Strange semigroups and their presentations

SC & VG

November 21, 2018

Free semigroups

Let \mathscr{A} be a non-empty set called an *alphabet*, the elements of which are called *letters*.

A *non-empty word* w over \mathscr{A} has the form $a_1 a_2 \dots a_n$ where $a_i \in \mathscr{A}$ for all $i \in \underline{\mathbf{n}}$. The set of all non-empty words over \mathscr{A} is written as

$$\mathscr{A}^+ = \{a_1 a_2 \dots a_n : a_i \in \mathscr{A}, n \in \mathbb{N}\}.$$

For any two words $a_1a_2...a_n$ and $b_1b_2...b_m \in \mathscr{A}^+$, we define a binary operation \cdot given by

$$(a_1a_2\ldots a_n)\cdot (b_1b_2\ldots b_m)=a_1a_2\ldots a_nb_1b_2\ldots b_m.$$

The pair (\mathscr{A}^+, \cdot) forms a semigroup over the alphabet \mathscr{A} , which is in fact the *free semigroup* on \mathscr{A} .

Semigroup presentations

Let ρ be a relation on \mathscr{A}^+ . For words $w, x \in \mathscr{A}^+$ we write $w \rho^{\#} x$ if and only if w = x or there exists a finite sequence of the form

$$w = c_1 p_1 d_1 \quad c_1 q_1 d_1 = c_2 p_2 d_2 \quad \ldots \quad c_m q_m d_m = x,$$

such that $c_i, d_i \in \mathscr{A}^+$ and $(p_i, q_i) \in \rho \cup \rho^{-1}$ for all $i \in \underline{\mathbf{m}}$. A *semigroup presentation* $\langle \mathscr{A} : \rho \rangle$ denotes the quotient

$$\mathscr{A}^+/\rho^{\#} = \{[w]_{\rho^{\#}} : w \in \mathscr{A}^+\}$$

where $[w]_{\rho^{\#}}$ (or [w] where $\rho^{\#}$ is understood) is a typical element in the $\rho^{\#}$ -class of $w \in \mathscr{A}^+$.

Strange semigroups

A semigroup S is *right strange* (*left strange*) if $aS \cap bS$ ($Sa \cap Sb$) is finitely generated for all $a, b \in S$, and there exists $a, b \in S$ such that this intersection is empty, principal and *n*-generated ($n \ge 2$).

A semigroup is *strange* if it is both left strange and right strange.

Scottfest Part 1 2K18

Fix $n \in \mathbb{N}$ where $n \geq 2$. We define an alphabet \mathscr{A}_n as

$$\mathscr{A}_n = \{a, b, u_i, v_i : i \in \underline{\mathbf{n}}\}$$

and define relations ρ_n and λ_n on \mathscr{A}_n^+ as

$$\rho_n = \{ (au_i, bv_i) : i \in \underline{\mathbf{n}} \} \quad \lambda_n = \{ (u_i a, v_i b) : i \in \underline{\mathbf{n}} \}.$$

(Whenever n is fixed, we will omit the subscript n from notation.)

The semigroup $S_{\rho}(S_{\lambda})$ with presentation $\langle \mathscr{A} : \rho \rangle (\langle \mathscr{A} : \lambda \rangle)$ is a cancellative right (left) strange semigroup.

Scottfest Part 1 2K18

Fix $n \in \mathbb{N}$ where $n \geq 2$. Let γ be a relation on \mathscr{A}^+ where

$$\gamma = \rho \cup \{ (xy, yx) : x, y \in \mathscr{A} \}.$$

The semigroup S_{γ} with presentation $\langle \mathscr{A} : \gamma \rangle$ is clearly commutative. It remains to show that it is strange!

The *rewriting system* on \mathscr{A}^+ with rewriting rules

 $bv_i \rightarrow au_i \quad av_iu_i \rightarrow au_iv_i$

such that $i, j \in \mathbf{n}$ and i < j is noetherian and confluent.

Normal forms and balanced words

A word $w \in \mathscr{A}^+$ is in normal form if we cannot apply any rewriting rules...

$$\begin{aligned} & a^{p_0} b^{q_0} u_1^{p_1} \dots u_n^{p_n} \\ & a^{p_0} u_1^{p_1} \dots u_i^{p_i} v_i^{q_i} \dots v_n^{q_n} \\ & u_1^{p_1} v_1^{q_1} \dots u_n^{p_n} v_n^{q_n} \end{aligned}$$

Two words $w, x \in \mathscr{A}_n^+$ are *balanced* if and only if

$$w = a^{p_0} b^{q_0} u_1^{p_1} v_1^{q_1} \dots u_n^{p_n} v_n^{q_n} \quad x = a^{r_0} b^{s_0} u_1^{r_1} v_1^{s_1} \dots u_n^{r_n} v_n^{s_n}$$

such that $p_i + q_i = r_i + s_i$ for all $i \in \underline{\mathbf{n}}^{\flat}$.

To describe the intersection of principal ideals in S_{γ} , it is sufficient to describe the intersection of balanced words of normal form.

Let $\mathscr{T} = \{a, u_i : i \in \underline{\mathbf{n}}\}$. For any balanced words $w, x \in \mathscr{A}^+$ in normal form, we define

$$\delta(w,x) = \sum_{t \in \mathscr{T}} ||w|_t - |x|_t|.$$

For example if

$$w = a^2 b u_1 u_2^2$$
 $x = a^3 u_1 u_2 v_2$

we have that $\delta(w, x) = 2$.

Our goal: to show by induction on $\delta(w, x)$ that there are only finitely many possibilities for $h, k \in \mathscr{A}^+$ such that $wh \gamma^{\#} xk!$

Suppose that $w, x \in \mathscr{A}^+$ are balanced words in normal form where

$$w = a^{p_0} b^{q_0} u_1^{p_1} \dots u_n^{p_n} \text{ and } x = a^{r_0} b^{s_0} u_1^{r_1} \dots u_n^{r_n}$$
$$w = a^{p_0} b^{q_0} u_1^{p_1} \dots u_n^{p_n} \text{ and } x = a^{r_0} u_1^{r_1} \dots u_i^{r_j} v_j^{s_j} \dots v_n^{s_n}$$

such that $p_0 < r_0$.

For w and x as above, have $wh \gamma^{\#} xk$ if

$$h = a^{\lambda_0} v_1^{\lambda_1} \dots v_n^{\lambda_n} \quad k = b^{\lambda_0} u_1^{\lambda_1} \dots u_n^{\lambda_n}$$

where $\lambda_0 + \ldots + \lambda_n = \delta(w, x)$ and each $\lambda_i \in \mathbb{N}^0$.

For example...

$$a^{2}bu_{1}u_{2}^{2}(\mathbf{av_{1}})\gamma^{\#}a^{3}u_{1}u_{2}v_{2}(\mathbf{bu_{1}}).$$

Suppose that $w, x \in \mathscr{A}^+$ are balanced words in normal form where

$$w = a^{p_0} u_1^{p_1} \dots u_i^{p_i} v_i^{q_i} \dots v_n^{q_n}$$
 and $x = a^{r_0} u_1^{r_1} \dots u_i^{r_j} v_i^{s_j} \dots v_n^{s_n}$

such that $\sum_{i \in \underline{\mathbf{n}}} |w|_{u_i} \ge \sum_{i \in \underline{\mathbf{n}}} |x|_{u_i}$ and $p_0 \in \mathbb{N}$.

For w and x as above, have $wh \gamma^{\#} xk$ if

$$h = a^{\lambda_0} v_1^{\lambda_1} \dots v_n^{\lambda_n} \quad k = b^{\lambda_0} u_1^{\lambda_1} \dots u_n^{\lambda_n}$$

such that $\lambda_0 + \ldots + \lambda_n = \delta(w, x)$ and each $\lambda_i \in \mathbb{N}^0$.

For example...

$$a^{3}u_{1}u_{2}^{2}(\mathbf{v}_{1})\gamma^{\#}a^{3}u_{1}u_{2}v_{2}(\mathbf{u}_{1}).$$

Suppose that $w, x \in \mathscr{A}^+$ are balanced words in normal form where

$$w = u_1^{p_1} v_1^{q_1} \dots u_n^{p_n} v_n^{q_n}$$
 and $x = u_1^{r_1} v_1^{s_1} \dots u_n^{r_n} v_n^{s_n}$

such that $\sum_{i \in \underline{\mathbf{n}}} |w|_{u_i} \ge \sum_{i \in \underline{\mathbf{n}}} |x|_{u_i}$.

For w and x as above $wh \gamma^{\#} xk$ if h = x and k = w or

$$h = rv_1^{\lambda_1} \dots v_n^{\lambda_n} \quad k = ru_1^{\lambda_1} \dots u_n^{\lambda_n}$$

such that $r \in \{a, b\}$, $\lambda_1 + \ldots + \lambda_n = \sum_i (|w|_{u_i} - |x|_{u_i})$ and each $\lambda_i \in \mathbb{N}^0$.

For example...

$$u_1 u_2^2 (\mathbf{av_1}) \gamma^{\#} u_1 u_2 v_2 (\mathbf{au_1}).$$

Commutative cancellative presentation

Fix some $n \in \mathbb{N}$ and let κ be a relation on \mathscr{A} where

$$\kappa = \gamma \cup \{(u_i v_j, u_j v_i) : i, j \in \mathbf{n}\}.$$

The semigroup presentation $\langle \mathscr{A}_n : \kappa \rangle$ is clearly commutative. It remains to show that it is cancellative and strange!

The *rewriting system* on \mathscr{A}^+ with rewriting rules

$$bv_i \rightarrow au_i \quad v_iu_i \rightarrow u_iv_i$$

such that $i, j \in \mathbf{n}$ and i < j is noetherian and confluent.

Normal forms

This time, normal forms appear as either...

$$a^{p_0}b^{q_0}u_1^{p_1}\dots u_n^{p_n}$$

 $a^{p_0}u_1^{p_1}\dots u_i^{p_i}v_i^{q_i}\dots u_n^{p_n}v_n^{q_n}$

We have already looked at these cases!

Cancellativity was shown using induction!

Suppose w, x are in the same normal form, then $wa \kappa^{\#} xa$ implies wa = xa in normal form...

What next?

Fix $n \in \mathbb{N}$ where $n \geq 2$. Let us define some relations

$$\sigma = \{ (w, w^2) : w \in \mathscr{A}^+ \}$$

$$\mu = \{ ([a]_{\sigma^{\#}} [u_i]_{\sigma^{\#}}, [b]_{\sigma^{\#}} [v_i]_{\sigma^{\#}}) : i \in \underline{\mathbf{n}} \}$$

$$\nu = \{ ([w]_{\rho^{\#}}, [w^2]_{\rho^{\#}}) : w \in S_{\rho} \}$$

Let \mathscr{A} and S_{ρ} as before and $\mathscr{B}_{\mathscr{A}} = \mathscr{A}^+ / \sigma^{\#}$. Is it true that

$$\mathscr{B}_{\mathscr{A}}/\mu^{\#} \cong S_{\rho}/\nu^{\#}?$$