ then $e x=x$.

Define $D^{x}=\left\{s \in S: x \in D_{s}\right\}$ the domain of the element x. x is said to be effective if $D^{x} \neq \varnothing$.
X is transitive if for all $x, y \in X$, there exists $s \in S, y=s x$.

Stabilisers and ω-cosets

For an inverse semigroup S define the natural partial ordering \leq on S by

$$
a \leq b \text { if and only if } a=e b \text { for some } e \in E(S)
$$

Let H be a subset of an inverse semigroup S. Denote by $H \omega$ the set

$$
H \omega=\{s \in S: s \geq h, \text { for some } h \in H\} .
$$

This is called the closure of H and we say that H is closed if $H \omega=H$.

If H is an inverse subsemigroup of S then the sets $(s H) \omega$, for $s \in D_{H}$, are called the left ω-cosets of H in S. The set of all left ω-cosets is denoted by S / H.

Stabilisers and ω-cosets

As before define the stabiliser of $x \in X$ as

$$
S_{x}=\{s \in S: s x=x\}
$$

Theorem

For all $x \in X, S_{x}$ is either empty or a closed inverse subsemigroup of S.

If H is a closed inverse subsemigroup of an inverse semigroup S then S / H is a left S-act with action given by $s \cdot X=(s X) \omega$ whenever $X, s X \in S / H$. Moreover, it is easy to establish that $S_{H}=H$.

Stabilisers and ω-cosets

If H and K are two closed inverse subsemigroups of S then we say that H and K are conjugate if $S / H \cong S / K$ (as S-acts).

Theorem

Let H and K be closed inverse subsemigroups of an inverse semigroup S. Then H and K are conjugate if and only if there is an element $s \in S$ such that

$$
\left(s^{-1} H s\right) \omega=K \text { and }\left(s K s^{-1}\right) \omega=H .
$$

Stabilisers and ω-cosets

If $s s^{-1} \in H$ then $s^{-1} H s$ is an inverse subsemigroup of H.

Theorem

Let S be an inverse semigroup, $s \in S$ and suppose that H is a closed inverse subsemigroup with $s s^{-1} \in H$. Then there exists an embedding $\phi^{\prime}: H \rightarrow s^{-1} H s$ if and only if s^{-1} is the identity of H.

Notice that $s s^{-1}$ is the identity of H if and only if $H \subseteq s S s^{-1}$, if and only if $e=s s^{-1} \in H \subseteq e S e$.

Stabilisers and ω-cosets

Theorem

Let S be an inverse semigroup and X a left S-act. Let $s \in S$ and $x \in D_{s}$. Then $s S_{x} s^{-1}$ is an inverse subsemigroup of S.

Theorem

Let S be an inverse semigroup and X an $S-$ act. Let $s \in S$ and $x \in D_{s}$. Then S_{x} and $S_{s x}$ are conjugate.

graded actions

Let X be a left S-act. Say that X is graded if there exits a function $p: X \rightarrow E(S)$ such that
(1) for all $e \in E(S), D_{e}=P^{-1}([e])$;
(2) for $x \in X, t \in D^{x}$ if $t^{-1} t=p(x)$ then $t t^{-1}=p(t x)$.

Theorem

Let X be a left S-act. Then X is graded if and only if X is effective and for each $x \in X, S_{x}$ contains a minimum idempotent.

In fact it turns out that condition (2) is unnecessary.

S-graphs

If X is a S-biact, the (left) Schützenberger graph of X with respect to a subset T of S, is denoted $\Gamma=\Gamma(X, T)$, and is the (left) S-graph with vertex set $V=X$, edge set
$E=\{(x, t) \in X \times T: x t$ exists and $x t \neq x\}$ and incidence functions $\iota(x, t)=x, \tau(x, t)=x t$ for all $(x, t) \in E$. The action is that induced by the left action of S on X.

$$
x \rightarrow t^{t} x t
$$

In particular, we are interested in the case $X=s S_{s}$.

Theorem

Let S be an inverse semigroup with generating set T. Then S is bisimple if and only if $S \backslash \Gamma=S \backslash \Gamma(S, T)$ is a connected graph.

S-graphs

For example, let S be the inverse subsemigroup of $\mathcal{I}_{\{1,2,3,4,5\}}$ generated by

$$
\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 5
\end{array}\right) .
$$

$\boldsymbol{S}=\left\{\alpha, \alpha^{-1}, \alpha^{2}, \alpha^{-2}, \alpha \alpha^{-1}, \alpha^{-1} \alpha, \alpha^{2} \alpha^{-2}\right\}$ and $E(S)=\left\{\alpha \alpha^{-1}, \alpha^{-1} \alpha, \alpha^{2} \alpha^{-2}\right\}$.
Let $T=\{\alpha\}$. Then the Schützenberger graph, $\Gamma=\Gamma(S, T)$, of S with respect to T is

$$
\alpha \alpha^{-1}
$$

S-graphs

The action of S (induced by the Preston-Wagner representation) on the graph is as follows

Also, we can calculate the orbits of Γ. The edge orbits are

$$
S e=\left\{e, \alpha^{-1} e\right\}, S f=\left\{f, \alpha f, \alpha^{-1} f\right\}
$$

while the vertex orbits are

$$
\boldsymbol{S} \cdot \alpha=\left\{\alpha, \alpha^{-1} \alpha\right\}, \boldsymbol{S} \cdot \alpha^{-1}=\left\{\alpha^{-1}, \alpha \alpha^{-1}\right\}
$$

and

$$
S \cdot \alpha^{2}=\left\{\alpha^{2}, \alpha^{-2}, \alpha^{2} \alpha^{-2}\right\} .
$$

S-graphs

The quotient graph $S \backslash \Gamma$, then looks like

First the good news

Let S be the free inverse semigroup on one generators $\{x\}$. Let $V=\{a, b, c\}$ and define an action on V from the representation $S \rightarrow \mathcal{I}_{V}$ generated by $x \rightarrow \rho_{x}$ where $\rho_{x}=\left(\begin{array}{ll}a & c \\ b & a\end{array}\right)$. Define an S-graph G, as follows

and note that the quotient graph, $S \backslash G$ is

First the good news

with a fundamental transversal Y

To construct the associated graph of inverse semigroups, notice that $\iota e=a, \tau e=b, \bar{\tau} e=a$,
$S_{e}=\left\{x x^{-1}\right\}, S_{\iota e}=\left\{x^{-1} x, x x^{-1}, x x^{-1} x^{-1} x\right\}=S_{\bar{\tau} e}$, $S_{\tau e}=\left\{x^{2} x^{-2}, x x^{-1}\right\}$ and that $x x^{-1}$ is the identity of $S_{\tau e}$.

First the good news

Hence the graph of inverse semigroups is given by

and there is an embedding $\left\{x x^{-1}\right\} \rightarrow S_{\iota e}$ given by $x x^{-1} \mapsto x^{-1}\left(x x^{-1}\right) x=x^{-1} x$.

First the good news

Let $(S(-), Y)$ be a graph of inverse semigroups in which for each $e \in E Y, S(e)$ is a monoid. Choose a spanning subtree Y_{0} of Y. It follows that $V Y_{0}=V Y$. The 'fundamental inverse semigroup' $\pi\left(S(-), Y, Y_{0}\right)$ is the inverse semigroup defined by
(1) The generating set is $\left\{t_{e}: e \in E Y\right\} \cup \bigcup_{v \in V Y} S(v)$.
(2) The relations are
(a) the relations for $S(v)$, for each $v \in V Y$;
(b) $t_{e}^{-1} s t_{e}=t_{e}(s)$ for all e in $E Y, s \in S(e) \subseteq S(\bar{\tau} e)$;
(c) $t_{e} t_{e}^{-1}$ is the identity in $S(e)$ for all e in $E Y$;
(d) $t_{e}=t_{e}^{2}$ for all e in $E Y_{0}$.

First the good news

So in our example that equates to

$$
\begin{aligned}
\pi & =\ln v\left\langle x, y, z, t \mid x^{2}=x, y^{2}=y, z=y x, t^{-1} y t=x, t t^{-1}=y\right\rangle \\
& =\operatorname{In} v\langle t\rangle
\end{aligned}
$$

... now the bad news

Consider the previous example where S be the inverse subsemigroup of $\mathcal{I}_{\{1,2,3,4,5\}}$ generated by

$$
\alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 1 & 5
\end{array}\right) .
$$

Then $S=\left\langle\alpha \mid \alpha \alpha^{-2}=\alpha^{2}\right\rangle$ and that if we put $V=\{a, b, c, d, e\}$ then the representation $S \rightarrow \mathcal{I}_{V}$ given by
$\alpha \mapsto \rho_{\alpha}=\left(\begin{array}{llll}a & b & c & d \\ b & c & a & e\end{array}\right)$ generates a S-action on V.
Consider the S-tree $T=(S, V, E)$ given by

... now the bad news

The quotient graph is

with an S-transversal Y

The stabilisers are given by $S_{a}=\left\{\alpha \alpha^{-1}, \alpha^{-1} \alpha, \alpha^{2} \alpha^{-2}\right\}, S_{d}=$ $\left\{\alpha^{-1} \alpha\right\}=S_{x}, S_{e}=\left\{\alpha \alpha^{-1}\right\}=S_{y}$.

... now the bad news

The graph of inverse semigroups is

with connecting monomorphism $S_{y} \rightarrow S_{d}$ given by $\alpha \alpha^{-1} \mapsto \alpha^{-1} \alpha \alpha^{-1} \alpha=\alpha^{-1} \alpha$. The 'fundamental inverse semigroup' is then given by the presentation

$$
\pi=\left\langle\beta, \gamma, \delta, t \mid \beta^{2}=\beta, \gamma^{2}=\gamma, \delta^{2}=\delta, \beta=\delta, t^{-1} \gamma t=\delta, t t^{-1}=\gamma\right\rangle
$$

which reduces to $\langle t \mid\rangle$ with $\gamma=t t^{-1}, \beta=t^{-1} t$.

... now the bad news

The standard graph on π is then

Notice that we cannot recover the original action from this as t^{2} does not act on a. However, the stabilisers are $S_{a}=$ $\left\{t t^{-1}, t^{-1} t, t t^{-1} t^{-1} t\right\}, S_{d}=\left\{t^{-1} t\right\}, S_{x}=\left\{t^{-1} t\right\}, S_{y}=\left\{t t^{-1}\right\}$ and the graph of inverse semigroups is isomorphic to the previous one.

Ordered Graphs

A Yamamura (2004)

- X a graph, E a semilattice
- For each $e \in E$ there is a unique connected component X_{e} of X and $X=\dot{U} X_{e}$
- for each $f \leq e$, graph morphism $\rho_{f}^{e}: X_{e} \rightarrow X_{f}$ satisfying
(1) $\rho_{e}^{e}=1 \chi_{0}$
(2) $\rho_{f}^{d}=\rho_{f}^{e} \circ \rho_{e}^{d}, f \leq e \leq d$.
$v_{1}, v_{2} \in V X$ define $v_{1} \leq v_{2}$ if there exists $f \leq e$ with
$v_{1} \in V\left(X_{f}\right), v_{2} \in V\left(X_{e}\right)$ and $v_{1}=\rho_{f}^{e}\left(v_{2}\right)$ - similarly for edges.
This defines an ordering on the graph.
Schützenberger graphs are ordered

Ordered Graphs

$S=\left\{\alpha, \alpha^{-1}, \alpha^{2}, \alpha^{-2}, \alpha \alpha^{-1}, \alpha^{-1} \alpha, \alpha^{2} \alpha^{-2}\right\}$ and
$E(S)=\left\{\alpha \alpha^{-1}, \alpha^{-1} \alpha, \alpha^{2} \alpha^{-2}\right\}$.
Let $T=\{\alpha\}$. Then the Schützenberger graph, $\Gamma=\Gamma(S, T)$, of S with respect to T is

$$
\Gamma_{\alpha \alpha^{-1}} \quad \Gamma_{\alpha^{-1} \alpha}
$$

if $f \leq e$ then $\rho_{f}^{e}: \Gamma_{e} \rightarrow \Gamma_{f}, \quad x \mapsto f x \ln$ this case $\alpha^{2} \alpha^{-2} \leq \alpha \alpha^{-1}, \alpha^{-1} \alpha$.

Actions on Ordered Graphs

- S and inverse monoid and $E=E(S), X$ a graph ordered by E
- $\left[X_{e}\right]=$ order ideal generated by X_{e} $\left[X_{e}\right]=\left\{x \in X: x \leq y, y \in X_{e}\right\}$
- $T_{e, f}=$ set of all graph isomorphisms $\left[X_{e}\right] \rightarrow\left[X_{f}\right]$
- $T_{X}=\bigcup T_{e, f} \subseteq \mathcal{I}_{X}$ and an action of S on X is given by a homomorphism $\theta: S \rightarrow T_{X}$
- $\theta_{s}:\left[X_{s^{-1} s}\right] \rightarrow\left[X_{s s^{-1}}\right], s X_{e}=X_{\text {ses }}{ }^{-1}$ if $e \leq s^{-1} s$ plus a few other axioms

Under certain conditions Yamamura has shown that similar results from the Bass-Serre theory of groups carry over to inverse monoids acting on ordered forests.

