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Inverse semigroups

De�nition
A semigroup S is called an inverse semigroup if for any s ∈ S ,
there exists a unique element s−1 ∈ S for which

ss−1s = s, s−1ss−1 = s−1.

Idempotents of S form a subsemilattice denoted by E (S) or just E .
The partial order on E (S) extends to S .

The archetypal example

The set of partial one-to-one maps on a set A under composition
and inverse: the symmetric inverse semigroup IA.
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The polycylic monoid

Example

Fix a set |X | > 1 (alphabet). The polycyclic monoid P(X ) on X
is

I an inverse semigroup with a zero 0 and an identity 1 generated
by X ,

I de�ned by relations

x−1y =

{
1, if x = y ,

0, if x 6= y

for all x , y ∈ X .

Elements: αβ−1 with α, β ∈ X ∗, and 0
Idempotents: αα−1 with α ∈ X ∗, and 0.
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Semigroup algebras

Let S be a semigroup, K a �eld.

The semigroup algebra KS consists of �nite linear combinations
of elements of S over K . It is

I a vector space over K with basis S ,

I equipped with a multiplication by extending the multiplication
on S linearly.

Notice that (KS ,+, · ) is a ring.

Question: Suppose S in an inverse semigroup. When is the ring
KS simple?
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A simple answer

Let S be a nontrivial inverse semigroup, K a �eld.

Then
KS → K ,

∑
s∈S

ass 7→
∑
s∈S

as

is a homomorphism with a nontrivial, proper kernel

=⇒ KS is not simple.
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The contracted inverse semigroup algebra

Let S be an inverse semigroup with a zero z , K a �eld.

Let K0S = KS/(z) � this e�ectively identi�es z with 0. We call it
the contracted inverse semigroup algebra.

This can be simple, e.g. if S is the Brandt semigroup Bn, then
K0S ∼= Mn(K ).

Notice: a congruence ≡ on S induces a surjective homomorphism
K0S → K0[S/ ≡], so

K0S is simple =⇒ S is congruence-free.
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The contracted inverse semigroup algebra

But

K0S is simple 6⇐= S is congruence-free.

P(x , y) is congruence-free, but K0[P(x , y)] is not:

I = (xx−1 + yy−1 − 1)

is a proper ideal, in fact K0[P(x , y)]/I is the Leavitt algebra
LK (1, 2).

Problem (Munn, 1978)

Characterize those congruence-free inverse semigroups with zero
which have a simple contracted algebra.
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Congruence-free inverse semigroups with 0

An inverse semigroup with 0 is congruence free if and only if it is

I 0-simple: it has no proper, nonzero ideals,

I fundamental: it has no nontrivial idempotent-separating
congruences,

I and E (S) is 0-disjunctive: for all idempotents 0 6= f < e, there
exists 0 6= f ′ < e such that ff ′ = 0.
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Tight inverse semigroups

Let S be an inverse monoid with zero 0, E its semilattice of
idempotents, e ∈ E .

F ⊆ (e)↓ covers e if for all h ∈ E

hf = 0 for all f ∈ F =⇒ he = 0.

S is tight: for any e ∈ E , if F is a �nite cover then e ∈ F .

Note: E is 0-disjunctive ⇐⇒ if F is a 1-element cover then e ∈ F .
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The tight ideal

Example

P(x , y) is not tight because {xx−1, yy−1} covers 1.

P(X ) is tight ⇐⇒ X is in�nite.

Nontrivial �nite covers give rise to an ideal of K0S called the tight
ideal.

K0S is simple =⇒ S is tight
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Previous results

S is called Hausdor� if for each s, t ∈ S , the set (s)↓ ∩ (t)↓ has
�nitely many maximal elements.

Remark
E ∗-unitary =⇒ Hausdor�

Theorem (Steinberg, 2014)

A Hausdor� inverse semigroup S with a zero has a simple

contracted algebra over any �eld K
⇐⇒ S is congruence-free and tight,

⇐⇒ S is 0-simple, fundamental and tight,

In the general case, congruence-free and tight are necessary
conditions, but it was not known if they were su�cient.
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The full characterization

Let

I = {A ∈ K0S : ∀ e ∈ E \{0} ∃ f ≤ e, f 6= 0 such that Af = 0}.

I is an ideal containing the tight ideal, possibly strictly.

Theorem (Steinberg, Sz.)

1. K0S is simple

⇐⇒ S is congurence free and I = {0},
⇐⇒ S is 0-simple, fundamental and I = {0}.

Remark: Simplicity depends on the �eld K .
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Another way to build K0S

K0S ∼= KG(S), the Steinberg algebra of the ample groupoid G(S).

Some ideals are more easily seen in KG(S),

I ←→ tight ideal + ideal of singular functions.

Theorem (Clark, Exel, Pardo, Sims and Starling (2018))

If G is a second-countable ample groupoid with G(0) Hausdor�,

then KG is simple ⇐⇒ G is minimal, e�ective, and KG has no

nonzero singular functions.

They ask: is there a minimal, e�ective G where CG has nonzero
singular functions?
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A class of congruence-free inverse semigroups

Fix an alphabet X , and consider the polycyclic monoid P(X ).

Recall: P(X ) is congruence free, and tight whenever X is in�nite.
We build congruence-free [tight] inverse semigroups from polycyclic
monoids and a groups.

P(X ) can be represented by partial one-to-one (left) maps on X ∗:

αβ−1 : βX ∗ → αX ∗

βw 7→ αw

So P(X ) ≤ IX∗ .
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Self-similar groups

Let G ≤ SX∗ such that g(·) is length preserving.
We call the G a self-similar group if for every g ∈ G , u ∈ X ∗

there exists g |u ∈ G such that for all w ∈ X ∗

g(uw) = g(u)g |u(w).

An easy example: G = C2 = {1, a}, X = {x , y}, a acts by
switching the �rst letter.
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Inverse semigroups from self-similar actions

Let G ≤ SX∗ a self-similar group, and let

S = 〈G ,PX 〉 ≤ IX∗ .

Fact: S is always congruence-free, and tight whenever X is in�nite.

Nonzero elements of S are of the form αgβ−1, where
α, β ∈ X ∗(⊆ PX ), g ∈ G .
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A congruence-free, tight inverse semigroup S with I 6= {0}
Let A = {x , y}

⋃̇
Z with Z in�nite, G = C2 = {1, a}, and consider

the self-similar action

a(xw) = yw , a(yw) = xw , a(zw) = zw

for all z ∈ Z , w ∈ X ∗.

Let S = 〈G ,PA〉.

Recall:

I = {A ∈ K0S : ∀ e ∈ E \{0} ∃ f ≤ e, f 6= 0 such that Af = 0}.

Claim:

A = (1− xx−1 − yy−1)− (a− axx−1 − ayy−1) ∈ I .
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A congruence-free, tight inverse semigroup S with I 6= {0}

Ax = Ay = Az = 0 =⇒ for all f ∈ E \ {1} we have Af = 0, so
certainly for all e ∈ E \ {0} there exists f ≤ e, f 6= 0 such that
Af = 0

=⇒ A ∈ I ,

S is congruence-free an tight, but K0S is not simple (for any K ).

G(S) is minimal, e�ective, but KG(S) has a nonzero ideal of
singular functions for any K .
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Thanks!
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