## Subwords and Stars

Tom Bourne<br>tom.bourne@st-andrews.ac.uk

School of Mathematics and Statistics<br>University of St Andrews

York Semigroup<br>5th October 2016

## Regular Expressions

$A$ - finite alphabet.
Define $\emptyset, \varepsilon$, and each $a \in A$ to be basic regular expressions.
Let $E, F$ be regular expressions. Recursively define new regular expressions by:

- EF (concatenation)
- $E \cup F$ (set union)
- $E^{*}$ (star)

Application: 'search and replace' in text.
Example
$a \cup a b^{*} c$ represents $\{a, a c, a b c, a b b c, a b b b c, \ldots\}$.

## Regular Languages

Language - subset of free semigroup/monoid generated by $A$.
Any language that can be represented by a regular expression is regular.

## Example

If $A=\{a, b\}$ then $A^{*} a=(a \cup b)^{*} a$ represents the regular language in which all words end with the letter $a$.

Simplest class of languages:
Regular $\subset$ context-free $\subset$ context-sensitive $\subset$ recursive $\subset$ recursively enumerable.

## Star-Height

The star-height of a regular expression is defined recursively:

- $h(\emptyset)=h(\varepsilon)=h(a)=0$, where $a \in A$;
- $h(E F)=h(E \cup F)=\max \{h(E), h(F)\}$;
- $h\left(E^{*}\right)=h(E)+1$.

For a language $L$, define the star-height of $L$ by

$$
h(L)=\min \{h(E) \mid E \text { is a regular expression for } L\}
$$

Star-height $\leftrightarrow$ minimum nesting-depth of stars.

Theorem (Eggan (1963))
There exist regular languages of star-height $n$ for all $n \geq 0$.

## Generali(s $\cup z)$ ed Extensions

## Lemma

The class of regular languages is closed under complementation.
Can use generalised regular expressions (i.e. those with complementation included) without introducing non-regular languages.

Define $h\left(E^{c}\right)=h(E)$.
Generalised star-height of a language as in the restricted case.
De Morgan's laws allow use of $\cap$ and $\backslash$ too. It follows that

$$
h(E \cap F)=h(E \backslash F)=\max \{h(E), h(F)\} .
$$

## Recognisability and Equivalencies

Automaton - machine with input, accepts or rejects.

Definition
A language $L$ is recognised by a monoid $M$ if $\exists$ a morphism $\varphi: A^{*} \rightarrow M$ such that $L=L \varphi \varphi^{-1}$.

Theorem
Let $L$ be a language. TFAE:

- L is regular;
- L is accepted by a finite state automaton;
- L is recognised by a finite monoid.


## Generalised Star-Height Problem

A language which has (generalised) star-height zero is star-free.

Theorem (Schützenberger (1965))
A regular language is star-free if and only if it is recognised by a finite aperiodic monoid.

Schützenberger $\Rightarrow$ can determine if a language is star-free.

## Generalised Star-Height Problem

Does there exist an algorithm that determines the generalised star-height of a regular language? In particular, does there exist a language of generalised star-height greater than 1 ?

## Counting Scattered Subwords

## Definition

A word $w=a_{1} a_{2} \ldots a_{r}$ is a scattered subword of a word $v$ if $v$ can be written as $v=v_{0} a_{1} v_{1} a_{2} \ldots a_{r} v_{r}$ for some $v_{0}, \ldots, v_{r} \in A^{*}$.
$\binom{v}{w}$ - number of times $w$ appears as a scattered subword of $v$.
Define the language ScatModCount $(w, k, n)$ by

$$
\operatorname{ScatModCount}(w, k, n)=\left\{v \in A^{*} \left\lvert\,\binom{ v}{w} \equiv k(\bmod n)\right.\right\}
$$

$\forall w \in A^{+}, k \geq 0, n \geq 2$ such that $0 \leq k<n$.

## Known Results and Motivation

## Theorem (Thérien (1983))

Let $L$ be a regular language. Then, $L$ is recognised by a finite nilpotent group of class $m$ if and only if $L$ is a boolean combination of languages of the form ScatModCount $(w, k, n)$, where $|w| \leq m$.

Theorem (Henneman (1971))
Every language recognised by a finite commutative group is of star-height at most 1.

Theorem (Pin, Straubing, Thérien (1989))
Every language recognised by a finite nilpotent group of class 2 is of star-height at most 1 .

Class 3: partial result, difficult. Consider contiguous subwords...

## Counting Contiguous Subwords

Let $u, w, x \in A^{*}$. If $v=u w x$ then $u$ is a prefix of $v, w$ is a (contiguous) subword of $v$, and $x$ is a suffix of $v$.
$|v|_{w}$ - number of times $w$ appears as a subword of $v$.
Define the languages Count $(w, k)$ and $\operatorname{ModCount}(w, k, n)$ by

$$
\operatorname{Count}(w, k)=\left\{\left.v \in A^{*}| | v\right|_{w}=k\right\}
$$

and

$$
\operatorname{ModCount}(w, k, n)=\left\{\left.v \in A^{*}| | v\right|_{w} \equiv k \quad(\bmod n)\right\}
$$

$\forall w \in A^{+}, k \geq 0, n \geq 2$ such that $0 \leq k<n$.

## Main Result

Theorem (TB, Ruškuc (in preparation))
Let $A$ be a finite alphabet. Then,

$$
h(\operatorname{Count}(w, k))=0
$$

and

$$
h(\operatorname{ModCount}(w, k, n)) \leq 1
$$

$\forall w \in A^{+}, k \geq 0, n \geq 2$ such that $0 \leq k<n$.

## Overlapping Subwords

Occurrences of $w$ might (and in many cases, do) overlap!

Definition
A prefix of a word that is also a suffix of that word is a border.

## Example

If $v=$ aabaabaa then $\{\varepsilon, a, a a$, aabaa, aabaabaa $\}$ is the set of borders of $v$.

First, restrict attention to
CountWithBorder $(w, k)=w A^{*} \cap \operatorname{Count}(w, k) \cap A^{*} w$.

## Notation

Let

$$
B=\left\{b \in A^{+} \mid w=b x \text { and } w=y b \text { for some } x, y \in A^{+}\right\}
$$

the set of all proper, non-empty borders of $w$;

$$
P=\left\{p \in A^{+} \mid w=p b \text { for some } b \in B\right\}
$$

the set of prefixes of $w$ after each border is removed as a suffix; and,

$$
S=\left\{s \in A^{+} \mid w=b s \text { for some } b \in B\right\}
$$

the set of suffices of $w$ after each border is removed as a prefix.

## A Problem?

Consider CountWithBorder(aabaabaa, $k$ ).
$B=\{a a b a a, a a, a\}$.
$S=\{b a a, b a a b a a, a b a a b a a\}$.
Now, aabaabaa • baabaa contains 3 occurrences of aabaabaa.
Easier if each appended suffix adds on 1 new occurrence.
Introduce

$$
\bar{S}=\left\{s \in S \mid \nexists s^{\prime} \in S \text { such that } s=s^{\prime} \times \text { for some } x \in A^{+}\right\} .
$$

## A Proposition

Let

$$
\begin{aligned}
F=\left(A^{*} w A^{*} \cup\right. & S A^{*} \cup A^{*} P \\
& \left.\cup\left\{x \in A^{*} \mid w=b_{1} x b_{2} \text { for some } b_{1}, b_{2} \in B\right\}\right)^{c} .
\end{aligned}
$$

Proposition
CountWithBorder $(w, k)=$

$$
\bigcup_{j=1}^{k} \bigcup_{\substack{k_{1}, k_{2}, \ldots, k_{j} \geq 0 \\ k_{1}+k_{2}+\cdots+k_{j}=k-j}} w \bar{S}^{k_{1}} F w \bar{S}^{k_{2}} F \ldots F w \bar{S}^{k_{j}} .
$$

This is a star-free expression.

## Back to the Theorem

Theorem (TB, Ruškuc (in preparation))
Let $A$ be a finite alphabet. Then,

$$
h(\operatorname{Count}(w, k))=0
$$

and

$$
h(\operatorname{ModCount}(w, k, n)) \leq 1
$$

$\forall w \in A^{+}, k \geq 0, n \geq 2$ such that $0 \leq k<n$.
Proof.
Write Count $(w, k)$ as

$$
\left(\emptyset^{c} w \emptyset^{c} \cup \emptyset^{c} P\right)^{c} \cdot \text { CountWithBorder }(w, k) \cdot\left(S \emptyset^{c} \cup \emptyset^{c} w \emptyset^{c}\right)^{c} .
$$

Similar idea for ModCount $(w, k, n)$.

## Algebraic Applications

$S=M^{0}[G ; I, \Lambda ; P]-$ Rees zero-matrix semigroup over a group $G$.
Using our result with words of length two aids in the proof of:
Theorem (TB, Ruškuc (to appear))
Regular languages recognised by Rees zero-matrix semigroups over commutative groups are of generalised star-height at most 1.

## Rees' Theorem

Finite semigroup zero-simple $\Leftrightarrow$ isomorphic to Rees zero-matrix semigroup over group.

First step towards characterisation of languages recognised by finite simple semigroups.

## Future Work

- What effect does replacing 'scattered subwords' with 'contiguous subwords' have on Thérien (1983)?
- What is the generalised star-height of a language recognised by a Rees zero-matrix semigroup over a nilpotent group of class 2? (Conjecture: 1.)
- Filling in the gaps for counting scattered subwords of length 3.


## Thank you!

