An Introduction to Thompson's Group V

John Fountain

9 March 2011

Properties

1. V contains every finite group
2. V is simple
3. V is finitely presented
4. V has type $F P_{\infty}$
5. V has solvable word problem
6. V has solvable conjugacy problem
7. V has a subgroup isomorphic to $F_{2} \times F_{2}$
8. The generalised word problem for V is undecidable

Descriptions

1. Thompson's original
2. V is isomorphic to $\operatorname{Aut}_{\mathscr{A}}(A)$ where \mathscr{A} is the (strict) symmetric monoidal category freely generated by an idempotent object (A, α)
3. V is a subgroup of the group of unitary elements of the Cuntz C^{*}-algebra \mathcal{O}_{2}
4. V is a group of homeomorphisms of the Cantor set
5. V is the group of automorphisms of the Jónsson-Tarski algebra

Strict Symmetric Monoidal Category

A category \mathscr{C} with a functor $\otimes: \mathscr{C} \times \mathscr{C} \rightarrow \mathscr{C}$ and a distinguished object I (the unit object) such that

- $A \otimes(B \otimes C)=(A \otimes B) \otimes C$ for all objects A, B, C;
- $I \otimes A=A \otimes I$ for all objects A;
and for all objects A, B, an isomorphism $s_{A, B}: A \otimes B \rightarrow B \otimes A$ such that

$$
s_{A \otimes B, C}=\left(s_{A, C} \otimes I_{B}\right) \circ\left(I_{A} \otimes s_{B, C}\right)
$$

An idempotent object (C, γ) in \mathscr{C} is an object C with an isomorphism $\gamma: C \otimes C \rightarrow C$.
\mathscr{A} is the strict symmetric monoidal category freely generated by an idempotent object (A, α) if for any strict symmetric monoidal category \mathscr{C} and idempotent object (C, γ) in \mathscr{C}, there is a unique monoidal functor $F: \mathscr{A} \rightarrow \mathscr{C}$ such that $F(A)=C$ and $F(\alpha)=\gamma$.
F monoidal means it preserves \otimes and maps unit object to unit object.

Cuntz algebra \mathcal{O}_{2}

- H : a separable infinite dimensional Hilbert space.
- $\mathcal{B}(H)$: algebra of bounded operators on H.
- \mathcal{O}_{2} is the C^{*}-subalgebra of $\mathcal{B}(H)$ generated by two isometries S_{1}, S_{2} on H satisfying $S_{1} S_{1}^{*}+S_{2} S_{2}^{*}=I$
- An operator $A: H \rightarrow H$ is unitary if $A A^{*}=I=A^{*} A$
- V is (isomorphic to) the subgroup of the unitary group consisting of unitaries that are sums of products of the S_{i} and S_{i}^{*}.

Cantor set C

$$
\begin{gathered}
\{[0,1]\} \\
\left\{\left[0, \frac{1}{3}\right],\left[\frac{2}{3}, 1\right]\right\} \\
\left\{\left[0, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{1}{3}\right],\left[\frac{2}{3}, \frac{7}{9}\right],\left[\frac{8}{9}, 1\right]\right\} \\
\left\{\left[0, \frac{1}{27}\right],\left[\frac{2}{27}, \frac{1}{9}\right],\left[\frac{2}{9}, \frac{7}{27}\right],\left[\frac{8}{27}, \frac{1}{3}\right],\left[\frac{2}{3}, \frac{19}{27}\right],\left[\frac{20}{27}, \frac{7}{9}\right],\left[\frac{8}{9}, \frac{25}{27}\right],\left[\frac{26}{27}, 1\right]\right\}
\end{gathered}
$$

We define homeomorphisms of C using covers of C by pairwise disjoint intervals chosen from the above.

Higman algebras

- An algebra S with $k(k \geqslant 2)$ unary operations $\alpha_{1}, \ldots, \alpha_{k}$ and one k-ary operation λ satisfying

$$
\begin{aligned}
\left(a \alpha_{1}, \ldots, a \alpha_{k}\right) \lambda & =a \\
\left(a_{1}, \ldots, a_{k}\right) \lambda \alpha_{i} & =a_{i} \quad(i=1, \ldots, k)
\end{aligned}
$$

for all $a, a_{1}, \ldots, a_{k} \in S$

- Let $\mathcal{F}_{k}(1)$ be the free Higman k-algebra on a one element set.
- When $k=2$ this is the Jónsson-Tarski algebra
- $V_{k, 1}:=$ the automorphism group of $\mathcal{F}_{k}(1) ; V=V_{2,1}$
- $\mathcal{F}_{k}(1)$ has bases of every finite non-zero cardinality.

Scott 1984, Birget 2004

- Let $A=\left\{a_{1}, \ldots, a_{k}\right\}$ and $u, v \in A^{*} ; u$ is a prefix of v if $v=u w$ for some $w \in A^{*}$.
- Prefix code P over $A: P \subseteq A^{*}$ and no element of P is a prefix of any other.
- P is a maximal prefix code over A if it is not a proper subset of any other prefix code over A.
- If R a right ideal of A^{*}, then $R=P A^{*}$ for a uniquely determined prefix code $P ; P$ is the unique minimal set of generators for R.
- R is essential if $R \cap I \neq \emptyset$ for every right ideal I of A^{*}.
- $R=P A^{*}$ is essential if and only if P is a maximal prefix code.

Scott 1984, Birget 2004, A^{*}-isomorphisms

- R_{1}, R_{2} right ideals of A^{*}. A bijection $\varphi: R_{1} \rightarrow R_{2}$ is an A^{*}-isomorphism if $\varphi(u v)=\varphi(u) v$ for all $u \in R_{1}, v \in A^{*}$.
- An A^{*}-isomorphism $\varphi: P_{1} A^{*} \rightarrow P_{2} A^{*}\left(P_{1}, P_{2}\right.$ prefix codes $)$ restricts to a bijection from P_{1} to P_{2}.
- An extension of an A^{*}-isomorphism $\varphi: R_{1} \rightarrow R_{2}$ is an A^{*}-isomorphism $\psi: I_{1} \rightarrow I_{2}$ of right ideals I_{1}, I_{2} where $R_{i} \subseteq I_{i}(i=1,2)$ and $\psi(u)=\varphi(u)$ for all $u \in R_{1} . \varphi$ is maximal if it has no proper extension.
- An isomorphism φ between essential right ideals of A^{*} has a unique maximal extension, $\boldsymbol{\operatorname { m a x }}(\varphi)$
- $V_{k, 1}$ is the group consisting of maximal isomorphisms between finitely generated essential right ideals of A^{*} with multiplication:

$$
\varphi \psi=\max (\varphi \circ \psi)
$$

where \circ is composition of partial functions. $V=V_{2,1}$

F-inverse monoids

Let S be an inverse semigroup.

- The natural partial order on $S: a \leqslant b$ if and only if $a=e b$ for some idempotent e.
- The minimum group congruence on S : $a \sigma b$ if and only if $e a=e b$ for some idempotent e.
- S is F-inverse if every σ-class has a maximum element (under the natural partial order). If $a \in S$, let $\boldsymbol{\operatorname { m a x }}(a)$ denote the maximum element in $a \sigma$.
- If S is F-inverse, it is necessarily a monoid; $1=\boldsymbol{\operatorname { m a x }}(e)$ for any idempotent e.
- If S is F-inverse, then $S / \sigma \cong G$ where $G=\{\max (a): a \in S\}$ with multiplication \bullet given by

$$
\max (a) \bullet \max (b)=\max (\max (a) \max (b)) .
$$

Lawson 2007, Birget 2010; the monoid R_{k}^{e}

- R_{k}^{e} is the set of all isomorphisms between finitely generated essential right ideals of $A^{*}\left(A=\left\{a_{1}, \ldots, a_{k}\right\}\right)$ with multiplication composition of partial functions.
- R_{k}^{e} is F-inverse:
$\varphi \leqslant \theta$ if and only if θ is an extension of φ;
$\theta \sigma \psi$ if and only if $\exists \varphi \in R_{k}^{e}$ such that $\varphi \leqslant \theta, \psi$;
hence the maximum element in the σ-class of θ is $\boldsymbol{\operatorname { m a x }}(\theta)$.
- $R_{k}^{e} / \sigma \cong V_{k, 1}$.

Inverse hulls

C right cancellative. For $a \in C$, the mapping ρ_{a} defined by

$$
r \rho_{a}=r a
$$

is one-one with domain $C . I H(C)=\operatorname{Inv}\left\langle\rho_{a}: a \in C\right\rangle$ is the inverse hull of C.

$$
I H^{0}(C)= \begin{cases}I H(C) & \text { if } 0 \in I H(C) \\ I H(C) \cup\{0\} & \text { otherwise }\end{cases}
$$

If $C=A^{*}$ where $A=\left\{a_{1}, \ldots, a_{k}\right\}$, then $I H^{0}(C)$ is the polycyclic monoid

$$
\left.P_{k}=\left\langle A \cup A^{-1}\right| a a^{-1}=1 ; a b^{-1}=0 \text { if } a \neq b(a, b \in A)\right\rangle
$$

Orthogonal Completions 1

S inverse semigroup with zero. $a, b \in S$ are orthogonal $(a \perp b)$ if

$$
a^{-1} b=0=a b^{-1}
$$

Clearly, $a \perp b$ iff $a a^{-1} \perp b b^{-1}$ and $a^{-1} a \perp b^{-1} b$.
$A \subseteq S$ is orthogonal if $a \perp b$ for all distinct $a, b \in A$.
S is orthogonally complete if it satisfies:

1. $\left\{a_{1}, \ldots, a_{n}\right\}$ orthogonal implies $a_{1} \vee \cdots \vee a_{n}$ exists (natural po), and
2. multiplication distributes over joins of finite orthogonal sets.

Examples

1. Symmetric inverse monoids.
2. $I H^{0}(F C(X))$ where $F C(X)$ is the free commutative monoid on X.

Orthogonal Completions 2

S inverse semigroup with zero.

$$
D(S)=\{A \subseteq S: 0 \in A,|A|<\infty, A \text { is orthogonal }\}
$$

Theorem (Lawson)

1. $D(S)$ is an inverse subsemigroup of 2^{S}; it is a monoid if S is a monoid.
2. $\iota: S \rightarrow D(S)$ given by $a \mapsto\{0, a\}$ embeds S in $D(S)$
3. $D(S)$ is orthogonally complete.
4. If $\theta: S \rightarrow T$ is a homomorphism to an orthogonally complete inverse semigroup T, then there is a unique join preserving homomorphism $\varphi: D(S) \rightarrow T$ such that $\iota \varphi=\theta$.

Say $D(S)$ is the orthogonal completion of S.

An alternative view of R_{k}^{e}

Let R_{k} denote the inverse monoid of all A^{*}-isomorphisms between finitely generated right ideals of A^{*} where $A=\left\{a_{1}, \ldots, a_{k}\right\}$.

Theorem (Lawson)
$D\left(P_{k}\right) \cong R_{k}$.
S inverse monoid with zero.
$S^{e}=\left\{a \in S: S a a^{-1}\right.$ and $S a^{-1} a$ are essential $\}$ is an inverse submonoid of S.

Theorem (Lawson)
$D^{e}\left(P_{k}\right) \cong R_{k}^{e}$.

