An Introduction to Thompson's Group V

John Fountain

9 March 2011

Properties

- 1. V contains every finite group
- 2. V is simple
- 3. V is finitely presented
- 4. V has type FP_{∞}
- 5. V has solvable word problem
- 6. V has solvable conjugacy problem
- 7. V has a subgroup isomorphic to $F_2 \times F_2$
- 8. The generalised word problem for V is undecidable

Descriptions

- 1. Thompson's original
- 2. V is isomorphic to $\operatorname{Aut}_{\mathscr{A}}(A)$ where \mathscr{A} is the (strict) symmetric monoidal category freely generated by an idempotent object (A, α)
- 3. V is a subgroup of the group of unitary elements of the Cuntz C^* -algebra \mathcal{O}_2
- 4. V is a group of homeomorphisms of the Cantor set
- 5. V is the group of automorphisms of the Jónsson-Tarski algebra

Strict Symmetric Monoidal Category

A category \mathscr{C} with a functor $\otimes : \mathscr{C} \times \mathscr{C} \to \mathscr{C}$ and a distinguished object I (the unit object) such that

•
$$A \otimes (B \otimes C) = (A \otimes B) \otimes C$$
 for all objects A, B, C ;

•
$$I \otimes A = A \otimes I$$
 for all objects A ;

and for all objects A,B, an isomorphism $s_{A,B}:A\otimes B\to B\otimes A$ such that

$$s_{A\otimes B,C} = (s_{A,C} \otimes I_B) \circ (I_A \otimes s_{B,C})$$

An idempotent object (C, γ) in \mathscr{C} is an object C with an isomorphism $\gamma : C \otimes C \to C$.

 \mathscr{A} is the strict symmetric monoidal category freely generated by an idempotent object (A, α) if for any strict symmetric monoidal category \mathscr{C} and idempotent object (C, γ) in \mathscr{C} , there is a unique monoidal functor $F : \mathscr{A} \to \mathscr{C}$ such that F(A) = Cand $F(\alpha) = \gamma$.

F monoidal means it preserves \otimes and maps unit object to unit object.

Cuntz algebra \mathcal{O}_2

- \blacktriangleright H: a separable infinite dimensional Hilbert space.
- ▶ $\mathcal{B}(H)$: algebra of bounded operators on H.
- ► \mathcal{O}_2 is the C*-subalgebra of $\mathcal{B}(H)$ generated by two isometries S_1, S_2 on H satisfying $S_1S_1^* + S_2S_2^* = I$
- An operator $A: H \to H$ is unitary if $AA^* = I = A^*A$
- ► V is (isomorphic to) the subgroup of the unitary group consisting of unitaries that are sums of products of the S_i and S^{*}_i.

Cantor set C

$$\{ [0,1] \} \\ \{ [0,\frac{1}{3}] , [\frac{2}{3},1] \} \\ \{ [0,\frac{1}{9}] , [\frac{2}{9},\frac{1}{3}] , [\frac{2}{3},\frac{7}{9}] , [\frac{8}{9},1] \} \\ \{ [0,\frac{1}{27}] , [\frac{2}{27},\frac{1}{9}] , [\frac{2}{9},\frac{7}{27}] , [\frac{8}{27},\frac{1}{3}] , [\frac{2}{3},\frac{19}{27}] , [\frac{20}{27},\frac{7}{9}] , [\frac{8}{9},\frac{25}{27}] , [\frac{26}{27},1] \} \\ \vdots$$

We define homeomorphisms of C using covers of C by pairwise disjoint intervals chosen from the above.

Higman algebras

► An algebra S with k ($k \ge 2$) unary operations $\alpha_1, \ldots, \alpha_k$ and one k-ary operation λ satisfying

$$\begin{aligned} &(a\alpha_1,\ldots,a\alpha_k)\lambda=a\\ &(a_1,\ldots,a_k)\lambda\alpha_i=a_i \qquad (i=1,\ldots,k) \end{aligned}$$

for all $a, a_1, \ldots, a_k \in S$

- ▶ Let $\mathcal{F}_k(1)$ be the free Higman k-algebra on a one element set.
- ▶ When k = 2 this is the Jónsson-Tarski algebra
- $V_{k,1}$:= the automorphism group of $\mathcal{F}_k(1)$; $V = V_{2,1}$
- $\mathcal{F}_k(1)$ has bases of every finite non-zero cardinality.

Scott 1984, Birget 2004

- ▶ Let $A = \{a_1, \ldots, a_k\}$ and $u, v \in A^*$; u is a prefix of v if v = uw for some $w \in A^*$.
- ▶ Prefix code P over A: $P \subseteq A^*$ and no element of P is a prefix of any other.
- ▶ *P* is a maximal prefix code over *A* if it is not a proper subset of any other prefix code over *A*.
- If R a right ideal of A^* , then $R = PA^*$ for a uniquely determined prefix code P; P is the unique minimal set of generators for R.
- ▶ *R* is essential if $R \cap I \neq \emptyset$ for every right ideal *I* of A^* .
- ► $R = PA^*$ is essential if and only if P is a maximal prefix code.

Scott 1984, Birget 2004, A^* -isomorphisms

- ▶ R_1, R_2 right ideals of A^* . A bijection $\varphi : R_1 \to R_2$ is an *A**-isomorphism if $\varphi(uv) = \varphi(u)v$ for all $u \in R_1, v \in A^*$.
- ▶ An A^* -isomorphism $\varphi : P_1A^* \to P_2A^*$ (P_1, P_2 prefix codes) restricts to a bijection from P_1 to P_2 .
- An extension of an A^* -isomorphism $\varphi : R_1 \to R_2$ is an A^* -isomorphism $\psi : I_1 \to I_2$ of right ideals I_1, I_2 where $R_i \subseteq I_i \ (i = 1, 2)$ and $\psi(u) = \varphi(u)$ for all $u \in R_1$. φ is maximal if it has no proper extension.
- An isomorphism φ between essential right ideals of A* has a unique maximal extension, max(φ)
- ► V_{k,1} is the group consisting of maximal isomorphisms between finitely generated essential right ideals of A* with multiplication:

$$\varphi \psi = \max(\varphi \circ \psi)$$

where \circ is composition of partial functions. $V = V_{2,1}$

F-inverse monoids

Let S be an inverse semigroup.

- ▶ The natural partial order on S: $a \leq b$ if and only if a = eb for some idempotent e.
- The minimum group congruence on S: $a\sigma b$ if and only if ea = eb for some idempotent e.
- ► S is F-inverse if every σ -class has a maximum element (under the natural partial order). If $a \in S$, let $\max(a)$ denote the maximum element in $a\sigma$.
- ▶ If S is F-inverse, it is necessarily a monoid; $1 = \max(e)$ for any idempotent e.
- ► If S is F-inverse, then $S/\sigma \cong G$ where $G = \{ \max(a) : a \in S \}$ with multiplication • given by

 $\max(a) \bullet \max(b) = \max(\max(a) \max(b)).$

Lawson 2007, Birget 2010; the monoid R_k^e

- ▶ R_k^e is the set of all isomorphisms between finitely generated essential right ideals of A^* $(A = \{a_1, \ldots, a_k\})$ with multiplication composition of partial functions.
- ► R_k^e is *F*-inverse: $\varphi \leq \theta$ if and only if θ is an extension of φ ; $\theta \sigma \psi$ if and only if $\exists \varphi \in R_k^e$ such that $\varphi \leq \theta, \psi$; hence the maximum element in the σ -class of θ is $\max(\theta)$.

$$\blacktriangleright \ R_k^e / \sigma \cong V_{k,1}.$$

Inverse hulls

C right cancellative. For $a \in C$, the mapping ρ_a defined by $r\rho_a = ra$.

is one-one with domain C. $IH(C) = Inv \langle \rho_a : a \in C \rangle$ is the inverse hull of C.

$$IH^{0}(C) = \begin{cases} IH(C) & \text{if } 0 \in IH(C) \\ IH(C) \cup \{0\} & \text{otherwise.} \end{cases}$$

If $C = A^*$ where $A = \{a_1, \ldots, a_k\}$, then $IH^0(C)$ is the polycyclic monoid

$$P_k = \langle A \cup A^{-1} \mid aa^{-1} = 1; ab^{-1} = 0 \text{ if } a \neq b \ (a, b \in A) \rangle.$$

Orthogonal Completions 1

S inverse semigroup with zero. $a, b \in S$ are orthogonal $(a \perp b)$ if

$$a^{-1}b = 0 = ab^{-1}.$$

Clearly, $a \perp b$ iff $aa^{-1} \perp bb^{-1}$ and $a^{-1}a \perp b^{-1}b$. $A \subseteq S$ is orthogonal if $a \perp b$ for all distinct $a, b \in A$.

 ${\cal S}$ is orthogonally complete if it satisfies:

- 1. $\{a_1, \ldots, a_n\}$ orthogonal implies $a_1 \lor \cdots \lor a_n$ exists (natural po), and
- 2. multiplication distributes over joins of finite orthogonal sets.

Examples

- 1. Symmetric inverse monoids.
- 2. $IH^0(FC(X))$ where FC(X) is the free commutative monoid on X.

Orthogonal Completions 2

 ${\cal S}$ inverse semigroup with zero.

 $D(S) = \{A \subseteq S : 0 \in A, |A| < \infty, A \text{ is orthogonal}\}.$

Theorem (Lawson)

- 1. D(S) is an inverse subsemigroup of 2^S ; it is a monoid if S is a monoid.
- 2. $\iota: S \to D(S)$ given by $a \mapsto \{0, a\}$ embeds S in D(S)
- 3. D(S) is orthogonally complete.
- 4. If $\theta: S \to T$ is a homomorphism to an orthogonally complete inverse semigroup T, then there is a unique join preserving homomorphism $\varphi: D(S) \to T$ such that $\iota \varphi = \theta$.

Say D(S) is the orthogonal completion of S.

An alternative view of R_k^e

Let R_k denote the inverse monoid of all A^* -isomorphisms between finitely generated right ideals of A^* where $A = \{a_1, \ldots, a_k\}.$

Theorem (Lawson) $D(P_k) \cong R_k.$

S inverse monoid with zero. $S^e = \{a \in S : Saa^{-1} \text{ and } Sa^{-1}a \text{ are essential}\}$ is an inverse submonoid of S.

Theorem (Lawson) $D^e(P_k) \cong R_k^e.$