Simplicity of contracted inverse semigroup algebras

Nóra Szakács

University of York, UK University of Szeged, Hungary

York Semigroup seminar (online), May 20 2020

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s, \ s^{-1}ss^{-1} = s^{-1}.$$

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s, \ s^{-1}ss^{-1} = s^{-1}.$$

Idempotents of S form a subsemilattice denoted by E(S) or just E.

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s, \ s^{-1}ss^{-1} = s^{-1}.$$

Idempotents of S form a subsemilattice denoted by E(S) or just E. The partial order on E(S) extends to S.

Definition

A semigroup S is called an **inverse semigroup** if for any $s \in S$, there exists a unique element $s^{-1} \in S$ for which

$$ss^{-1}s = s, \ s^{-1}ss^{-1} = s^{-1}.$$

Idempotents of S form a subsemilattice denoted by E(S) or just E. The partial order on E(S) extends to S.

The archetypal example

The set of partial one-to-one maps on a set A under composition and inverse: the symmetric inverse semigroup \mathcal{I}_A .

The polycylic monoid

Example

```
Fix a set |X| > 1 (alphabet). The polycyclic monoid P(X) on X is
```

- an inverse semigroup with a zero 0 and an identity 1 generated by X,
- defined by relations

$$x^{-1}y = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$.

The polycylic monoid

Example

```
Fix a set |X| > 1 (alphabet). The polycyclic monoid P(X) on X is
```

- an inverse semigroup with a zero 0 and an identity 1 generated by X,
- defined by relations

$$x^{-1}y = \begin{cases} 1, & \text{if } x = y, \\ 0, & \text{if } x \neq y \end{cases}$$

for all $x, y \in X$.

Elements:
$$\alpha\beta^{-1}$$
 with $\alpha, \beta \in X^*$, and 0
Idempotents: $\alpha\alpha^{-1}$ with $\alpha \in X^*$, and 0.

Semigroup algebras

Let S be a semigroup, K a field.

The semigroup algebra KS consists of finite linear combinations of elements of S over K. It is

- a vector space over K with basis S,
- equipped with a multiplication by extending the multiplication on S linearly.

Semigroup algebras

Let S be a semigroup, K a field.

The semigroup algebra KS consists of finite linear combinations of elements of S over K. It is

- \blacktriangleright a vector space over K with basis S,
- equipped with a multiplication by extending the multiplication on S linearly.

Notice that $(KS, +, \cdot)$ is a ring.

Semigroup algebras

Let S be a semigroup, K a field.

The semigroup algebra KS consists of finite linear combinations of elements of S over K. It is

- \blacktriangleright a vector space over K with basis S,
- equipped with a multiplication by extending the multiplication on S linearly.

Notice that $(KS, +, \cdot)$ is a ring.

Question: Suppose S in an inverse semigroup. When is the ring KS simple?

A simple answer

Let S be a nontrivial inverse semigroup, K a field.

Then

$$\mathcal{KS}
ightarrow \mathcal{K}, \ \sum_{s \in S} a_s s \mapsto \sum_{s \in S} a_s$$

is a homomorphism with a nontrivial, proper kernel

A simple answer

Let S be a nontrivial inverse semigroup, K a field.

Then

$$KS \to K, \ \sum_{s \in S} a_s s \mapsto \sum_{s \in S} a_s$$

is a homomorphism with a nontrivial, proper kernel

 \implies KS is not simple.

Let S be an inverse semigroup with a zero z, K a field.

Let $K_0 S = KS/(z)$ – this effectively identifies z with 0. We call it the contracted inverse semigroup algebra.

Let S be an inverse semigroup with a zero z, K a field.

Let $K_0 S = KS/(z)$ – this effectively identifies z with 0. We call it the contracted inverse semigroup algebra.

This can be simple, e.g. if S is the Brandt semigroup B_n , then $K_0 S \cong M_n(K)$.

Let S be an inverse semigroup with a zero z, K a field.

Let $K_0 S = KS/(z)$ – this effectively identifies z with 0. We call it the contracted inverse semigroup algebra.

This can be simple, e.g. if S is the Brandt semigroup B_n , then $K_0 S \cong M_n(K)$.

Notice: a congruence \equiv on S induces a surjective homomorphism $\mathcal{K}_0S o \mathcal{K}_0[S/\equiv]$, so

 $K_0 S$ is simple $\implies S$ is congruence-free.

But

 K_0S is simple $\Leftarrow S$ is congruence-free.

P(x, y) is congruence-free, but $K_0[P(x, y)]$ is not:

$$I = (xx^{-1} + yy^{-1} - 1)$$

is a proper ideal, in fact $K_0[P(x, y)]/I$ is the Leavitt algebra $L_K(1, 2)$.

But

 K_0S is simple $\Leftarrow S$ is congruence-free.

P(x, y) is congruence-free, but $K_0[P(x, y)]$ is not:

$$I = (xx^{-1} + yy^{-1} - 1)$$

is a proper ideal, in fact $K_0[P(x, y)]/I$ is the Leavitt algebra $L_K(1, 2)$.

Problem (Munn, 1978)

Characterize those congruence-free inverse semigroups with zero which have a simple contracted algebra.

Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

O-simple: it has no proper, nonzero ideals,

Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

- ▶ 0-simple: it has no proper, nonzero ideals,
- fundamental: it has no nontrivial idempotent-separating congruences,

Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

- ▶ 0-simple: it has no proper, nonzero ideals,
- fundamental: it has no nontrivial idempotent-separating congruences,
- ▶ and E(S) is 0-disjunctive: for all idempotents $0 \neq f < e$, there exists $0 \neq f' < e$ such that ff' = 0.

Tight inverse semigroups

Let S be an inverse monoid with zero 0, E its semilattice of idempotents, $e \in E$.

 $F \subseteq (e)^{\downarrow}$ covers *e* if for all $h \in E$

$$hf = 0$$
 for all $f \in F \Longrightarrow he = 0$.

Tight inverse semigroups

Let S be an inverse monoid with zero 0, E its semilattice of idempotents, $e \in E$.

$$F \subseteq (e)^{\downarrow}$$
 covers *e* if for all $h \in E$

$$hf = 0$$
 for all $f \in F \implies he = 0$.

S is tight: for any $e \in E$, if F is a finite cover then $e \in F$.

Tight inverse semigroups

Let S be an inverse monoid with zero 0, E its semilattice of idempotents, $e \in E$.

$$F \subseteq (e)^{\downarrow}$$
 covers e if for all $h \in E$

$$hf = 0$$
 for all $f \in F \implies he = 0$.

S is tight: for any $e \in E$, if F is a finite cover then $e \in F$.

Note: *E* is 0-disjunctive \iff if *F* is a 1-element cover then $e \in F$.

The tight ideal

Example

P(x, y) is not tight because $\{xx^{-1}, yy^{-1}\}$ covers 1.

The tight ideal

Example

```
P(x, y) is not tight because \{xx^{-1}, yy^{-1}\} covers 1.
```

P(X) is tight $\iff X$ is infinite.

The tight ideal

Example

```
P(x, y) is not tight because \{xx^{-1}, yy^{-1}\} covers 1.
```

P(X) is tight $\iff X$ is infinite.

Nontrivial finite covers give rise to an ideal of K_0S called the **tight** ideal.

 K_0S is simple $\Longrightarrow S$ is tight

Previous results

S is called Hausdorff if for each $s, t \in S$, the set $(s)^{\downarrow} \cap (t)^{\downarrow}$ has finitely many maximal elements.

 $\frac{\mathsf{Remark}}{E^*-\mathsf{unitary}} \Longrightarrow \mathsf{Hausdorff}$

Theorem (Steinberg, 2014)

A Hausdorff inverse semigroup S with a zero has a simple contracted algebra over any field K

- \iff S is congruence-free and tight,
- \iff S is 0-simple, fundamental and tight,

Previous results

S is called Hausdorff if for each $s, t \in S$, the set $(s)^{\downarrow} \cap (t)^{\downarrow}$ has finitely many maximal elements.

 $\frac{\mathsf{Remark}}{E^*-\mathsf{unitary}} \Longrightarrow \mathsf{Hausdorff}$

Theorem (Steinberg, 2014)

A Hausdorff inverse semigroup S with a zero has a simple contracted algebra over any field K

- \iff S is congruence-free and tight,
- \iff S is 0-simple, fundamental and tight,

In the general case, congruence-free and tight are necessary conditions, but it was not known if they were sufficient.

Let

$$I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \le e, f \neq 0 \text{ such that } Af = 0\}.$$

Let

 $I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \le e, f \neq 0 \text{ such that } Af = 0\}.$

I is an ideal containing the tight ideal, possibly strictly.

Let

- $I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \le e, f \neq 0 \text{ such that } Af = 0\}.$
- *I* is an ideal containing the tight ideal, possibly strictly.

Theorem (Steinberg, Sz.)

1. $K_0 S$ is simple $\iff S$ is congurence free and $I = \{0\}$, $\iff S$ is 0-simple, fundamental and $I = \{0\}$.

Let

- $I = \{A \in K_0S : \forall e \in E \setminus \{0\} \exists f \le e, f \neq 0 \text{ such that } Af = 0\}.$
- *I* is an ideal containing the tight ideal, possibly strictly.
- Theorem (Steinberg, Sz.)
 - 1. $K_0 S$ is simple $\iff S$ is congurance free and $I = \{0\}$, $\iff S$ is 0-simple, fundamental and $I = \{0\}$.

Remark: Simplicity depends on the field K.

 $\mathcal{K}_0S\cong\mathcal{KG}(S)$, the Steinberg algebra of the ample groupoid $\mathcal{G}(S)$.

 $K_0 S \cong K\mathcal{G}(S)$, the Steinberg algebra of the ample groupoid $\mathcal{G}(S)$. Some ideals are more easily seen in $K\mathcal{G}(S)$,

 $I \longleftrightarrow$ tight ideal + ideal of singular functions.

 $K_0 S \cong K\mathcal{G}(S)$, the Steinberg algebra of the ample groupoid $\mathcal{G}(S)$. Some ideals are more easily seen in $K\mathcal{G}(S)$,

 $I \longleftrightarrow$ tight ideal + ideal of singular functions.

Theorem (Clark, Exel, Pardo, Sims and Starling (2018)) If \mathcal{G} is a second-countable ample groupoid with $\mathcal{G}^{(0)}$ Hausdorff, then $K\mathcal{G}$ is simple $\iff \mathcal{G}$ is minimal, effective, and $K\mathcal{G}$ has no nonzero singular functions.

 $\mathcal{K}_0 S \cong \mathcal{KG}(S)$, the Steinberg algebra of the ample groupoid $\mathcal{G}(S)$. Some ideals are more easily seen in $\mathcal{KG}(S)$,

 $I \longleftrightarrow$ tight ideal + ideal of singular functions.

Theorem (Clark, Exel, Pardo, Sims and Starling (2018)) If \mathcal{G} is a second-countable ample groupoid with $\mathcal{G}^{(0)}$ Hausdorff, then $K\mathcal{G}$ is simple $\iff \mathcal{G}$ is minimal, effective, and $K\mathcal{G}$ has no nonzero singular functions.

They ask: is there a minimal, effective ${\cal G}$ where $\mathbb{C}{\cal G}$ has nonzero singular functions?

A class of congruence-free inverse semigroups

Fix an alphabet X, and consider the polycyclic monoid P(X).

Recall: P(X) is congruence free, and tight whenever X is infinite. We build congruence-free [tight] inverse semigroups from polycyclic monoids and a groups.

A class of congruence-free inverse semigroups

Fix an alphabet X, and consider the polycyclic monoid P(X).

Recall: P(X) is congruence free, and tight whenever X is infinite. We build congruence-free [tight] inverse semigroups from polycyclic monoids and a groups.

P(X) can be represented by partial one-to-one (left) maps on X^* :

$$\begin{array}{c} \alpha\beta^{-1} \colon \beta X^* \to \alpha X^* \\ \beta w \mapsto \alpha w \end{array}$$

So $P(X) \leq \mathcal{I}_{X^*}$.

Self-similar groups

Let $G \leq S_{X^*}$ such that $g(\cdot)$ is length preserving. We call the G a **self-similar group** if for every $g \in G$, $u \in X^*$ there exists $g|_u \in G$ such that for all $w \in X^*$

$$g(uw) = g(u)g|_u(w).$$

Self-similar groups

Let $G \leq S_{X^*}$ such that $g(\cdot)$ is length preserving. We call the G a **self-similar group** if for every $g \in G$, $u \in X^*$ there exists $g|_u \in G$ such that for all $w \in X^*$

$$g(uw)=g(u)g|_u(w).$$

An easy example: $G = C_2 = \{1, a\}$, $X = \{x, y\}$, a acts by switching the first letter.

Inverse semigroups from self-similar actions Let $G \leq S_{X^*}$ a self-similar group, and let

 $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}.$

Inverse semigroups from self-similar actions Let $G \leq S_{X^*}$ a self-similar group, and let

 $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}.$

Fact: S is always congruence-free, and tight whenever X is infinite.

Inverse semigroups from self-similar actions Let $G \leq S_{X^*}$ a self-similar group, and let

 $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}.$

Fact: S is always congruence-free, and tight whenever X is infinite.

Inverse semigroups from self-similar actions Let $G \leq S_{X^*}$ a self-similar group, and let

 $S = \langle G, P_X \rangle \leq \mathcal{I}_{X^*}.$

Fact: S is always congruence-free, and tight whenever X is infinite.

Nonzero elements of S are of the form $\alpha g \beta^{-1}$, where $\alpha, \beta \in X^* (\subseteq P_X)$, $g \in G$.

A congruence-free, tight inverse semigroup S with $I \neq \{0\}$ Let $A = \{x, y\} \bigcup Z$ with Z infinite, $G = C_2 = \{1, a\}$, and consider the self-similar action

$$a(xw) = yw, a(yw) = xw, a(zw) = zw$$

for all $z \in Z$, $w \in X^*$.

A congruence-free, tight inverse semigroup S with $I \neq \{0\}$ Let $A = \{x, y\} \bigcup Z$ with Z infinite, $G = C_2 = \{1, a\}$, and consider the self-similar action

$$a(xw) = yw, a(yw) = xw, a(zw) = zw$$

for all $z \in Z$, $w \in X^*$.

Let $S = \langle G, P_A \rangle$.

Recall:

$$I = \{A \in K_0 S : \forall e \in E \setminus \{0\} \exists f \le e, f \ne 0 \text{ such that } Af = 0\}.$$

Claim:

$$A = (1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}) \in I.$$

$$\begin{aligned} a(xw) &= yw, a(yw) = xw, a(zw) = zw\\ I &= \{A \in K_0S : \forall e \in E \setminus \{0\} \; \exists f \leq e, f \neq 0 \text{ such that } Af = 0\}\\ A &= (1 - xx^{-1} - yy^{-1}) - (a - axx^{-1} - ayy^{-1}) \end{aligned}$$

 $Ax = Ay = Az = 0 \implies$ for all $f \in E \setminus \{1\}$ we have Af = 0, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that Af = 0

$$\Longrightarrow A \in I,$$

 $Ax = Ay = Az = 0 \implies$ for all $f \in E \setminus \{1\}$ we have Af = 0, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that Af = 0

 $\Longrightarrow A \in I,$

S is congruence-free an tight, but K_0S is not simple (for any K).

 $Ax = Ay = Az = 0 \implies$ for all $f \in E \setminus \{1\}$ we have Af = 0, so certainly for all $e \in E \setminus \{0\}$ there exists $f \le e, f \ne 0$ such that Af = 0

$$\Longrightarrow A \in I,$$

S is congruence-free an tight, but K_0S is not simple (for any K).

 $\mathcal{G}(S)$ is minimal, effective, but $K\mathcal{G}(S)$ has a nonzero ideal of singular functions for any K.

Thanks!

Nóra Szakács Simplicity of contracted inverse semigroup algebras