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Group extensions

An extension of groups is a diagram

N G H
k e

where k is the kernel of e and e exhibits H as the quotient G/N.

Examples include

Z/2Z Z/4Z Z/2Z
×2

and

Z/3Z S3 Z/2Zσ
.

We would like a classification all the distinct extensions for fixed choices

of N and H. Such a classification was given by Otto Schreier in 1926.

2



Monoid extensions

An extension of monoids is a diagram

N G H
k e

where N is isomorphic to e−1(1) and H is isomorphic to G/EN where

EN is the congruence generated by k(n) ∼ 1 for n ∈ N.

General extensions of monoids are not well-behaved and so additional

restrictions are usually imposed.

A Schreier extension is a monoid extension such that for every h ∈ H

there is a uh ∈ e−1({h}) such that for all g ∈ e−1({h}) there is a

unique n ∈ N with k(n)uh = g.

Note that every group extension is Schreier: for any choice of uh the

unique n is given by k(n) = gu−1
h .
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Classifying Schreier extensions

The classification of group extensions with specified N and H can be

extended to Schreier extensions of monoids.

They can be specified by (equivalence classes of) pairs (α,χ), where

α : H×N → N and χ : H×H → N are functions satisfying

• α(h, 1) = 1,

• α(h,n1n2) = α(h,n1)α(h,n2),

• α(1,n) = n,

• χ(h1,h2)α(h1h2,n) = α(h1,α(h2,n))χ(h1,h2),

• χ(1,h) = 1 = χ(h, 1),

• χ(x,y)χ(xy, z) = α(x,χ(y, z))χ(x,yz).

This data appears to be quite complicated and difficult to interpret. In

this talk I hope to show how it arises naturally via category theory.
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Background: Categories

A category C consists of a collection of objects C0 and, for each pair of

objects (A,B), a set C(A,B) of morphisms from A to B.

If f ∈ C(X, Y) we write f : X → Y and say X is the domain of f and Y is

the codomain of f.

If f : X → Y and g : Y → Z then we can form the composite morphism

gf : X → Z. Moreover, composition is associative. Finally, for each

object X there is an identity morphism 1X : X → X.

A central example is the category Set whose objects are sets and whose

morphisms are functions. Another important example is Mon — the

category of monoids and monoid homomorphisms.

Every monoid M gives a category BM with a single object ∗ and with

BM(∗, ∗) = M. Composition is given by the monoid multiplication.
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Background: Functors

A functor F : C → D between categories consists of a function

F0 : C0 → D0 between the collections of objects and, for each X, Y ∈ C0,

a function FX,Y : C(X, Y) → D(F0(X), F0(Y)).

(We will write F for both F0 and FX,Y).

These must satisfy F(1X) = 1F(X) and F(fg) = F(f)F(g).

For example, there is a functor U : Mon → Set taking the underlying set

of each monoid (and the underlying function of the homomorphisms).

We obtain a category Cat whose objects are (small) categories and

whose morphisms are functors.

A monoid homomorphism f : M → N gives a functor Bf : BM → BN

and all functors between one-object categories are of this form.

Note that B itself is a functor from Mon to Cat.
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Background: Natural transformations

The set of functors Cat(C,D) between categories is not just a set, but

itself has the structure of a category. The morphisms between functors

are called natural transformations.

Let F,G : C → D. A natural transformation τ : F → G is given by a

family (τX)X∈C0 of morphisms τX : F(X) → G(X) in D indexed by C0.

For each f : X → Y in C the following square must commute.

F(X) F(Y)

G(X) G(Y)

F(f)

τX τY

G(f)
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Natural transformations between monoid homomorphisms

If monoids correspond to one-object categories and monoid

homomorphisms correspond to functors between them, what are natural

transformations between these functors?

Suppose f,g : M → N. Then a natural transformation from Bf to Bg

is given by a single morphism t ∈ N. Commutativity of the relevant

square means that for all m ∈ M, we have t f(m) = g(m)t.
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2-categories

Natural transformations give Cat the structure of a 2-category. We will

write Cat for the 2-category of categories, functors and natural

transformations.

A 2-category C consists of a collection of objects C0 and, for each pair

of objects (A,B), a category C(A,B), whose objects are 1-morphisms

from A to B and whose morphisms are 2-morphisms between these. We

omit the precise axioms.

Any (1-)category can be viewed as a 2-category with only identity

2-morphisms.

If we add the 2-morphisms to the category Mon from the previous slide

we obtain a 2-category Mon — the 2-category of one-object categories.
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Maps between 2-categories

There are a few notions of map between 2-categories. For simplicity, we

will restrict our attention to the case where the domain is a 1-category.

The most obvious kind of map is given by strict 2-functors. A strict

2-functor F : C → D (where C is 1-category) is simply a functor from C

to D ignoring the 2-morphisms. So it consists of a map F0 : C0 → D0

and, for each X, Y ∈ C0, a function FX,Y : C(X, Y) → D(F0(X), F0(Y))0.

These must satisfy F(1X) = 1F(X) and F(fg) = F(f)F(g).

In category theory, we usually only care about things holding up to

isomorphism. This suggests a generalisation of 2-functors called

pseudofunctors where the equalities above are replaced with (specified)

invertible 2-morphisms. (These must then satisfy additional ‘coherence

conditions’ in order to be well-behaved. We omit the details.)
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Oplax functors

In fact, we will want to generalise things even further by omitting the

condition that the 2-morphisms are invertible.

An oplax functor L : C → D consists of

• a function L : C0 → D0 between the collections of objects,

• a function LX,Y : C(X, Y) → D(L(X),L(Y))0 for each pair of

objects X, Y ∈ C0,

• a 2-morphism ιLX : L(1X) → 1L(X) in D for each object X ∈ C0,

called the unitors of L,

• and a 2-morphism γL
f,g : L(f ◦ g) → L(f) ◦ L(g) in D for each pair

of composable 1-morphisms (f,g) in C, called the compositors.

These must satisfy a number of coherence conditions, which we omit.

We say an oplax functor is normal if its unitors are identity morphisms.
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The (generalised) Grothendieck construction

An indexed family (Ai)i∈I is intuitively a class function A : I → Set.

But this can equivalently be viewed as a map a : X → I where the set

corresponding to i ∈ I is given by a−1({i}). Here X =
⊔

i∈IAi.

Now suppose D is a category and L : D → Cat is a normal oplax

functor. Analogously, we can construct a functor FL :
∫
L → D.

The objects of
∫
L are of the form (D, D̄) where D is an object of D

and D̄ is an object of L(D).

Morphisms from (D, D̄) to (E, Ē) in
∫
L are given by pairs (f, f̄) where

f : D → E and f̄ : L(f)(D̄) → Ē.

The functor FL :
∫
L → D simply projects onto the first component of

the pairs.

12



The (generalised) Grothendieck construction: composition

What is the composite of (f, f̄) : (D, D̄) → (E, Ē) and

(g, ḡ) : (C, C̄) → (D, D̄) in
∫
L?

The first component of the composite is just fg. For the second

component, we have f̄ : L(f)(D̄) → Ē and ḡ : L(g)(C̄) → D̄ and want a

morphism fg : L(fg)(C̄) → Ē.

Applying L(f) to ḡ we have L(f)(ḡ) : L(f)L(g)(C̄) → L(f)(D̄). Then

composing with f̄ we get f̄ ◦ L(f)(ḡ) : L(f)L(g)(C̄) → Ē.

The domain here is L(f)L(g)(C̄) instead of L(fg)(C̄). But comparing

these is precisely the job of the compositor γL
f,g.

Thus, we set fg = f̄ ◦ L(f)(ḡ) ◦ (γL
f,g)C̄.

Finally, the identity on (D, D̄) is (idD, idD̄).
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Pre-opfibrations

Morphisms in
∫
L of the form (f, idL(f)(D̄)) : (D, D̄) → (E,L(f)(D̄))

play a special role in that every morphism (f, f̄) : (D, D̄) → (E, Ē)

factors as (idE, f̄) ◦ (f, idL(f)(D̄)).

Definition

A morphism u : Ā → B̄ in C is pre-opcartesian with respect to a functor

F : C → D if for any ḡ : Ā → B̄ ′ with F(ḡ) = F(u), there exists a unique

map b : B̄ → B̄ ′ with F(b) = idF(B̄) such that bu = ḡ.

We say F is a pre-opfibration if for every morphism f : F(Ā) → B there

exists a pre-opcartesian lifting uf : Ā → B̄ with F(uf) = f.

So FL is a pre-opfibration.
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Pre-opfibration diagram

Ā B̄

B̄ ′
ḡ

uf

b

F(Ā) B
f

F
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Pre-opfibrations and Schreier extensions

Let e : G → H be a monoid homomorphism. What does it mean for Be

to be a pre-opfibration?

This means that for every h ∈ H there is a uh ∈ e−1({h}) such that for

all g ∈ e−1({h}) there is a unique n ∈ e−1({1}) with nuh = g.

In particular, e is surjective and setting N = e−1(1) we obtain an

extension N G H
k e

. The above condition is precisely the

requirement this is a Schreier extension of monoids!
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Correspondence between oplax functors and pre-opfibrations

Now suppose we have a pre-opfibration F : C → D.

For each object D in D we consider its ‘fibre’ category. This is the

subcategory of C consisting of the objects C for which F(C) = D and

the morphisms that are mapped by F to the identity on D.

This forms the object part of a normal oplax functor LF : D → Cat.

These two constructions are inverses (up to isomorphism).

Indeed, there is an equivalence of 2-categories between the normal oplax

functors from D to Cat and the pre-opfibrations into D.
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Classifying Schreier extensions with oplax functors

We know that pre-opfibrations into BH correspond to normal oplax

functors from BH into Cat. Let’s apply this to Schreier extensions.

Of course, for monoid extensions the fibre category Le(∗) is the
one-object category BN. Thus, Schreier extensions with cokernel H

correspond to normal oplax functors from BH into Mon. Moreover,

such a normal oplax functor sends the single object of BH to the kernel

N of the extension.

Now we can try to unravel the definition of a normal oplax functor to

obtain an explicit characterisation of Schreier extensions.
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Relation to the usual characterisation: the data

A normal oplax functor L : BH → Mon consists of

• a function L : {∗} → Mon0 between the classes of objects,

• a function L∗,∗ : H → Mon(L(∗),L(∗))0,
• a 2-morphism ιL∗ : L(1∗) → 1L(∗) which is an identity in Mon,

• a 2-morphism γL
h,h ′ : L(hh ′) → L(h) ◦ L(h ′) in Mon for each pair

of elements h,h ′ ∈ H.
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Relation to the usual characterisation: the data

A normal oplax functor L : BH → Mon consists of

• a monoid N,

• a function from H to objects of Mon(N,N),

• a requirement that α(1,−) = idN,

• a monoid 2-morphism from α(hh ′,−) to α(h,−) ◦ α(h ′,−) for

each pair of elements h,h ′ ∈ H.
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Relation to the usual characterisation: the data

A normal oplax functor L : BH → Mon consists of

• a monoid N,

• a map α : H×N → N with α(h, 1) = 1 and

α(h,nn ′) = α(h,n)α(h,n ′),

• a requirement that α(1,n) = n,

• a map χ : H×H → N such that

χ(h,h ′)α(hh ′,n) = α(h,α(h ′,n))χ(h,h ′).

These must then satisfy the coherence conditions. We omit the details,

but these lead to the additional requirements:

• χ(1,h) = 1 = χ(h, 1),

• χ(x,y)χ(xy, z) = α(x,χ(y, z))χ(x,yz).

We have recovered the usual data for specifying Schreier extensions.
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Relation to the usual characterisation: constructing extensions

Given such a pair (α,χ), we can now apply the Grothendieck

construction to construct the associated extension.

For a normal oplax functor L : BH → Mon, the category
∫
L will have a

single object and a morphism (h,n) for each h ∈ H and

n ∈ Hom(L(h)(∗), ∗) = N.

Multiplication is given by

(h,n) · (h ′,n ′) = (hh ′,n · L(h)(n ′) · (γL
h,h ′)∗).

In terms terms of our data,

(h,n) · (h ′,n ′) = (hh ′,nα(h,n ′)χ(h,h ′)).

Then the cokernel sends (h,n) to h and the kernel sends n to (1,n).

This accords with the usual construction.
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Further applications

Variants of this approach can be used to give a number of further

characterisations related to extensions of monoids, including

• weakly Schreier extensions,

• (weakly) Schreier split extensions,

• morphisms of extensions or split extensions.

It seems likely that this approach could also be used to classify other

classes of monoid extensions.
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