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Properties

1. V contains every finite group

2. V is simple

3. V is finitely presented

4. V has type FP∞

5. V has solvable word problem

6. V has solvable conjugacy problem

7. V has a subgroup isomorphic to F2 × F2

8. The generalised word problem for V is undecidable



Descriptions

1. Thompson’s original

2. V is isomorphic to AutA (A) where A is the (strict)
symmetric monoidal category freely generated by an
idempotent object (A,α)

3. V is a subgroup of the group of unitary elements of the
Cuntz C∗-algebra O2

4. V is a group of homeomorphisms of the Cantor set

5. V is the group of automorphisms of the Jónsson-Tarski
algebra



Strict Symmetric Monoidal Category
A category C with a functor ⊗ : C × C → C and a
distinguished object I (the unit object) such that

I A⊗ (B ⊗ C) = (A⊗B)⊗ C for all objects A,B,C;

I I ⊗A = A⊗ I for all objects A;

and for all objects A,B, an isomorphism sA,B : A⊗B → B ⊗A
such that

sA⊗B,C = (sA,C ⊗ IB) ◦ (IA ⊗ sB,C)

An idempotent object (C, γ) in C is an object C with an
isomorphism γ : C ⊗ C → C.
A is the strict symmetric monoidal category freely generated
by an idempotent object (A,α) if for any strict symmetric
monoidal category C and idempotent object (C, γ) in C , there
is a unique monoidal functor F : A → C such that F (A) = C
and F (α) = γ.
F monoidal means it preserves ⊗ and maps unit object to unit
object.



Cuntz algebra O2

I H: a separable infinite dimensional Hilbert space.

I B(H): algebra of bounded operators on H.

I O2 is the C∗-subalgebra of B(H) generated by two
isometries S1, S2 on H satisfying S1S

∗
1 + S2S

∗
2 = I

I An operator A : H → H is unitary if AA∗ = I = A∗A

I V is (isomorphic to) the subgroup of the unitary group
consisting of unitaries that are sums of products of the Si
and S∗i .



Cantor set C

{[0, 1]}
{[0, 13 ] , [23 , 1]}

{[0, 19 ] , [29 ,
1
3 ] , [23 ,

7
9 ] , [89 , 1]}

{[0, 1
27 ] , [ 2

27 ,
1
9 ] , [29 ,

7
27 ] , [ 8

27 ,
1
3 ] , [23 ,

19
27 ] , [2027 ,

7
9 ] , [89 ,

25
27 ] , [2627 , 1]}

...

We define homeomorphisms of C using covers of C by pairwise
disjoint intervals chosen from the above.



Higman algebras

I An algebra S with k (k > 2) unary operations α1, . . . , αk

and one k-ary operation λ satisfying

(aα1, . . . , aαk)λ = a

(a1, . . . , ak)λαi = ai (i = 1, . . . , k)

for all a, a1, . . . , ak ∈ S

I Let Fk(1) be the free Higman k-algebra on a one element
set.

I When k = 2 this is the Jónsson-Tarski algebra

I Vk,1 := the automorphism group of Fk(1); V = V2,1

I Fk(1) has bases of every finite non-zero cardinality.



Scott 1984, Birget 2004

I Let A = {a1, . . . , ak} and u, v ∈ A∗; u is a prefix of v if
v = uw for some w ∈ A∗.

I Prefix code P over A: P ⊆ A∗ and no element of P is a
prefix of any other.

I P is a maximal prefix code over A if it is not a proper
subset of any other prefix code over A.

I If R a right ideal of A∗, then R = PA∗ for a uniquely
determined prefix code P ; P is the unique minimal set of
generators for R.

I R is essential if R ∩ I 6= ∅ for every right ideal I of A∗.

I R = PA∗ is essential if and only if P is a maximal prefix
code.



Scott 1984, Birget 2004, A∗-isomorphisms

I R1, R2 right ideals of A∗. A bijection ϕ : R1 → R2 is an
A∗-isomorphism if ϕ(uv) = ϕ(u)v for all u ∈ R1, v ∈ A∗.

I An A∗-isomorphism ϕ : P1A
∗ → P2A

∗ (P1, P2 prefix codes)
restricts to a bijection from P1 to P2.

I An extension of an A∗-isomorphism ϕ : R1 → R2 is an
A∗-isomorphism ψ : I1 → I2 of right ideals I1, I2 where
Ri ⊆ Ii (i = 1, 2) and ψ(u) = ϕ(u) for all u ∈ R1. ϕ is
maximal if it has no proper extension.

I An isomorphism ϕ between essential right ideals of A∗ has
a unique maximal extension, max(ϕ)

I Vk,1 is the group consisting of maximal isomorphisms
between finitely generated essential right ideals of A∗ with
multiplication:

ϕψ = max(ϕ ◦ ψ)

where ◦ is composition of partial functions. V = V2,1



F -inverse monoids

Let S be an inverse semigroup.

I The natural partial order on S: a 6 b if and only if a = eb
for some idempotent e.

I The minimum group congruence on S: aσb if and only if
ea = eb for some idempotent e.

I S is F -inverse if every σ-class has a maximum element
(under the natural partial order). If a ∈ S, let max(a)
denote the maximum element in aσ.

I If S is F -inverse, it is necessarily a monoid; 1 = max(e) for
any idempotent e.

I If S is F -inverse, then S/σ ∼= G where
G = {max(a) : a ∈ S} with multiplication • given by

max(a) •max(b) = max(max(a)max(b)).



Lawson 2007, Birget 2010; the monoid Re
k

I Re
k is the set of all isomorphisms between finitely generated

essential right ideals of A∗ (A = {a1, . . . , ak}) with
multiplication composition of partial functions.

I Re
k is F -inverse:

ϕ 6 θ if and only if θ is an extension of ϕ;
θσψ if and only if ∃ϕ ∈ Re

k such that ϕ 6 θ, ψ;
hence the maximum element in the σ-class of θ is max(θ).

I Re
k/σ
∼= Vk,1.



Inverse hulls

C right cancellative. For a ∈ C, the mapping ρa defined by
rρa = ra.

is one-one with domain C. IH(C) = Inv〈ρa : a ∈ C〉 is the
inverse hull of C.

IH0(C) =

{
IH(C) if 0 ∈ IH(C)

IH(C) ∪ {0} otherwise.

If C = A∗ where A = {a1, . . . , ak}, then IH0(C) is the
polycyclic monoid

Pk = 〈A ∪A−1 | aa−1 = 1; ab−1 = 0 if a 6= b (a, b ∈ A)〉.



Orthogonal Completions 1
S inverse semigroup with zero. a, b ∈ S are orthogonal (a ⊥ b) if

a−1b = 0 = ab−1.

Clearly, a ⊥ b iff aa−1 ⊥ bb−1 and a−1a ⊥ b−1b.
A ⊆ S is orthogonal if a ⊥ b for all distinct a, b ∈ A.

S is orthogonally complete if it satisfies:

1. {a1, . . . , an} orthogonal implies a1 ∨ · · · ∨ an exists (natural
po), and

2. multiplication distributes over joins of finite orthogonal
sets.

Examples

1. Symmetric inverse monoids.

2. IH0(FC(X)) where FC(X) is the free commutative
monoid on X.



Orthogonal Completions 2

S inverse semigroup with zero.

D(S) = {A ⊆ S : 0 ∈ A, |A| <∞, A is orthogonal}.

Theorem (Lawson)

1. D(S) is an inverse subsemigroup of 2S; it is a monoid if S
is a monoid.

2. ι : S → D(S) given by a 7→ {0, a} embeds S in D(S)

3. D(S) is orthogonally complete.

4. If θ : S → T is a homomorphism to an orthogonally
complete inverse semigroup T , then there is a unique join
preserving homomorphism ϕ : D(S)→ T such that ιϕ = θ.

Say D(S) is the orthogonal completion of S.



An alternative view of Re
k

Let Rk denote the inverse monoid of all A∗-isomorphisms
between finitely generated right ideals of A∗ where
A = {a1, . . . , ak}.

Theorem (Lawson)

D(Pk) ∼= Rk.

S inverse monoid with zero.
Se = {a ∈ S : Saa−1 and Sa−1a are essential} is an inverse
submonoid of S.

Theorem (Lawson)

De(Pk) ∼= Re
k.


