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Group extensions

An extension of groups is a diagram

k

N—— G —»H
where k is the kernel of e and e exhibits H as the quotient G/N.

Examples include

2
7)27 <° 7./47 — 7.)2Z

and
7)37 —— Sy -2 7.)27.

We would like a classification all the distinct extensions for fixed choices
of N and H. Such a classification was given by Otto Schreier in 1926.



Monoid extensions

An extension of monoids is a diagram

k
N<——G——H
where N is isomorphic to e~%(1) and H is isomorphic to G/En where
En is the congruence generated by k(n) ~ 1 for n € N.

General extensions of monoids are not well-behaved and so additional
restrictions are usually imposed.

A Schreier extension is a monoid extension such that for every h € H
there is a uy, € e 1({h}) such that for all g € e 1({h}) there is a
unique n € N with k(n)up = g.

Note that every group extension is Schreier: for any choice of uy, the
unique n is given by k(n) = gu}:l.



Classifying Schreier extensions

The classification of group extensions with specified N and H can be

extended to Schreier extensions of monoids.

They can be specified by (equivalence classes of) pairs («,x), where
a: Hx N — N and x: Hx H — N are functions satisfying

e a(h,1) =1,

e «(h, Tllﬂz) = a(h,n1)a(h,ny),

e x(l,n) =

. X(hlvh2)(x(h1h2vn) = al(hy, a(hz, n))x(h1, h2),
e x(1,h) =1=x(h,1),

o X(x, y)x(xy, z) = a(x, x(y, 2) )x(x, yz).

This data appears to be quite complicated and difficult to interpret. In
this talk | hope to show how it arises naturally via category theory.



Background: Categories

A category C consists of a collection of objects Cy and, for each pair of
objects (A, B), a set C(A, B) of morphisms from A to B.

If f € C(X,Y) we write f: X — Y and say X is the domain of f and Y is
the codomain of f.

If f: X = Y and g: Y — Z then we can form the composite morphism
gf: X — Z. Moreover, composition is associative. Finally, for each
object X there is an identity morphism 1x: X — X.

A central example is the category Set whose objects are sets and whose
morphisms are functions. Another important example is Mon — the
category of monoids and monoid homomorphisms.

Every monoid M gives a category BM with a single object * and with
BM(*, %) = M. Composition is given by the monoid multiplication.



Background: Functors

A functor F: € — D between categories consists of a function

Fo: Co — Do between the collections of objects and, for each X,Y € Gy,
a function Fx y: C(X,Y) — D(Fo(X), Fo(Y)).

(We will write F for both Fg and Fx v).

These must satisfy F(1x) = 1f(x) and F(fg) = F(f)F(g).
For example, there is a functor U: Mon — Set taking the underlying set
of each monoid (and the underlying function of the homomorphisms).

We obtain a category Cat whose objects are (small) categories and
whose morphisms are functors.
A monoid homomorphism f: M — N gives a functor Bf: BM — BN

and all functors between one-object categories are of this form.

Note that B itself is a functor from Mon to Cat.



Background: Natural transformations

The set of functors Cat(C, D) between categories is not just a set, but
itself has the structure of a category. The morphisms between functors
are called natural transformations.

Let F, G: € — D. A natural transformation T: F — G is given by a
family (Tx)xee, of morphisms tx: F(X) = G(X) in D indexed by Co.
For each f: X — Y in C the following square must commute.

F(f)
F(X) F(Y)
TX Ty
G(X) a0 G(Y)



Natural transformations between monoid homomorphisms

If monoids correspond to one-object categories and monoid
homomorphisms correspond to functors between them, what are natural

transformations between these functors?

Suppose f,g: M — N. Then a natural transformation from Bf to Bg
is given by a single morphism t € N. Commutativity of the relevant
square means that for all m € M, we have t f(m) = g(m)t.



Natural transformations give Cat the structure of a 2-category. We will
write Cat for the 2-category of categories, functors and natural

transformations.

A 2-category C consists of a collection of objects Cg and, for each pair
of objects (A, B), a category C(A, B), whose objects are I-morphisms
from A to B and whose morphisms are 2-morphisms between these. We

omit the precise axioms.

Any (1-)category can be viewed as a 2-category with only identity
2-morphisms.

If we add the 2-morphisms to the category Mon from the previous slide
we obtain a 2-category Mon — the 2-category of one-object categories.



Maps between 2-categories

There are a few notions of map between 2-categories. For simplicity, we
will restrict our attention to the case where the domain is a 1-category.

The most obvious kind of map is given by strict 2-functors. A strict
2-functor F: € — D (where € is 1-category) is simply a functor from €
to D ignoring the 2-morphisms. So it consists of a map Fg: Cp — Dy
and, for each X,Y € €y, a function Fx y: C(X,Y) — D(Fo(X), Fo(Y))o.

These must satisfy F(1x) = 1¢(x) and F(fg) = F(f)F(g).

In category theory, we usually only care about things holding up to
isomorphism. This suggests a generalisation of 2-functors called
pseudofunctors where the equalities above are replaced with (specified)
invertible 2-morphisms. (These must then satisfy additional ‘coherence
conditions’ in order to be well-behaved. We omit the details.)
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Oplax functors

In fact, we will want to generalise things even further by omitting the
condition that the 2-morphisms are invertible.

An oplax functor L: € — D consists of

e a function L: Cg — Do between the collections of objects,

e a function Lx y: C(X,Y) — D(L(X), L(Y))o for each pair of
objects X, Y € €y,

e a 2-morphism L>L<: L(1x) — 11 (x) in D for each object X € Co,
called the unitors of L,

e and a 2-morphism ylf-’g: L(fog) — L(f) oL(g) in D for each pair
of composable 1-morphisms (f, g) in €, called the compositors.

These must satisfy a number of coherence conditions, which we omit.
We say an oplax functor is normal if its unitors are identity morphisms.
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The (generalised) Grothendieck construction

An indexed family (Aj)ic1 is intuitively a class function A: I — Set.
But this can equivalently be viewed as a map a: X — I where the set

corresponding to i € I is given by a=!({i}). Here X = Llicr At

Now suppose D is a category and L: D — Cat is a normal oplax
functor. Analogously, we can construct a functor Fr: [L — D.

The objects of [L are of the form (D, D) where D is an object of D
and D is an object of L(D).

Morphisms from (D, D) in [L are given by pairs (f, f) where

to (E, E
f: D — E and f: L(f)(D )—>E

The functor F: [L — D simply projects onto the first component of
the pairs.
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The (generalised) Grothendieck construction: composition

What is the composite of (f,f): (D,D) — (E, E) and

(g.g): (C,C) — (D,D) in [L?

The first component of the composite is just fg. For the second
component, we have f: L(f)(D) — E and §: L(g)(C) — D and want a
morphism fg: L(fg)(C) — E.

Applying L(f) to § we have L(f)(g): L(f)L(g)(C)
composing with f we get fo L(f)(g): L(f)L(g)(C)
The domain here is L(f)L(g)(C) instead of L(fg)(
these is precisely the job of the compositor ylf-’g.

L(f)(D). Then
E.

(@] \J/\L

). But comparing

Thus, we set fg =fo L(f)(g) o (‘Y%g)c-

Finally, the identity on (D, D) is (idp, idg).
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Pre-opfibrations

Morphisms in [L of the form (f, idp (f) ) (D,D) — (E L(f)(D))
play a special role in that every morphlsm (f, f): (D
factors as (idg, f) o (f ,|duf)(D)).

Definition

A morphism u: A — B in € is pre-opcartesian with respect to a functor
F: @ — D if for any §: A — B’ with F(g) = F(u), there exists a unique
map b: B — B’ with F(b) = idp(5) such that bu = g.

We say F is a pre-opfibration if for every morphism f: F(A) — B there
exists a pre-opcartesian lifting u¢: A — B with F(ug) = f.

So Fy is a pre-opfibration.
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Pre-opfibration diagram

ii5)



Pre-opfibrations and Schreier extensions

Let e: G — H be a monoid homomorphism. What does it mean for Be
to be a pre-opfibration?

This means that for every h € H there is a up € e 1 ({h}) such that for
all g € e 1({h}) there is a unique n € e~*({1}) with nuy, = g.

In particular, e is surjective and setting N = e (1) we obtain an

k e
extension N —— G — H. The above condition is precisely the

requirement this is a Schreier extension of monoids!
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Correspondence between oplax functors and pre-opfibrations

Now suppose we have a pre-opfibration F: C — D.

For each object D in D we consider its ‘fibre’ category. This is the
subcategory of C consisting of the objects C for which F(C) =D and
the morphisms that are mapped by F to the identity on D.

This forms the object part of a normal oplax functor Lg: D — Cat.

These two constructions are inverses (up to isomorphism).

Indeed, there is an equivalence of 2-categories between the normal oplax
functors from D to Cat and the pre-opfibrations into D.
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Classifying Schreier extensions with oplax functors

We know that pre-opfibrations into BH correspond to normal oplax
functors from BH into Cat. Let's apply this to Schreier extensions.

Of course, for monoid extensions the fibre category L. () is the
one-object category BN. Thus, Schreier extensions with cokernel H
correspond to normal oplax functors from BH into Mon. Moreover,
such a normal oplax functor sends the single object of BH to the kernel
N of the extension.

Now we can try to unravel the definition of a normal oplax functor to
obtain an explicit characterisation of Schreier extensions.
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Relation to the usual characterisation: the data

A normal oplax functor L: BH — Mon consists of

e a function L: {x} — Mong between the classes of objects,

e a function L, .: H — Mon(L(x), L(x))o,

e a 2-morphism L: L(1,) — 11 (+) which is an identity in Mon,

e a 2-morphism y{;’h,: L(hh') — L(h) o L(h') in Mon for each pair
of elements h,h/ € H.
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Relation to the usual characterisation: the data

A normal oplax functor L: BH — Mon consists of

e a monoid N,

e a function from H to objects of Mon(N, N),

e a requirement that (1, —) = idy,

e a monoid 2-morphism from «x(hh’, —) to «(h, —) o a(h’, —) for
each pair of elements h, h/ € H.
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Relation to the usual characterisation: the data

A normal oplax functor L: BH — Mon consists of

e a monoid N,

e amap ox: Hx N — N with «(h,1) =1 and
a(h,nmn’) = a(h,n)a(h,n’),

e a requirement that «(1,n) =n,

e amap x: Hx H — N such that
x(h,h)a(hh/,n) = a(h, x(h’/,n))x(h, h’/).

These must then satisfy the coherence conditions. We omit the details,
but these lead to the additional requirements:

e x(1,h)=1=x(h,1),
o x(x,y)x(xy, z) = x(x, x(y, z))x(x, yz).
We have recovered the usual data for specifying Schreier extensions.
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Relation to the usual characterisation: constructing extensions

Given such a pair («,x), we can now apply the Grothendieck
construction to construct the associated extension.

For a normal oplax functor L: BH — Mon, the category [L will have a
single object and a morphism (h, n) for each h € H and
n € Hom(L(h)(x),*) = N.

Multiplication is given by
(h,n) - (W, n') = (Rh/,n- LW (M) - (Vi o )«)-

In terms terms of our data,
(h,n)- (h',n') = (hh/, na(h, n')x(h, h')).
Then the cokernel sends (h,n) to h and the kernel sends n to (1, n).

This accords with the usual construction.
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Further applications

Variants of this approach can be used to give a number of further
characterisations related to extensions of monoids, including

e weakly Schreier extensions,
o (weakly) Schreier split extensions,

e morphisms of extensions or split extensions.

It seems likely that this approach could also be used to classify other
classes of monoid extensions.

21



