Schreier extensions and the Grothendieck construction

Graham Manuell University of Coimbra

2 March 2022

Group extensions

An extension of groups is a diagram

$$V \xrightarrow{k} G \xrightarrow{e} H$$

where k is the kernel of e and e exhibits H as the quotient G/N. Examples include

$$\mathbb{Z}/2\mathbb{Z} \xrightarrow{\times 2} \mathbb{Z}/4\mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z}$$

and

$$\mathbb{Z}/3\mathbb{Z} \longrightarrow S_3 \stackrel{\sigma}{\longrightarrow} \mathbb{Z}/2\mathbb{Z}.$$

We would like a classification all the distinct extensions for fixed choices of N and H. Such a classification was given by Otto Schreier in 1926.

An extension of monoids is a diagram

$$\mathsf{N} \stackrel{k}{\longrightarrow} \mathsf{G} \stackrel{e}{\longrightarrow} \mathsf{H}$$

where N is isomorphic to $e^{-1}(1)$ and H is isomorphic to G/E_N where E_N is the congruence generated by $k(n) \sim 1$ for $n \in N$.

General extensions of monoids are not well-behaved and so additional restrictions are usually imposed.

A Schreier extension is a monoid extension such that for every $h \in H$ there is a $u_h \in e^{-1}(\{h\})$ such that for all $g \in e^{-1}(\{h\})$ there is a unique $n \in N$ with $k(n)u_h = g$.

Note that every group extension is Schreier: for any choice of u_h the unique n is given by $k(n) = gu_h^{-1}$.

Classifying Schreier extensions

The classification of group extensions with specified N and H can be extended to Schreier extensions of monoids.

They can be specified by (equivalence classes of) pairs (α, χ) , where $\alpha: H \times N \to N$ and $\chi: H \times H \to N$ are functions satisfying

- $\alpha(h, 1) = 1$,
- $\alpha(h, n_1n_2) = \alpha(h, n_1)\alpha(h, n_2),$
- $\alpha(1, n) = n$,
- $\chi(h_1, h_2)\alpha(h_1h_2, n) = \alpha(h_1, \alpha(h_2, n))\chi(h_1, h_2),$
- $\chi(1,h) = 1 = \chi(h,1)$,
- $\chi(x, y)\chi(xy, z) = \alpha(x, \chi(y, z))\chi(x, yz).$

This data appears to be quite complicated and difficult to interpret. In this talk I hope to show how it arises naturally via category theory.

Background: Categories

A category \mathcal{C} consists of a collection of *objects* \mathcal{C}_0 and, for each pair of objects (A, B), a set $\mathcal{C}(A, B)$ of *morphisms* from A to B.

If $f \in \mathcal{C}(X, Y)$ we write $f: X \to Y$ and say X is the *domain* of f and Y is the *codomain* of f.

If $f: X \to Y$ and $g: Y \to Z$ then we can form the *composite* morphism $gf: X \to Z$. Moreover, composition is associative. Finally, for each object X there is an *identity morphism* $1_X: X \to X$.

A central example is the category Set whose objects are sets and whose morphisms are functions. Another important example is Mon — the category of monoids and monoid homomorphisms.

Every monoid M gives a category $\mathcal{B}M$ with a single object * and with $\mathcal{B}M(*,*) = M$. Composition is given by the monoid multiplication.

Background: Functors

A functor $F: \mathcal{C} \to \mathcal{D}$ between categories consists of a function $F_0: \mathcal{C}_0 \to \mathcal{D}_0$ between the collections of objects and, for each $X, Y \in \mathcal{C}_0$, a function $F_{X,Y}: \mathcal{C}(X, Y) \to \mathcal{D}(F_0(X), F_0(Y))$. (We will write F for both F_0 and $F_{X,Y}$).

These must satisfy $F(1_X) = 1_{F(X)}$ and F(fg) = F(f)F(g).

For example, there is a functor U: Mon \rightarrow Set taking the underlying set of each monoid (and the underlying function of the homomorphisms). We obtain a category Cat whose objects are (small) categories and whose morphisms are functors.

A monoid homomorphism $f: M \to N$ gives a functor $\mathcal{B}f: \mathcal{B}M \to \mathcal{B}N$ and all functors between one-object categories are of this form.

Note that $\mathcal B$ itself is a functor from Mon to Cat.

Background: Natural transformations

The set of functors $Cat(\mathcal{C}, \mathcal{D})$ between categories is not just a set, but itself has the structure of a category. The morphisms between functors are called natural transformations.

Let F, G: $\mathcal{C} \to \mathcal{D}$. A natural transformation $\tau \colon F \to G$ is given by a family $(\tau_X)_{X \in \mathcal{C}_0}$ of morphisms $\tau_X \colon F(X) \to G(X)$ in \mathcal{D} indexed by \mathcal{C}_0 . For each f: X \to Y in \mathcal{C} the following square must commute.

If monoids correspond to one-object categories and monoid homomorphisms correspond to functors between them, what are natural transformations between these functors?

Suppose f, g: $M \to N$. Then a natural transformation from $\mathcal{B}f$ to $\mathcal{B}g$ is given by a single morphism $t \in N$. Commutativity of the relevant square means that for all $m \in M$, we have t f(m) = g(m)t.

Natural transformations give Cat the structure of a 2-category. We will write Cat for the 2-category of categories, functors and natural transformations.

A 2-category C consists of a collection of objects C_0 and, for each pair of objects (A, B), a category C(A, B), whose objects are 1-morphisms from A to B and whose morphisms are 2-morphisms between these. We omit the precise axioms.

Any (1-)category can be viewed as a 2-category with only identity 2-morphisms.

If we add the 2-morphisms to the category Mon from the previous slide we obtain a 2-category Mon — the 2-category of one-object categories.

There are a few notions of map between 2-categories. For simplicity, we will restrict our attention to the case where the domain is a 1-category.

The most obvious kind of map is given by strict 2-functors. A strict 2-functor F: $\mathcal{C} \to \mathbf{D}$ (where \mathcal{C} is 1-category) is simply a functor from \mathcal{C} to \mathbf{D} ignoring the 2-morphisms. So it consists of a map $F_0: \mathcal{C}_0 \to \mathbf{D}_0$ and, for each $X, Y \in \mathcal{C}_0$, a function $F_{X,Y}: \mathcal{C}(X,Y) \to \mathbf{D}(F_0(X),F_0(Y))_0$.

These must satisfy $F(1_X) = 1_{F(X)}$ and F(fg) = F(f)F(g).

In category theory, we usually only care about things holding up to isomorphism. This suggests a generalisation of 2-functors called pseudofunctors where the equalities above are replaced with (specified) invertible 2-morphisms. (These must then satisfy additional 'coherence conditions' in order to be well-behaved. We omit the details.)

Oplax functors

In fact, we will want to generalise things even further by omitting the condition that the 2-morphisms are invertible.

An oplax functor L: $\ensuremath{\mathbb{C}} \to \mathbf{D}$ consists of

- a function L: ${\mathcal C}_0 \to D_0$ between the collections of objects,
- a function $L_{X,Y}\colon {\mathfrak C}(X,Y)\to {\bf D}(L(X),L(Y))_0$ for each pair of objects $X,Y\in {\mathfrak C}_0,$
- a 2-morphism $\iota^L_X\colon L(1_X)\to 1_{L(X)}$ in D for each object $X\in {\mathfrak C}_0,$ called the unitors of L,
- and a 2-morphism $\gamma_{f,g}^{L}$: $L(f \circ g) \to L(f) \circ L(g)$ in **D** for each pair of composable 1-morphisms (f, g) in \mathcal{C} , called the compositors.

These must satisfy a number of coherence conditions, which we omit. We say an oplax functor is normal if its unitors are identity morphisms. An indexed family $(A_i)_{i \in I}$ is intuitively a class function $A: I \to Set$. But this can equivalently be viewed as a map $a: X \to I$ where the set corresponding to $i \in I$ is given by $a^{-1}(\{i\})$. Here $X = \bigsqcup_{i \in I} A_i$.

Now suppose \mathcal{D} is a category and $L \colon \mathcal{D} \to \mathbf{Cat}$ is a normal oplax functor. Analogously, we can construct a functor $F_L \colon \int L \to \mathcal{D}$.

The objects of $\int L$ are of the form (D,\bar{D}) where D is an object of ${\cal D}$ and \bar{D} is an object of L(D).

Morphisms from (D,\bar{D}) to (E,\bar{E}) in $\int L$ are given by pairs (f,\bar{f}) where $f\colon D\to E$ and $\bar{f}\colon L(f)(\bar{D})\to \bar{E}.$

The functor $F_L\colon \int L\to \mathcal{D}$ simply projects onto the first component of the pairs.

The (generalised) Grothendieck construction: composition

What is the composite of (f, \overline{f}) : $(D, \overline{D}) \rightarrow (E, \overline{E})$ and (g, \overline{g}) : $(C, \overline{C}) \rightarrow (D, \overline{D})$ in $\int L$?

The first component of the composite is just fg. For the second component, we have \overline{f} : $L(f)(\overline{D}) \rightarrow \overline{E}$ and \overline{g} : $L(g)(\overline{C}) \rightarrow \overline{D}$ and want a morphism \overline{fg} : $L(fg)(\overline{C}) \rightarrow \overline{E}$.

Applying L(f) to \bar{g} we have L(f)(\bar{g}): L(f)L(g)(\bar{C}) \rightarrow L(f)(\bar{D}). Then composing with \bar{f} we get $\bar{f} \circ L(f)(\bar{g})$: L(f)L(g)(\bar{C}) $\rightarrow \bar{E}$.

The domain here is $L(f)L(g)(\bar{C})$ instead of $L(fg)(\bar{C})$. But comparing these is precisely the job of the compositor $\gamma_{f,q}^{L}$.

Thus, we set $\overline{fg} = \overline{f} \circ L(f)(\overline{g}) \circ (\gamma_{f,g}^L)_{\overline{C}}$.

Finally, the identity on (D, \overline{D}) is $(id_D, id_{\overline{D}})$.

Morphisms in $\int L$ of the form $(f, id_{L(f)(\overline{D})}): (D, \overline{D}) \to (E, L(f)(\overline{D}))$ play a special role in that every morphism $(f, \overline{f}): (D, \overline{D}) \to (E, \overline{E})$ factors as $(id_E, \overline{f}) \circ (f, id_{L(f)(\overline{D})})$.

Definition

A morphism $\mathfrak{u} \colon \overline{A} \to \overline{B}$ in \mathfrak{C} is pre-opcartesian with respect to a functor $F \colon \mathfrak{C} \to \mathfrak{D}$ if for any $\overline{g} \colon \overline{A} \to \overline{B}'$ with $F(\overline{g}) = F(\mathfrak{u})$, there exists a unique map $b \colon \overline{B} \to \overline{B}'$ with $F(\mathfrak{b}) = \mathsf{id}_{F(\overline{B})}$ such that $\mathfrak{bu} = \overline{g}$.

We say F is a pre-opfibration if for every morphism $f: F(\bar{A}) \to B$ there exists a pre-opcartesian lifting $u_f: \bar{A} \to \bar{B}$ with $F(u_f) = f$.

So F_L is a pre-opfibration.

Pre-opfibration diagram

Let $e\colon G\to H$ be a monoid homomorphism. What does it mean for $\mathcal{B}e$ to be a pre-opfibration?

This means that for every $h \in H$ there is a $u_h \in e^{-1}(\{h\})$ such that for all $g \in e^{-1}(\{h\})$ there is a unique $n \in e^{-1}(\{1\})$ with $nu_h = g$.

In particular, e is surjective and setting $N = e^{-1}(1)$ we obtain an extension $N \xrightarrow{k} G \xrightarrow{e} H$. The above condition is precisely the requirement this is a Schreier extension of monoids!

Now suppose we have a pre-opfibration $F: \mathfrak{C} \to \mathfrak{D}$.

For each object D in \mathcal{D} we consider its 'fibre' category. This is the subcategory of \mathcal{C} consisting of the objects C for which F(C) = D and the morphisms that are mapped by F to the identity on D.

This forms the object part of a normal oplax functor $L_F\colon \mathcal{D}\to \mathbf{Cat}.$

These two constructions are inverses (up to isomorphism).

Indeed, there is an equivalence of 2-categories between the normal oplax functors from \mathcal{D} to Cat and the pre-opfibrations into \mathcal{D} .

We know that pre-opfibrations into $\mathcal{B}H$ correspond to normal oplax functors from $\mathcal{B}H$ into Cat. Let's apply this to Schreier extensions.

Of course, for monoid extensions the fibre category $L_e(*)$ is the one-object category $\mathcal{B}N$. Thus, Schreier extensions with cokernel H correspond to normal oplax functors from $\mathcal{B}H$ into **Mon**. Moreover, such a normal oplax functor sends the single object of $\mathcal{B}H$ to the kernel N of the extension.

Now we can try to unravel the definition of a normal oplax functor to obtain an explicit characterisation of Schreier extensions.

Relation to the usual characterisation: the data

A normal oplax functor $L\colon {\mathfrak B} H\to {\mathbf{Mon}}$ consists of

- a function $L\colon \{*\} \to \mathbf{Mon}_0$ between the classes of objects,
- \bullet a function $L_{*,*} \colon H \to \mathbf{Mon}(L(*), L(*))_0,$
- a 2-morphism $\iota^L_*\colon L(1_*)\to 1_{L(*)}$ which is an identity in Mon,
- a 2-morphism $\gamma_{h,h'}^L$: $L(hh') \to L(h) \circ L(h')$ in Mon for each pair of elements $h, h' \in H$.

Relation to the usual characterisation: the data

A normal oplax functor L: $\mathfrak{B}H \to \mathbf{Mon}$ consists of

- a monoid N,
- a function from H to objects of Mon(N, N),
- a requirement that $\alpha(1, -) = id_N$,
- a monoid 2-morphism from $\alpha(hh', -)$ to $\alpha(h, -) \circ \alpha(h', -)$ for each pair of elements $h, h' \in H$.

Relation to the usual characterisation: the data

A normal oplax functor $L\colon {\mathfrak B} H\to {\mathbf{Mon}}$ consists of

- a monoid N,
- a map α : $H \times N \rightarrow N$ with $\alpha(h, 1) = 1$ and $\alpha(h, nn') = \alpha(h, n)\alpha(h, n')$,
- a requirement that $\alpha(1, n) = n$,

• a map
$$\chi$$
: $H \times H \rightarrow N$ such that
 $\chi(h, h')\alpha(hh', n) = \alpha(h, \alpha(h', n))\chi(h, h').$

These must then satisfy the coherence conditions. We omit the details, but these lead to the additional requirements:

- $\chi(1, h) = 1 = \chi(h, 1)$,
- $\chi(x, y)\chi(xy, z) = \alpha(x, \chi(y, z))\chi(x, yz).$

We have recovered the usual data for specifying Schreier extensions.

Relation to the usual characterisation: constructing extensions

Given such a pair (α, χ) , we can now apply the Grothendieck construction to construct the associated extension.

For a normal oplax functor $L\colon {\mathcal B} H\to {\mathbf{Mon}}$, the category $\int L$ will have a single object and a morphism (h,n) for each $h\in H$ and $n\in {\mathsf{Hom}}(L(h)(*),*)=N.$

$$\begin{split} & \text{Multiplication is given by} \\ & (h,n)\cdot(h',n')=(hh',n\cdot L(h)(n')\cdot(\gamma^L_{h,h'})_*). \end{split}$$

In terms terms of our data,

$$(h, n) \cdot (h', n') = (hh', n\alpha(h, n')\chi(h, h')).$$

Then the cokernel sends (h, n) to h and the kernel sends n to (1, n). This accords with the usual construction. Variants of this approach can be used to give a number of further characterisations related to extensions of monoids, including

- weakly Schreier extensions,
- (weakly) Schreier split extensions,
- morphisms of extensions or split extensions.

It seems likely that this approach could also be used to classify other classes of monoid extensions.