FREE MONOIDS ARE COHERENT

VICTORIA GOULD, MIKLÓS HARTMANN, AND NIK RUŠKUC

Abstract

A monoid S is said to be right coherent if every finitely generated subact of every finitely presented right S-act is finitely presented. Left coherency is defined dually and S is coherent if it is both right and left coherent. These notions are analogous to those for a ring R (where, of course, S-acts are replaced by R-modules). Choo, Lam and Luft have shown that free rings are coherent. In this note we prove that, correspondingly, any free monoid is coherent, thus answering a question posed by the first author in 1992.

1. Introduction and preliminaries

The notion of right coherency for a monoid S is defined in terms of finitary properties of right S-acts, corresponding to the way in which right coherency is defined for a ring R via properties of right R-modules. Chase [1] gave equivalent internal conditions for right coherency of a ring R. The analogous result for monoids states that a monoid S is right coherent if and only if for any finitely generated right congruence ρ on S, and for any $a, b \in S$, the right congruence

$$
r(a \rho)=\{(u, v) \in S \times S: a u \rho a v\}
$$

is finitely generated, and the subact $(a \rho) S \cap(b \rho) S$ of the right S-act S / ρ is finitely generated (if non-empty) [4]. Left coherency is defined for monoids and rings in a dual manner and a monoid or ring is coherent if it is both right and left coherent. Coherency is a rather weak finitary condition on rings and monoids and as demonstrated by Wheeler [7], it is intimately related to the model theory of R-modules and S-acts.

A natural question is, which monoids are (right) coherent? This study was initiated in [4], where it is shown that the free commutative monoid on any set Ω is coherent. It is a consequence of [2, Corollary 2.2] that free rings are coherent, since the free ring on Ω is the monoid ring $\mathbb{Z}\left[\Omega^{*}\right]$ on the free monoid Ω^{*} over the ring of integers [6]. The question of whether the free monoid Ω^{*} itself is coherent, which we here answer positively, was left open in [4].

Theorem 1. For any set Ω the free monoid Ω^{*} is coherent.
Our proof of Theorem 1, given in Section 2, provides a blueprint for the proof in [5] that free left ample monoids are right coherent. Further comments are provided in Section 3.

A few words on notation and technicalities. If H is a set of pairs of elements of a monoid S, then we denote by $\langle H\rangle$ the right congruence on S generated by H. It is easy to see that if $a, b \in S$, then $a\langle H\rangle b$ if and only if $a=b$ or there is an $n \geq 1$ and a sequence

$$
a=c_{1} t_{1}, d_{1} t_{1}=c_{2} t_{2}, \ldots, d_{n} t_{n}=b
$$

of equations where for $i \in\{1, \ldots, n\}$ we have $t_{i} \in S$ and $\left(c_{i}, d_{i}\right)$ or $\left(d_{i}, c_{i}\right)$ lies in H. Such a sequence will be referred to as an H-sequence (of length n). It is convenient to allow $n=0$ in the above sequence, in which case it is interpreted as the equality $a=b$. Given that Ω^{*} is a submonoid of the free group on Ω, we may use the notation x^{-1} for $x \in \Omega^{*}$, where convenient.

2. Proof of Theorem 1

Let Ω be a set; it is clearly enough to show that Ω^{*} is right coherent. To this end let ρ be the right congruence on Ω^{*} generated by a finite subset H of $\Omega^{*} \times \Omega^{*}$, which without loss of generality we assume to be symmetric.

Definition 2. An H-sequence

$$
a u=c_{1} t_{1}, d_{1} t_{1}=c_{2} t_{2}, \ldots, d_{n} t_{n}=b v
$$

is irreducible if $u, t_{1}, \ldots, t_{n}, v \in \Omega^{*}$ do not have a common non-empty suffix. Clearly, this is equivalent to one of $u, t_{1}, \ldots, t_{n}, v$ being ϵ.

Throughout this note for an H-sequence as above we define $a=d_{0}, u=t_{0}, c_{n+1}=b$ and $t_{n+1}=v$.

Definition 3. A pair $(a u, b v) \in \rho$ is irreducible if for any common non-empty suffix x of u and v we have that $\left(a u x^{-1}, a v x^{-1}\right) \notin \rho$.

Note that, strictly speaking, we should say in Definition 3 that the quadruple (a, b, u, v) is irreducible. Similar comments apply to Definition 2. However, we sacrifice absolute precision for the sake of simplicity; no ambiguity should occur. It is clear that the components of irreducible pairs can only be connected by irreducible H-sequences.

We define

$$
K=\max \{|p|:(p, q) \in H\} .
$$

Lemma 4. Let

$$
a u=c_{1} t_{1}, d_{1} t_{1}=c_{2} t_{2}, \ldots, d_{n} t_{n}=b v
$$

be an irreducible H-sequence. Then either the sequence $a u=c_{1} t_{1}$ is irreducible (in which case $|u| \leq \max (|b|, K)$ and $u=\epsilon$ or $t_{1}=\epsilon$) or there exist an index $1 \leq i \leq n$ such that $t_{i+1}=\epsilon$ (so that au ρc_{i+1}) and $x \in \Omega^{+}$such that $|x| \leq \max (|b|, K)$ and

$$
a u x^{-1}=c_{1} t_{1} x^{-1}, d_{1} t_{1} x^{-1}=c_{2} t_{2} x^{-1}, \ldots, d_{i-1} t_{i-1} x^{-1}=c_{i} t_{i} x^{-1}
$$

is an irreducible H-sequence.

Proof. If $a u=c_{1} t_{1}$ is irreducible then either $u=\epsilon$ or $t_{1}=\epsilon$. In both cases we have that $|u| \leq \max (|b|, K)$. Suppose therefore that $a u=c_{1} t_{1}$ is not irreducible. Let $i \in\{1, \ldots, n\}$ be the smallest index such that $t_{i+1}=\epsilon$ (such an index exists, because our sequence is irreducible), and let x be the longest common non-empty suffix of $u=t_{0}, t_{1}, \ldots, t_{i}$. Then the sequence

$$
a u x^{-1}=c_{1} t_{1} x^{-1}, d_{1} t_{1} x^{-1}=c_{2} t_{2} x^{-1}, \ldots, d_{i-1} t_{i-1} x^{-1}=c_{i} t_{i} x^{-1}
$$

is clearly irreducible. Furthermore, since $t_{i+1}=\epsilon$, we have that $d_{i} t_{i}=c_{i+1}$, so x is a suffix of c_{i+1}. If $i<n$ then $\left(c_{i+1}, d_{i+1}\right) \in H$, while if $i=n$ we have $c_{i+1}=b$. In either case $|x| \leq\left|c_{i+1}\right| \leq \max (|b|, K)$.

Lemma 5. Let

$$
a u=c_{1} t_{1}, \ldots, d_{n} t_{n}=b v
$$

be an irreducible H-sequence. Then either $u=\epsilon$, or there exist a factorisation $u=x_{k} \ldots x_{1}$ and indices $n+1 \geq \ell_{1}>\ell_{2}>\ldots>\ell_{k} \geq 1$ such that for all $1 \leq j \leq k$:
(i) $0<\left|x_{j}\right| \leq \max (|b|, K)$ and
(ii) aux $x_{1}^{-1} \ldots x_{j-1}^{-1} \rho c_{\ell_{j}}$ (note that for $j=1$ we have au $\rho c_{\ell_{1}}$).

Proof. We proceed by induction on $|u|$: if $|u|=0$ the result is clear. Suppose that $|u|>0$ and the result is true for all shorter words. If $a u=c_{1} t_{1}$ is irreducible, then $t_{1}=\epsilon$ and the factorisation $u=x_{1}$ satisfies the required conditions, with $k=1$ and $\ell_{1}=1$. On the other hand, if $a u=c_{1} t_{1}$ is not irreducible, then by Lemma 4 , there exist an index $1 \leq i \leq n$ such that $t_{i+1}=\epsilon$, so that $a u \rho c_{i+1}$, and $x_{1} \in \Omega^{+}$such that $\left|x_{1}\right| \leq \max (|b|, K)$ and

$$
a u x_{1}^{-1}=c_{1} t_{1} x_{1}^{-1}, d_{1} t_{1} x_{1}^{-1}=c_{2} t_{2} x_{1}^{-1}, \ldots, d_{i-1} t_{i-1} x_{1}^{-1}=c_{i} t_{i} x_{1}^{-1}
$$

is an irreducible H-sequence. Put $\ell_{1}=i+1$. Since $\left|u x_{1}^{-1}\right|<|u|$, the result follows by induction.

Lemma 6. Let $a \in \Omega^{*}$. Then $r(a \rho)$ is finitely generated.
Proof. Let $K^{\prime}=\max (K,|a|)+1, L=2|H|+2, N=K^{\prime} L$ and define

$$
X=\{(u, v):|u|+|v| \leq 3 N\} \cap r(a \rho) .
$$

We claim that X generates $r(a \rho)$. It is clear that $\langle X\rangle \subseteq r(a \rho)$.
Let $(u, v) \in r(a \rho)$. We show by induction on $|u|+|v|$ that $(u, v) \in\langle X\rangle$. Clearly, if $|u|+|v| \leq 3 N$, then $(u, v) \in X$. We suppose therefore that $|u|+|v|>3 N$ and make the inductive assumption that if $\left(u^{\prime}, v^{\prime}\right) \in r(a \rho)$ and $\left|u^{\prime}\right|+\left|v^{\prime}\right|<|u|+|v|$, then $\left(u^{\prime}, v^{\prime}\right) \in\langle X\rangle$. If ($a u, a v$) is not irreducible, it is immediate that $(u, v) \in\langle X\rangle$. Without loss of generality we therefore suppose that $(a u, a v)$ is irreducible and $|v| \leq|u|$, so that $|u|>N$. Let

$$
a u=c_{1} t_{1}, \ldots, d_{n} t_{n}=a v
$$

be an irreducible H-sequence. Clearly $u \neq \epsilon$, so by Corollary 5 , there exists a factorisation $u=x_{k} \ldots x_{1}$ such that for all $1 \leq j \leq k$ we have $0<\left|x_{j}\right| \leq K^{\prime}$ and $a u x_{1}^{-1} \ldots x_{j-1}^{-1} \rho c_{\ell_{j}}$ for some $1 \leq \ell_{j} \leq n+1$. Since $|u|>K^{\prime} L$ we have that $k>L$. Note that the number of all
elements of the form c_{i} is less than $L-1$. This in turn implies that there exist two indices $1 \leq k-L<j<i \leq k$ such that $c_{\ell_{i}}=c_{\ell_{j}}$, so that

$$
a u x_{1}^{-1} \ldots x_{i-1}^{-1} \rho c_{\ell_{i}}=c_{\ell_{j}} \rho a u x_{1}^{-1} \ldots x_{j-1}^{-1} .
$$

Since $i, j>k-L$ we have that $k-i+1 \leq L$, so $\left|u x_{1}^{-1} \ldots x_{i-1}^{-1}\right|=\left|x_{k} \ldots x_{i}\right| \leq K^{\prime} L$, and similarly $\left|u x_{1}^{-1} \ldots x_{j-1}^{-1}\right| \leq K^{\prime} L$. As a consequence $\left(u x_{1}^{-1} \ldots x_{i-1}^{-1}, u x_{1}^{-1} \ldots x_{j-1}^{-1}\right) \in X$, and letting $u^{\prime}=u x_{1}^{-1} \ldots x_{i-1}^{-1} x_{j-1} \ldots x_{k}$, we see that

$$
\left(u^{\prime}, u\right)=\left(u x_{1}^{-1} \ldots x_{i-1}^{-1}, u x_{1}^{-1} \ldots x_{j-1}^{-1}\right) x_{j-1} \ldots x_{1} \in\langle X\rangle .
$$

In particular, $a u^{\prime} \rho$ au $\rho a v$. Note that $\left|u^{\prime}\right|<|u|$, because $j<i$ and $x_{j} \neq \epsilon$. Thus by the induction hypothesis we have that $\left(v, u^{\prime}\right) \in\langle X\rangle$ and so the lemma is proved.

Lemma 7. Let $a, b \in S$. Then $(a \rho) S \cap(b \rho) S$ is empty or finitely generated.
Proof. Let us suppose that $(a \rho) S \cap(b \rho) S \neq \emptyset$ and let

$$
X=\{a \rho, b \rho, c \rho:(c, d) \in H\} \cap(a \rho) S \cap(b \rho) S
$$

We claim that X generates $(a \rho) S \cap(b \rho) S$. It is enough to show that for every irreducible pair $(a u, b v)$ we have that $(a u) \rho \in X$. For this, let

$$
a u=c_{1} t_{1}, \ldots, d_{n} t_{n}=b v
$$

be an irreducible H-sequence. Then by Lemma $4,(a u) \rho \in X$.

3. Comments

Given that the class of right coherent monoids is closed under retract [5], it follows from the results of that paper that free monoids are coherent. However, as the arguments in [5] for free left ample monoids are burdened with unavoidable technicalities, we prefer to present here the more transparent proof that Ω^{*} is coherent, by way of motivation for the work of [5]. With free objects in mind, we remark that we also show in [5] that the free inverse monoid on Ω is coherent if and only if Ω is a singleton.

References

[1] S.U. Chase,'Direct product of modules', Trans. Amer. Math. Soc. 97 (1960), 457-473.
[2] K.G. Choo, K.Y. Lam and E. Luft, 'On free product of rings and the coherence property', Algebraic K-theory, II: "Classical" algebraic K-theory and connections with arithmetic (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), pp. 135-143, Lecture Notes in Math. 342, Springer, Berlin, 1973.
[3] V. Gould, 'Model Companions of S-systems', Quart. J. Math. Oxford 38 (1987), 189-211.
[4] V. Gould, 'Coherent monoids', J. Australian Math. Soc. 53 (1992), 166-182.
[5] V. Gould, M. Hartmann, 'The free left ample monoid is right coherent', in preparation.
[6] R. N. McKenzie, G. F. McNulty, and W. T. Taylor, Algebra, Lattices, Varieties, Wadsworth, 1983.
[7] W.H. Wheeler, 'Model companions and definability in existentially complete structures', Israel J. Math. 25 (1976), 305-330.

E-mail address: victoria.gould@york.ac.uk
E-mail address: miklos.hartmann@york.ac.uk
Department of Mathematics, University of York, Heslington, York YO10 5DD, UK
E-mail address: nik@mcs.st-and.ac.uk
School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS, UK

