Strange semigroups and their presentations

SC \& VG

November 21, 2018

Free semigroups

Let \mathscr{A} be a non-empty set called an alphabet, the elements of which are called letters.
A non-empty word w over \mathscr{A} has the form $a_{1} a_{2} \ldots a_{n}$ where $a_{i} \in \mathscr{A}$ for all $i \in \underline{\mathbf{n}}$. The set of all non-empty words over \mathscr{A} is written as

$$
\mathscr{A}^{+}=\left\{a_{1} a_{2} \ldots a_{n}: a_{i} \in \mathscr{A}, n \in \mathbb{N}\right\} .
$$

For any two words $a_{1} a_{2} \ldots a_{n}$ and $b_{1} b_{2} \ldots b_{m} \in \mathscr{A}^{+}$, we define a binary operation - given by

$$
\left(a_{1} a_{2} \ldots a_{n}\right) \cdot\left(b_{1} b_{2} \ldots b_{m}\right)=a_{1} a_{2} \ldots a_{n} b_{1} b_{2} \ldots b_{m} .
$$

The pair $\left(\mathscr{A}^{+}, \cdot\right)$ forms a semigroup over the alphabet \mathscr{A}, which is in fact the free semigroup on \mathscr{A}.

Semigroup presentations

Let ρ be a relation on \mathscr{A}^{+}. For words $w, x \in \mathscr{A}^{+}$we write $w \rho^{\#} x$ if and only if $w=x$ or there exists a finite sequence of the form

$$
w=c_{1} p_{1} d_{1} \quad c_{1} q_{1} d_{1}=c_{2} p_{2} d_{2} \quad \ldots \quad c_{m} q_{m} d_{m}=x
$$

such that $c_{i}, d_{i} \in \mathscr{A}^{+}$and $\left(p_{i}, q_{i}\right) \in \rho \cup \rho^{-1}$ for all $i \in \underline{\mathbf{m}}$.
A semigroup presentation $\langle\mathscr{A}: \rho\rangle$ denotes the quotient

$$
\mathscr{A}^{+} / \rho^{\#}=\left\{[w]_{\rho^{\#}}: w \in \mathscr{A}^{+}\right\}
$$

where $[w]_{\rho^{\#}}$ (or $[w]$ where $\rho^{\#}$ is understood) is a typical element in the $\rho^{\#}$-class of $w \in \mathscr{A}^{+}$.

Strange semigroups

A semigroup S is right strange (left strange) if $a S \cap b S(S a \cap S b)$ is finitely generated for all $a, b \in S$, and there exists $a, b \in S$ such that this intersection is empty, principal and n-generated ($n \geq 2$).

A semigroup is strange if it is both left strange and right strange.

Scottfest Part 1 2K18

Fix $n \in \mathbb{N}$ where $n \geq 2$. We define an alphabet \mathscr{A}_{n} as

$$
\mathscr{A}_{n}=\left\{a, b, u_{i}, v_{i}: i \in \underline{\mathbf{n}}\right\}
$$

and define relations ρ_{n} and λ_{n} on \mathscr{A}_{n}^{+}as

$$
\rho_{n}=\left\{\left(a u_{i}, b v_{i}\right): i \in \underline{\mathbf{n}}\right\} \quad \lambda_{n}=\left\{\left(u_{i} a, v_{i} b\right): i \in \underline{\mathbf{n}}\right\} .
$$

(Whenever n is fixed, we will omit the subscript n from notation.)
The semigroup $S_{\rho}\left(S_{\lambda}\right)$ with presentation $\langle\mathscr{A}: \rho\rangle(\langle\mathscr{A}: \lambda\rangle)$ is a cancellative right (left) strange semigroup.

Scottfest Part 1 2K18

Fix $n \in \mathbb{N}$ where $n \geq 2$. Let γ be a relation on \mathscr{A}^{+}where

$$
\gamma=\rho \cup\{(x y, y x): x, y \in \mathscr{A}\} .
$$

The semigroup S_{γ} with presentation $\langle\mathscr{A}: \gamma\rangle$ is clearly commutative. It remains to show that it is strange!

The rewriting system on \mathscr{A}^{+}with rewriting rules

$$
b v_{i} \rightarrow a u_{i} \quad a v_{i} u_{j} \rightarrow a u_{i} v_{j}
$$

such that $i, j \in \underline{\mathbf{n}}$ and $i<j$ is noetherian and confluent.

Normal forms and balanced words

A word $w \in \mathscr{A}^{+}$is in normal form if we cannot apply any rewriting rules...

$$
\begin{aligned}
& a^{p_{0}} b^{q_{0}} u_{1}^{p_{1}} \ldots u_{n}^{p_{n}} \\
& a^{p_{0}} u_{1}^{p_{1}} \ldots u_{i}^{p_{i}} v_{i}^{q_{i}} \ldots v_{n}^{q_{n}} \\
& u_{1}^{p_{1}} v_{1}^{q_{1}} \ldots u_{n}^{p_{n}} v_{n}^{q_{n}}
\end{aligned}
$$

Two words $w, x \in \mathscr{A}_{n}^{+}$are balanced if and only if

$$
w=a^{p_{0}} b^{q_{0}} u_{1}^{p_{1}} v_{1}^{q_{1}} \ldots u_{n}^{p_{n}} v_{n}^{q_{n}} \quad x=a^{r_{0}} b^{s_{0}} u_{1}^{r_{1}} v_{1}^{s_{1}} \ldots u_{n}^{r_{n}} v_{n}^{s_{n}}
$$

such that $p_{i}+q_{i}=r_{i}+s_{i}$ for all $i \in \underline{\mathbf{n}}^{\mathbf{b}}$.
To describe the intersection of principal ideals in S_{γ}, it is suffient to describe the intersection of balanced words of normal form.

Intersection of principal ideals

Let $\mathscr{T}=\left\{a, u_{i}: i \in \underline{\mathbf{n}}\right\}$. For any balanced words $w, x \in \mathscr{A}^{+}$in normal form, we define

$$
\delta(w, x)=\left.\sum_{t \in \mathscr{T}}| | w\right|_{t}-|x|_{t} \mid .
$$

For example if

$$
w=a^{2} b u_{1} u_{2}^{2} \quad x=a^{3} u_{1} u_{2} v_{2}
$$

we have that $\delta(w, x)=2$.
Our goal: to show by induction on $\delta(w, x)$ that there are only finitely many possibilities for $h, k \in \mathscr{A}^{+}$such that $w h \gamma^{\#} x k$!

Intersection of principal ideals

Suppose that $w, x \in \mathscr{A}^{+}$are balanced words in normal form where

$$
\begin{array}{ll}
w=a^{p_{0}} b^{q_{0}} u_{1}^{p_{1}} \ldots u_{n}^{p_{n}} \quad \text { and } \quad x=a^{r_{0}} b^{s_{0}} u_{1}^{r_{1}} \ldots u_{n}^{r_{n}} \\
w=a^{p_{0}} b^{q_{0}} u_{1}^{p_{1}} \ldots u_{n}^{p_{n}} \quad \text { and } \quad x=a^{r_{0}} u_{1}^{r_{1}} \ldots u_{j}^{r_{j}} v_{j}^{s_{j}} \ldots v_{n}^{s_{n}}
\end{array}
$$

such that $p_{0}<r_{0}$.
For w and x as above, have $w h \gamma^{\#} x k$ if

$$
h=a^{\lambda_{0}} v_{1}^{\lambda_{1}} \ldots v_{n}^{\lambda_{n}} \quad k=b^{\lambda_{0}} u_{1}^{\lambda_{1}} \ldots u_{n}^{\lambda_{n}}
$$

where $\lambda_{0}+\ldots+\lambda_{n}=\delta(w, x)$ and each $\lambda_{i} \in \mathbb{N}^{0}$.
For example...

$$
a^{2} b u_{1} u_{2}^{2}\left(\mathbf{a v}_{\mathbf{1}}\right) \gamma^{\#} a^{3} u_{1} u_{2} v_{2}\left(\mathbf{b u}_{1}\right)
$$

Intersection of principal ideals

Suppose that $w, x \in \mathscr{A}^{+}$are balanced words in normal form where

$$
w=a^{p_{0}} u_{1}^{p_{1}} \ldots u_{i}^{p_{i}} v_{i}^{q_{i}} \ldots v_{n}^{q_{n}} \quad \text { and } \quad x=a^{r_{0}} u_{1}^{r_{1}} \ldots u_{j}^{r_{j}} v_{j}^{s_{j}} \ldots v_{n}^{s_{n}}
$$

such that $\sum_{i \in \underline{\underline{n}}}|w|_{u_{i}} \geq \sum_{i \in \underline{\underline{n}}}|x|_{u_{i}}$ and $p_{0} \in \mathbb{N}$.
For w and x as above, have $w h \gamma^{\#} x k$ if

$$
h=a^{\lambda_{0}} v_{1}^{\lambda_{1}} \ldots v_{n}^{\lambda_{n}} \quad k=b^{\lambda_{0}} u_{1}^{\lambda_{1}} \ldots u_{n}^{\lambda_{n}}
$$

such that $\lambda_{0}+\ldots+\lambda_{n}=\delta(w, x)$ and each $\lambda_{i} \in \mathbb{N}^{0}$.
For example...

$$
a^{3} u_{1} u_{2}^{2}\left(\mathbf{v}_{1}\right) \gamma^{\#} a^{3} u_{1} u_{2} v_{2}\left(\mathbf{u}_{1}\right)
$$

Intersection of principal ideals

Suppose that $w, x \in \mathscr{A}^{+}$are balanced words in normal form where

$$
w=u_{1}^{p_{1}} v_{1}^{q_{1}} \ldots u_{n}^{p_{n}} v_{n}^{q_{n}} \quad \text { and } \quad x=u_{1}^{r_{1}} v_{1}^{s_{1}} \ldots u_{n}^{r_{n}} v_{n}^{s_{n}}
$$

such that $\sum_{i \in \underline{\mathbf{n}}}|w|_{u_{i}} \geq \sum_{i \in \underline{\mathbf{n}}}|x|_{u_{i}}$.
For w and x as above $w h \gamma^{\#} x k$ if $h=x$ and $k=w$ or

$$
h=r v_{1}^{\lambda_{1}} \ldots v_{n}^{\lambda_{n}} \quad k=r u_{1}^{\lambda_{1}} \ldots u_{n}^{\lambda_{n}}
$$

such that $r \in\{a, b\}, \lambda_{1}+\ldots+\lambda_{n}=\sum_{i}\left(|w|_{u_{i}}-|x|_{u_{i}}\right)$ and each $\lambda_{i} \in \mathbb{N}^{0}$.
For example...

$$
u_{1} u_{2}^{2}\left(\mathbf{a v}_{\mathbf{1}}\right) \gamma^{\#} u_{1} u_{2} v_{2}\left(\mathbf{a u}_{\mathbf{1}}\right) .
$$

Commutative cancellative presentation

Fix some $n \in \mathbb{N}$ and let κ be a relation on \mathscr{A} where

$$
\kappa=\gamma \cup\left\{\left(u_{i} v_{j}, u_{j} v_{i}\right): i, j \in \mathbf{n}\right\} .
$$

The semigroup presentation $\left\langle\mathscr{A}_{n}: \kappa\right\rangle$ is clearly commutative. It remains to show that it is cancellative and strange!

The rewriting system on \mathscr{A}^{+}with rewriting rules

$$
b v_{i} \rightarrow a u_{i} \quad v_{i} u_{j} \rightarrow u_{i} v_{j}
$$

such that $i, j \in \underline{\mathbf{n}}$ and $i<j$ is noetherian and confluent.

Normal forms

This time, normal forms appear as either...

$$
\begin{aligned}
& a^{p_{0}} b^{q_{0}} u_{1}^{p_{1}} \ldots u_{n}^{p_{n}} \\
& a^{p_{0}} u_{1}^{p_{1}} \ldots u_{i}^{p_{i}} v_{i}^{q_{i}} \ldots u_{n}^{p_{n}} v_{n}^{q_{n}}
\end{aligned}
$$

We have already looked at these cases!
Cancellativity was shown using induction!
Suppose w, x are in the same normal form, then wa $\kappa^{\#}$ xa implies $w a=x a$ in normal form...

What next?

Fix $n \in \mathbb{N}$ where $n \geq 2$. Let us define some relations

$$
\begin{aligned}
\sigma & =\left\{\left(w, w^{2}\right): w \in \mathscr{A}^{+}\right\} \\
\mu & =\left\{\left([a]_{\sigma^{\#}}\left[u_{i}\right]_{\sigma^{\#}},[b]_{\sigma^{\#}}\left[v_{i}\right]_{\sigma^{\#}}\right): i \in \underline{\mathbf{n}}\right\} \\
\nu & =\left\{\left([w]_{\rho^{\#}},\left[w^{2}\right]_{\rho^{\#}}\right): w \in S_{\rho}\right\}
\end{aligned}
$$

Let \mathscr{A} and S_{ρ} as before and $\mathscr{B}_{\mathscr{A}}=\mathscr{A}^{+} / \sigma^{\#}$. Is it true that

$$
\mathscr{B}_{\mathscr{A}} / \mu^{\#} \cong S_{\rho} / \nu^{\#} ?
$$

