Computing direct products of semigroups

York Semigroup

21st February 2018

Wilf Wilson

University of St Andrews

My motivation for studying direct products

► The SEMIGROUPS package for GAP.

What SEMIGROUPS did really well

```
gap> T4 := FullTransformationMonoid(4);
<full transformation monoid of degree 4>
gap> DirectProduct(T4, T4, T4, T4);
<transformation monoid of size 4294967296,</pre>
degree 16 with 12 generators>
gap> time;
2
gap> T5 := FullTransformationMonoid(5);
<full transformation monoid of degree 5>
gap> DirectProduct(T5, T5, T5, T5, T5);
<transformation monoid of size 298023223876953125,</pre>
degree 25 with 15 generators>
gap> time;
1
```

What SEMIGROUPS didn't do so well

```
gap> Sing3 := SingularTransformationMonoid(3);
<regular transformation semigroup ideal of
degree 3 with 1 generator>
gap> DirectProduct(Sing3, Sing3, Sing3);
<transformation semigroup of size 9261, degree 9</pre>
with 53 generators>
gap> time;
2245
gap> Sing4 := SingularTransformationMonoid(4);
<regular transformation semigroup ideal of
degree 4 with 1 generator>
gap> DirectProduct(Sing4, Sing4);
<transformation semigroup of size 53824, degree 8</pre>
with 53 generators>
gap> time;
4507
```

What SEMIGROUPS couldn't do

```
gap> Sing5 := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of
 degree 5 with 1 generator>
gap> DirectProduct(Sing5, Sing5);
gap> P := PartitionMonoid(5);
<regular bipartition *-monoid of size 115975,
degree 5 with 4 generators>
gap> DirectProduct(P, P);
Error, no method found! For debugging hints type ?Reco
verv\
 from NoMethodFound
Error, no 1st choice method found for `DirectProduc\
tOp' on 2 arguments at /Users/Wilf/GAP/lib/methsel2.g:
250 called from
DirectProductOp( arg, arg[1]
 ) at /Users/Wilf/GAP/lib/gprd.gi:27 called from
<function "DirectProduct">( <arguments> )
 called from read-eval loop at *stdin*:68
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk>
```

We want to be able to create the direct product of '*any*' collection of finite semigroups.

We want this to perform in a way that:

- ► terminates 'reasonably' quickly;
- ► gives a 'reasonably' small generating set; and
- ▶ uses a *'reasonable'* representation.

What's the situation for groups?

Let $G = \langle X \rangle$ and $H = \langle Y \rangle$ be groups.

Then $G \times H$ is generated by:

$$ig\{(1_G,h):h\in Yig\}\cupig\{(g,1_H):g\in Xig\}.$$

Therefore,

 $\operatorname{rank}(G \text{ or } H) \leq \operatorname{rank}(G \times H) \leq \operatorname{rank}(G) + \operatorname{rank}(H).$ Examples:

 $rank(\mathcal{C}_2 \times \mathcal{C}_2) = 2$ and $rank(\mathcal{C}_2 \times \mathcal{C}_3) = rank(\mathcal{C}_6) = 1$. (Same idea for monoids.)

Wilf Wilson

Computing direct products of semigroups

Page 6 of 27

What's the situation for groups?

Define $\mu(G) = \min \{ n \in \mathbb{N} : G \hookrightarrow S_n \}$, the minimal degree of a permutation representation of *G*. Then

$$\mu(G \times H) \leqslant \mu(G) + \mu(H),$$

and often equality holds.

$$\begin{split} \mathfrak{\mu}(\mathfrak{C}_p) &= p: \qquad \langle (1\ 2\ \dots\ p) \rangle. \\ \mathfrak{\mu}(\mathfrak{C}_2 \times \mathfrak{C}_2) &= 4: \quad \langle (1\ 2) \rangle \times \langle (1\ 2) \rangle \cong \langle (1\ 2),\ (3\ 4) \rangle. \\ \mathfrak{\mu}(\mathfrak{C}_2 \times \mathfrak{C}_3) &= 5: \quad \langle (1\ 2) \rangle \times \langle (1\ 2\ 3) \rangle \cong \langle (1\ 2),\ (3\ 4\ 5) \rangle. \end{split}$$

So far, so easy?

We can't pretend that every semigroup is a monoid. Yes, $S \times T$ embeds in $S^1 \times T^1$, but that doesn't help us!

If $(s, t) \in S \times T$ and $S \times T = \langle X \rangle$, then

$$(\mathbf{s}, t) = (\mathbf{s}_1, t_1)(\mathbf{s}_2, t_2) \cdots (\mathbf{s}_m, t_m)$$

for some generators $(s_i, t_i) \in X$.

- $s = s_1 \cdots s_m$ and
- $t = t_1 \cdots t_m$ and
- (s_i, t_i) is a generator for each *i*.

The natural numbers with addition are monogenic. . . But $\mathbb{N}\times\mathbb{N}$ is not finitely generated!

This is because 1 is not the sum of two naturals.

If
$$(1, n) = (s_1, t_1) \cdots (s_m, t_m) \in \mathbb{N} \times \mathbb{N}$$
, then
 $1 = s_1 + \cdots + s_m$.

Therefore $m = s_1 = 1$, and (1, n) is a generator.

Decomposable and indecomposable elements

Let S be a semigroup, and let $s \in S$.

- *s* is *decomposable* if $s \in S^2$.
- *s* is indecomposable if $s \in S \setminus S^2$.
- *S* is *decomposable* if $S = S^2$.

Straightforward results:

- Any generating set for S contains $S \setminus S^2$.
- (s_1, s_2, \ldots, s_n) is decomposable \Leftrightarrow each s_i is.
- (s_1, s_2, \ldots, s_n) is indecomposable \Leftrightarrow any s_i is.
- $S_1 \times S_2 \times \cdots \times S_n$ is decomposable \Leftrightarrow each S_i is.
- Any generating set for $S_1 \times \cdots \times S_n$ contains

$$S_1 imes \cdots imes S_{i-1} imes (S_i \setminus S_i^2) imes S_{i+1} imes \cdots imes S_n.$$

Decomposable semigroups

Suppose that $S = S^2 = \langle X \rangle$, and let $x \in X$.

Then
$$x = x_1 \cdots x_{n-1} x_n$$
 for some $x_i \in X, n \ge 2$.
= $a_x x_n$ where $a_x = x_1 \cdots x_{n-1}$.

Define $A_X = \{a_x : x \in X\}$. Therefore $X \subseteq A_X X$.

We can *extend* the length of any product in *X*:

• If $s = x_1 x_2 x_3$, then $s = x_1 (a_{x_2} x') x_3$ for some $x' \in X$.

Similarly, if $T = T^2 = \langle Y \rangle$, define A_Y . Then $Y \subseteq A_Y Y$.

If $(s, t) \in \mathbf{S} \times T$, then for some $k \in \mathbb{N}$,

$$s \in (A_X \cup X)^k$$
 and $t \in (A_Y \cup Y)^k$.

Wilf Wilson

Computing direct products of semigroups

Generators for decomposable direct products

Theorem (Robertson, Ruškuc, Wiegold, 1998) Let S and T be decomposable semigroups. Then $S \times T$ is generated by

 $(A_X \times Y) \cup (A_X \times A_Y) \cup (X \times A_Y) \cup (X \times Y).$

Corollary (ibid.) Let S and T be decomposable semigroups. Then

 $\operatorname{rank}(\mathbf{S} \times T) \leq 4 \operatorname{rank}(\mathbf{S}) \operatorname{rank}(T).$

And an open problem: is this best possible?

Wilf Wilson

Computing direct products of semigroups

Page 12 of 27

An improvement?

- This construction seems to be a bit wasteful:
 - We only ever expand either *s* or *t* in (s, t).
 - We arbitrarily chose to expand with $x \mapsto ax'$.
- ► So can we do better? Yes.

Decomposable semigroups, again

Suppose that $S = S^2 = \langle X \rangle$, and let $x \in X$.

Then
$$x = x_1 \cdots x_{n-1} x_n$$
 for some $x_i \in X, n \ge 2$.
= $a_x x_n$ where $a_x = x_1 \cdots x_{n-1}$.

Define $A_X = \{a_x : x \in X\}$. Therefore $X \subseteq A_X X$.

Suppose that $T = T^2 = \langle Y \rangle$, and let $y \in Y$.

Then
$$y = y_1 y_2 \cdots y_n$$
 for some $y_i \in Y, n \ge 2$.
= $y_1 b_y$ where $b_y = y_2 \cdots y_n$.

Define $B_Y = \{b_y : y \in Y\}$. Therefore $Y \subseteq B_Y Y$.

Then $(s, t) \in (A_X \times Y)^m (X \times B_Y)^n$ for some $m, n \in \mathbb{N}$.

Wilf Wilson

Computing direct products of semigroups

An improvement!

Theorem (Isabel Araújo, PhD thesis, 2000) Let S and T be decomposable semigroups. Then $S \times T$ is generated by

 $(A_X \times Y) \cup (X \times B_Y).$

Corollary (ibid.) Let S and T be decomposable semigroups. Then

 $\operatorname{rank}(\mathbf{S} \times T) \leq 2 \operatorname{rank}(\mathbf{S}) \operatorname{rank}(T).$

(And this is best possible, in general.)

Wilf Wilson

Computing direct products of semigroups

Let S_1, \ldots, S_n be decomposable semigroups. Then

$$\operatorname{rank}(S_1 \times \cdots \times S_n) \leqslant 2^{n-1} \cdot \prod_{i=1}^n \operatorname{rank}(S_i).$$

Finite generation of direct products

Theorem (Isabel Araújo, PhD thesis, 2000) Let $S_1, S_2, ..., S_n$ be a collection of semigroups. Then

$$S_1 \times S_2 \times \cdots \times S_n$$

is finitely generated if and only if

• each S_i is finitely generated;

and

- 1. S_i is finite for all i; or
- 2. S_i is decomposable for all i; or
- *3.* S_j infinite, S_i is finite & decomposable for all $i \neq j$.

But what about generating sets for direct products:

- ► of more than two decomposable semigroups?
- ▶ where not all factors are decomposable?

My improvement

For each $i \in \{1, ..., n\}$, let $S_i = \langle X_i \rangle$ be a semigroup, and define A_i and B_i so that

$$(S_i^2 \cap X_i) \subseteq (A_i X_i) \cap (X_i B_i).$$

Then $S_1 \times \cdots \times S_n$ is generated by:

$$igcup_{i=1}^n \Big(\left(B_1 imes \cdots imes B_{i-1} imes (S_i^2 \cap X_i) imes A_{i+1} imes \cdots imes A_n
ight) \cup \ \cup \Big(S_1 imes \cdots imes S_{i-1} imes (S_i \setminus S_i^2) imes S_{i+1} imes \cdots imes S_n \Big) \Big).$$

Corollaries

Let S_1, \ldots, S_n be decomposable semigroups. Then

$$\operatorname{rank}(S_1 \times \cdots \times S_n) \leq n \cdot \prod_{i=1}^n \operatorname{rank}(S_i).$$

Let S_1, \ldots, S_n be semigroups and suppose $S_j = \langle S_j \setminus S_j^2 \rangle$ for some j. Then

$$\bigcup_{i=1}^n \left(S_1 \times \cdots \times S_{i-1} \times (S_i \setminus S_i^2) \times S_{i+1} \times \cdots \times S_n \right)$$

is the unique minimal generating set.

Wilf Wilson

Computing direct products of semigroups

Putting this into practice

To construct a generating set, we must:

- ► Find the indecomposable generators; and
- Construct the sets A_i and B_i .

These steps can be combined.

- Creating A_i and B_i requires non-trivial factorizations of generators over the generators.
- ► An element has a non-trivial factorization if and only if it is decomposable.

Finding non-trivial factorizations

- Search for paths in the Cayley graph.
- Look at the multiplication table.
- ► Use the Green's structure of the semigroup.
- ► A non-trivial factorization of a generator x of a finitely-presented semigroup (X | R) is a relation of the form x = w, for some w ∈ XX⁺.

Finding non-trivial factorizations is fairly quick.

What SEMIGROUPS has improved upon

```
gap> Sing3 := SingularTransformationMonoid(3);
<regular transformation semigroup ideal of
degree 3 with 1 generator>
gap> DirectProduct(Sing3, Sing3, Sing3);
<transformation semigroup of size 9261, degree 9</pre>
with 169 generators>
gap> time;
26
gap> Sing4 := SingularTransformationMonoid(4);
<regular transformation semigroup ideal of
degree 4 with 1 generator>
gap> DirectProduct(Sing4, Sing4, Sing4, Sing4);
<transformation semigroup of size 2897022976,</pre>
degree 16 with 8392 generators>
gap> time;
107
```

What SEMIGROUPS can now do

```
gap> Sing5 := SingularTransformationMonoid(5);
<regular transformation semigroup ideal of
degree 5 with 1 generator>
gap> DirectProduct(Sing5, Sing5);
<transformation semigroup of size 9030025,
degree 10 with 274 generators>
gap> time;
50
gap> DirectProduct(Sing5,Sing5,Sing5,Sing5);
<transformation semigroup
of size 245031761259378125, degree 25 with 534136
generators>
gap> time;
32494
```

SEMIGROUPS handles more representations

```
gap> P := PartitionMonoid(5);
<regular bipartition *-monoid of size 115975,
  degree 5 with 4 generators>
gap> DirectProduct(P, P);
<bipartition monoid of size 13450200625, degree 10
  with 8 generators>
gap> T5 := FullTransformationMonoid(5);
<full transformation monoid of degree 5>
gap> DirectProduct(T5, P);
<transformation monoid of size 362421875,
  degree 115980 with 7 generators>
```

Minimal transformation representations

Define $\mu(S) = \min \{ n \in \mathbb{N} : S \hookrightarrow \mathfrak{T}_n \}$, the minimal degree of a transformation representation of *S*.

In general, $\mu(S \times T) \leq \mu(S) + \mu(T)$.

Also define:

- $L_m = \text{left zero semigroup of order } m$;
- R_n = right zero semigroup of order n;
- $B_{m,n} = m \times n$ rectangular band.

Then:

- ► $\mu(L_6) = \mu(L_2 \times L_3) = 5 \leq 7 = 3 + 4 = \mu(L_2) + \mu(L_3).$
- ► $\mu(R_{25}) = \mu(R_5 \times R_5) = 9 \leq 10 = 2 \cdot \mu(R_5).$
- ► $\mu(B_{2,2}) = \mu(L_2 \times R_2) = 4 \leq 5 = 3 + 2 = \mu(L_2) + \mu(R_2).$

(D. Easdown, D. Easdown, J. D. Mitchell.)

A different direction...

Let $S^2 = S$ and $T^2 = T$ be finitely generated semigroups.

- ► Define *l* to be the number of maximal *L*-classes of *S* that are regular, and *l'* to be the number that are not.
- ► Define r to be the number of maximal *R*-classes of T that are regular, and r' to be the number that are not.

Then:

 $\operatorname{rank}(\mathbf{S} \times T) \leq \operatorname{rank}(\mathbf{S}) \cdot (r + 2r') + (l + 2l') \cdot \operatorname{rank}(T).$

(This can be smaller than $2 \operatorname{rank}(S) \operatorname{rank}(T)$.)