# Computing direct products of semigroups 

## York Semigroup

$21^{\text {st }}$ February 2018

## Wilf Wilson

University of St Andrews


## My motivation for studying direct products

- The Semigroups package for GAP.


## What Semigroups did really well

```
gap> T4 := FullTransformationMonoid(4);
<full transformation monoid of degree 4>
gap> DirectProduct(T4, T4, T4, T4);
<transformation monoid of size 4294967296,
    degree 16 with }12\mathrm{ generators>
gap> time;
2
gap> T5 := FullTransformationMonoid(5);
<full transformation monoid of degree 5>
gap> DirectProduct(T5, T5, T5, T5, T5);
<transformation monoid of size 298023223876953125,
    degree 25 with }15\mathrm{ generators>
gap> time;
1
```


## What Semigroups didn't do so well

```
gap> Sing3 := SingularTransformationMonoid(3);
<regular transformation semigroup ideal of
    degree 3 with 1 generator>
gap> DirectProduct(Sing3, Sing3, Sing3);
<transformation semigroup of size 9261, degree 9
    with 53 generators>
gap> time;
2245
gap> Sing4 := SingularTransformationMonoid(4);
<regular transformation semigroup ideal of
    degree 4 with 1 generator>
gap> DirectProduct(Sing4, Sing4);
<transformation semigroup of size 53824, degree 8
    with 53 generators>
gap> time;
4 5 0 7
```


## What Semigroups couldn't do

```
gap> Sing5 := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of
    degree 5 with 1 generator>
gap> DirectProduct(Sing5, Sing5);
gap> P := PartitionMonoid(5);
<regular bipartition *-monoid of size 115975,
    degree 5 with 4 generators>
gap> DirectProduct(P, P);
Error, no method found! For debugging hints type ?Reco
very\
    from NoMethodFound
Error, no 1st choice method found for `DirectProduc\
tOp' on 2 arguments at /Users/Wilf/GAP/lib/methsel2.g:
250 called from
DirectProductOp( arg, arg[1]
    ) at /Users/Wilf/GAP/lib/gprd.gi:27 called from
<function "DirectProduct">( <arguments> )
    called from read-eval loop at *stdin*:68
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> ■
```


## What do we want?

We want to be able to create the direct product of 'any' collection of finite semigroups.

We want this to perform in a way that:

- terminates 'reasonably' quickly;
- gives a 'reasonably' small generating set; and
- uses a 'reasonable' representation.


## What's the situation for groups?

Let $G=\langle X\rangle$ and $H=\langle Y\rangle$ be groups.
Then $G \times H$ is generated by:

$$
\left\{\left(1_{G}, h\right): h \in Y\right\} \cup\left\{\left(g, 1_{H}\right): g \in X\right\}
$$

Therefore,

$$
\operatorname{rank}(G \text { or } H) \leqslant \operatorname{rank}(G \times H) \leqslant \operatorname{rank}(G)+\operatorname{rank}(H)
$$

Examples:
$\operatorname{rank}\left(\mathcal{C}_{2} \times \mathcal{C}_{2}\right)=2 \quad$ and $\quad \operatorname{rank}\left(\mathcal{C}_{2} \times \mathcal{C}_{3}\right)=\operatorname{rank}\left(\mathcal{C}_{6}\right)=1$.
(Same idea for monoids.)

## What's the situation for groups?

Define $\mu(G)=\min \left\{n \in \mathbb{N}: G \hookrightarrow \mathcal{S}_{n}\right\}$, the minimal degree of a permutation representation of $G$. Then

$$
\mu(G \times H) \leqslant \mu(G)+\mu(H),
$$

and often equality holds.
$\mu\left(\mathcal{C}_{p}\right)=p: \quad\langle(12 \ldots p)\rangle$.
$\mu\left(\mathcal{C}_{2} \times \mathcal{C}_{2}\right)=4: \quad\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle \times\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle \cong\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right), \quad\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle$.
$\mu\left(\mathcal{C}_{2} \times \mathcal{C}_{3}\right)=5: \quad\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle \times\left\langle\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)\right\rangle \cong\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}3 & 4\end{array}\right)\right\rangle$.

## So far, so easy?

We can't pretend that every semigroup is a monoid. Yes, $S \times T$ embeds in $S^{1} \times T^{1}$, but that doesn't help us!

If $(s, t) \in S \times T$ and $S \times T=\langle X\rangle$, then

$$
(s, t)=\left(s_{1}, t_{1}\right)\left(s_{2}, t_{2}\right) \cdots\left(s_{m}, t_{m}\right)
$$

for some generators $\left(s_{i}, t_{i}\right) \in X$.

- $s=s_{1} \cdots s_{m}$ and
- $t=t_{1} \cdots t_{m}$ and
- $\left(s_{i}, t_{i}\right)$ is a generator for each $i$.


## What can go wrong

The natural numbers with addition are monogenic. . . But $\mathbb{N} \times \mathbb{N}$ is not finitely generated!

This is because 1 is not the sum of two naturals.
If $(1, n)=\left(s_{1}, t_{1}\right) \cdots\left(s_{m}, t_{m}\right) \in \mathbb{N} \times \mathbb{N}$, then

$$
1=s_{1}+\cdots+s_{m}
$$

Therefore $m=s_{1}=1$, and $(1, n)$ is a generator.

## Decomposable and indecomposable elements

Let $S$ be a semigroup, and let $s \in S$.

- $s$ is decomposable if $s \in S^{2}$.
- $s$ is indecomposable if $s \in S \backslash S^{2}$.
- $S$ is decomposable if $S=S^{2}$.

Straightforward results:

- Any generating set for $S$ contains $S \backslash S^{2}$.
- $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is decomposable $\Leftrightarrow$ each $s_{i}$ is.
- $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is indecomposable $\Leftrightarrow$ any $s_{i}$ is.
- $S_{1} \times S_{2} \times \cdots \times S_{n}$ is decomposable $\Leftrightarrow$ each $S_{i}$ is.
- Any generating set for $S_{1} \times \cdots \times S_{n}$ contains

$$
S_{1} \times \cdots \times S_{i-1} \times\left(S_{i} \backslash S_{i}^{2}\right) \times S_{i+1} \times \cdots \times S_{n} .
$$

## Decomposable semigroups

Suppose that $S=S^{2}=\langle X\rangle$, and let $x \in X$.

$$
\text { Then } \begin{aligned}
x & =x_{1} \cdots x_{n-1} x_{n} & & \text { for some } x_{i} \in X, n \geqslant 2 . \\
& =a_{x} x_{n} & & \text { where } a_{x}=x_{1} \cdots x_{n-1} .
\end{aligned}
$$

Define $A_{X}=\left\{a_{x}: x \in X\right\}$. Therefore $X \subseteq A_{X} X$.
We can extend the length of any product in $X$ :

- If $s=x_{1} x_{2} x_{3}$, then $s=x_{1}\left(a_{x_{2}} x^{\prime}\right) x_{3}$ for some $x^{\prime} \in X$.

Similarly, if $T=T^{2}=\langle Y\rangle$, define $A_{Y}$. Then $Y \subseteq A_{Y} Y$.
If $(s, t) \in S \times T$, then for some $k \in \mathbb{N}$,

$$
s \in\left(A_{X} \cup X\right)^{k} \quad \text { and } \quad t \in\left(A_{Y} \cup Y\right)^{k} .
$$

## Generators for decomposable direct products

Theorem (Robertson, Ruškuc, Wiegold, 1998)
Let $S$ and $T$ be decomposable semigroups. Then $S \times T$ is generated by

$$
\left(A_{X} \times Y\right) \cup\left(A_{X} \times A_{Y}\right) \cup\left(X \times A_{Y}\right) \cup(X \times Y) .
$$

Corollary (ibid.)
Let $S$ and $T$ be decomposable semigroups. Then

$$
\operatorname{rank}(S \times T) \leqslant 4 \operatorname{rank}(S) \operatorname{rank}(T) .
$$

And an open problem: is this best possible?

## An improvement?

- This construction seems to be a bit wasteful:
- We only ever expand either $s$ or $t$ in ( $s, t$ ).
- We arbitrarily chose to expand with $x \mapsto a x^{\prime}$.
- So can we do better? Yes.


## Decomposable semigroups, again

Suppose that $S=S^{2}=\langle X\rangle$, and let $x \in X$.
Then $x=x_{1} \cdots x_{n-1} x_{n} \quad$ for some $x_{i} \in X, n \geqslant 2$.

$$
=a_{x} x_{n} \quad \text { where } a_{x}=x_{1} \cdots x_{n-1}
$$

Define $A_{X}=\left\{a_{x}: x \in X\right\}$. Therefore $X \subseteq A_{X} X$.
Suppose that $T=T^{2}=\langle Y\rangle$, and let $y \in Y$.
Then $y=y_{1} y_{2} \cdots y_{n} \quad$ for some $y_{i} \in Y, n \geqslant 2$.

$$
=y_{1} b_{y} \quad \text { where } b_{y}=y_{2} \cdots y_{n}
$$

Define $B_{Y}=\left\{b_{y}: y \in Y\right\}$. Therefore $Y \subseteq B_{Y} Y$.
Then $(s, t) \in\left(A_{X} \times Y\right)^{m}\left(X \times B_{Y}\right)^{n}$ for some $m, n \in \mathbb{N}$.

## An improvement!

## Theorem (Isabel Araújo, PhD thesis, 2000)

Let $S$ and $T$ be decomposable semigroups. Then $S \times T$ is generated by

$$
\left(A_{X} \times Y\right) \cup\left(X \times B_{Y}\right) .
$$

Corollary (ibid.)
Let $S$ and $T$ be decomposable semigroups. Then

$$
\operatorname{rank}(S \times T) \leqslant 2 \operatorname{rank}(S) \operatorname{rank}(T) .
$$

(And this is best possible, in general.)

## Induction. . .

Let $S_{1}, \ldots, S_{n}$ be decomposable semigroups. Then

$$
\operatorname{rank}\left(S_{1} \times \cdots \times S_{n}\right) \leqslant 2^{n-1} \cdot \prod_{i=1}^{n} \operatorname{rank}\left(S_{i}\right)
$$

## Finite generation of direct products

Theorem (Isabel Araújo, PhD thesis, 2000)
Let $S_{1}, S_{2}, \ldots, S_{n}$ be a collection of semigroups. Then

$$
S_{1} \times S_{2} \times \cdots \times S_{n}
$$

is finitely generated if and only if

- each $S_{i}$ is finitely generated;
and

1. $S_{i}$ is finite for all $i$; or
2. $S_{i}$ is decomposable for all $i$; or
3. $S_{j}$ infinite, $S_{i}$ is finite \& decomposable for all $i \neq j$.

But what about generating sets for direct products:

- of more than two decomposable semigroups?
- where not all factors are decomposable?


## My improvement

For each $i \in\{1, \ldots, n\}$, let $S_{i}=\left\langle X_{i}\right\rangle$ be a semigroup, and define $A_{i}$ and $B_{i}$ so that

$$
\left(S_{i}^{2} \cap X_{i}\right) \subseteq\left(A_{i} X_{i}\right) \cap\left(X_{i} B_{i}\right)
$$

Then $S_{1} \times \cdots \times S_{n}$ is generated by:

$$
\begin{aligned}
& \bigcup_{i=1}^{n}\left(\left(B_{1} \times \cdots \times B_{i-1} \times\left(S_{i}^{2} \cap X_{i}\right) \times A_{i+1} \times \cdots \times A_{n}\right) \cup\right. \\
& \\
& \left.\quad \cup\left(S_{1} \times \cdots \times S_{i-1} \times\left(S_{i} \backslash S_{i}^{2}\right) \times S_{i+1} \times \cdots \times S_{n}\right)\right) .
\end{aligned}
$$

## Corollaries

Let $S_{1}, \ldots, S_{n}$ be decomposable semigroups. Then

$$
\operatorname{rank}\left(S_{1} \times \cdots \times S_{n}\right) \leqslant n \cdot \prod_{i=1}^{n} \operatorname{rank}\left(S_{i}\right)
$$

Let $S_{1}, \ldots, S_{n}$ be semigroups and suppose $S_{j}=\left\langle S_{j} \backslash S_{j}^{2}\right\rangle$ for some $j$. Then

$$
\bigcup_{i=1}^{n}\left(S_{1} \times \cdots \times S_{i-1} \times\left(S_{i} \backslash S_{i}^{2}\right) \times S_{i+1} \times \cdots \times S_{n}\right)
$$

is the unique minimal generating set.

## Putting this into practice

To construct a generating set, we must:

- Find the indecomposable generators; and
- Construct the sets $A_{i}$ and $B_{i}$.

These steps can be combined.

- Creating $A_{i}$ and $B_{i}$ requires non-trivial factorizations of generators over the generators.
- An element has a non-trivial factorization if and only if it is decomposable.


## Finding non-trivial factorizations

- Search for paths in the Cayley graph.
- Look at the multiplication table.
- Use the Green's structure of the semigroup.
- A non-trivial factorization of a generator $x$ of a finitely-presented semigroup $\langle X \mid R\rangle$ is a relation of the form $x=w$, for some $w \in X X^{+}$.

Finding non-trivial factorizations is fairly quick.

## What Semigroups has improved upon

```
gap> Sing3 := SingularTransformationMonoid(3);
<regular transformation semigroup ideal of
    degree 3 with 1 generator>
gap> DirectProduct(Sing3, Sing3, Sing3);
<transformation semigroup of size 9261, degree 9
    with 169 generators>
gap> time;
26
gap> Sing4 := SingularTransformationMonoid(4);
<regular transformation semigroup ideal of
    degree 4 with 1 generator>
gap> DirectProduct(Sing4, Sing4, Sing4, Sing4);
<transformation semigroup of size 2897022976,
    degree 16 with }8392\mathrm{ generators>
gap> time;
107
```


## What Semigroups can now do

```
gap> Sing5 := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of
    degree 5 with 1 generator>
gap> DirectProduct(Sing5, Sing5);
<transformation semigroup of size 9030025,
    degree 10 with 274 generators>
gap> time;
5 0
gap> DirectProduct(Sing5,Sing5,Sing5,Sing5,Sing5);
<transformation semigroup
    of size 245031761259378125, degree 25 with }53413
    generators>
gap> time;
32494
```


## SEMIGROUPS handles more representations

```
gap> P := PartitionMonoid(5);
<regular bipartition *-monoid of size 115975,
    degree 5 with 4 generators>
gap> DirectProduct(P, P);
<bipartition monoid of size 13450200625, degree 10
    with 8 generators>
gap> T5 := FullTransformationMonoid(5);
<full transformation monoid of degree 5>
gap> DirectProduct(T5, P);
<transformation monoid of size 362421875,
    degree }115980\mathrm{ with 7 generators>
```


## Minimal transformation representations

Define $\mu(S)=\min \left\{n \in \mathbb{N}: S \hookrightarrow \mathcal{T}_{n}\right\}$, the minimal degree of a transformation representation of $S$.

In general, $\mu(S \times T) \leqslant \mu(S)+\mu(T)$.
Also define:

- $L_{m}=$ left zero semigroup of order $m$;
- $R_{n}=$ right zero semigroup of order $n$;
- $B_{m, n}=m \times n$ rectangular band.

Then:

- $\mu\left(L_{6}\right)=\mu\left(L_{2} \times L_{3}\right)=5 \lesseqgtr 7=3+4=\mu\left(L_{2}\right)+\mu\left(L_{3}\right)$.
- $\mu\left(R_{25}\right)=\mu\left(R_{5} \times R_{5}\right)=9 \lesseqgtr 10=2 \cdot \mu\left(R_{5}\right)$.
- $\mu\left(B_{2,2}\right)=\mu\left(L_{2} \times R_{2}\right)=4 \lesseqgtr 5=3+2=\mu\left(L_{2}\right)+\mu\left(R_{2}\right)$.
(D. Easdown, D. Easdown, J. D. Mitchell.)


## A different direction. . .

Let $S^{2}=S$ and $T^{2}=T$ be finitely generated semigroups.

- Define $l$ to be the number of maximal $\mathscr{L}$-classes of $S$ that are regular, and $l^{\prime}$ to be the number that are not.
- Define $r$ to be the number of maximal $\mathscr{R}$-classes of $T$ that are regular, and $r^{\prime}$ to be the number that are not.

Then:

$$
\operatorname{rank}(S \times T) \leqslant \operatorname{rank}(S) \cdot\left(r+2 r^{\prime}\right)+\left(l+2 l^{\prime}\right) \cdot \operatorname{rank}(T) .
$$

(This can be smaller than $2 \operatorname{rank}(S) \operatorname{rank}(T)$. )

