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My motivation for studying direct products

I The SEMIGROUPS package for GAP.
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What SEMIGROUPS did really well
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What SEMIGROUPS didn’t do so well
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What SEMIGROUPS couldn’t do
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What do we want?

We want to be able to create the direct product of ‘any’
collection of finite semigroups.

We want this to perform in a way that:
I terminates ‘reasonably’ quickly;
I gives a ‘reasonably’ small generating set; and
I uses a ‘reasonable’ representation.
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What’s the situation for groups?

Let G = 〈X〉 and H = 〈Y 〉 be groups.

Then G ×H is generated by:{
(1G, h) : h ∈ Y

}
∪
{
(g, 1H) : g ∈ X

}
.

Therefore,

rank(G or H) 6 rank(G ×H) 6 rank(G) + rank(H).

Examples:

rank(C2 × C2) = 2 and rank(C2 × C3) = rank(C6) = 1.

(Same idea for monoids.)
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What’s the situation for groups?

Define µ(G) = min
{
n ∈ N : G ↪→ Sn

}
, the minimal

degree of a permutation representation of G. Then

µ(G ×H) 6 µ(G) + µ(H),

and often equality holds.

µ(Cp) = p: 〈(1 2 . . . p)〉.

µ(C2 × C2) = 4: 〈(1 2)〉 × 〈(1 2)〉 ∼= 〈(1 2), (3 4)〉.

µ(C2 × C3) = 5: 〈(1 2)〉 × 〈(1 2 3)〉 ∼= 〈(1 2), (3 4 5)〉.
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So far, so easy?

We can’t pretend that every semigroup is a monoid.
Yes, S × T embeds in S1 × T1, but that doesn’t help us!

If (s, t) ∈ S × T and S × T = 〈X〉, then

(s, t) = (s1, t1)(s2, t2) · · · (sm , tm)

for some generators (si , ti) ∈ X .

I s = s1 · · · sm and
I t = t1 · · · tm and
I (si , ti) is a generator for each i.
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What can go wrong

The natural numbers with addition are monogenic. . .
But N× N is not finitely generated!

This is because 1 is not the sum of two naturals.

If (1, n) = (s1, t1) · · · (sm , tm) ∈ N× N, then

1 = s1 + · · ·+ sm .

Therefore m = s1 = 1, and (1, n) is a generator.
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Decomposable and indecomposable elements

Let S be a semigroup, and let s ∈ S.

I s is decomposable if s ∈ S2.
I s is indecomposable if s ∈ S \ S2.
I S is decomposable if S = S2.

Straightforward results:
I Any generating set for S contains S \ S2.
I (s1, s2, . . . , sn) is decomposable ⇔ each si is.
I (s1, s2, . . . , sn) is indecomposable ⇔ any si is.
I S1 × S2 × · · · × Sn is decomposable ⇔ each Si is.
I Any generating set for S1 × · · · × Sn contains

S1 × · · · × Si−1 × (Si \ S2
i )× Si+1 × · · · × Sn.
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Decomposable semigroups

Suppose that S = S2 = 〈X〉, and let x ∈ X .

Then x = x1 · · · xn−1xn for some xi ∈ X , n > 2.

= axxn where ax = x1 · · · xn−1.

Define AX =
{
ax : x ∈ X

}
. Therefore X ⊆ AXX .

We can extend the length of any product in X :
I If s = x1x2x3, then s = x1(ax2x ′)x3 for some x ′ ∈ X .

Similarly, if T = T2 = 〈Y 〉, define AY . Then Y ⊆ AY Y .

If (s, t) ∈ S × T , then for some k ∈ N,

s ∈ (AX ∪ X)k and t ∈ (AY ∪ Y )k.

Wilf Wilson Computing direct products of semigroups Page 11 of 27



Generators for decomposable direct products

Theorem (Robertson, Ruškuc, Wiegold, 1998)
Let S and T be decomposable semigroups. Then S × T
is generated by

(AX × Y ) ∪ (AX × AY ) ∪ (X × AY ) ∪ (X × Y ).

Corollary (ibid.)
Let S and T be decomposable semigroups. Then

rank(S × T ) 6 4 rank(S) rank(T ).

And an open problem: is this best possible?
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An improvement?

I This construction seems to be a bit wasteful:
� We only ever expand either s or t in (s, t).
� We arbitrarily chose to expand with x 7→ ax ′.

I So can we do better? Yes.
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Decomposable semigroups, again

Suppose that S = S2 = 〈X〉, and let x ∈ X .

Then x = x1 · · · xn−1xn for some xi ∈ X , n > 2.

= axxn where ax = x1 · · · xn−1.

Define AX =
{
ax : x ∈ X

}
. Therefore X ⊆ AXX .

Suppose that T = T2 = 〈Y 〉, and let y ∈ Y .

Then y = y1y2 · · ·yn for some yi ∈ Y , n > 2.

= y1by where by = y2 · · ·yn.

Define BY =
{
by : y ∈ Y

}
. Therefore Y ⊆ BY Y .

Then (s, t) ∈ (AX × Y )m(X × BY )
n for some m, n ∈ N.
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An improvement!

Theorem (Isabel Araújo, PhD thesis, 2000)
Let S and T be decomposable semigroups. Then S × T
is generated by

(AX × Y ) ∪ (X × BY ).

Corollary (ibid.)
Let S and T be decomposable semigroups. Then

rank(S × T ) 6 2 rank(S) rank(T ).

(And this is best possible, in general.)
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Induction. . .

Let S1, . . . , Sn be decomposable semigroups. Then

rank(S1 × · · · × Sn) 6 2n−1 ·
n∏

i=1

rank(Si).
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Finite generation of direct products

Theorem (Isabel Araújo, PhD thesis, 2000)
Let S1, S2, . . . , Sn be a collection of semigroups. Then

S1 × S2 × · · · × Sn

is finitely generated if and only if
I each Si is finitely generated;

and

1. Si is finite for all i; or

2. Si is decomposable for all i; or

3. Sj infinite, Si is finite & decomposable for all i 6= j.
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But what about generating sets for direct products:
I of more than two decomposable semigroups?
I where not all factors are decomposable?
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My improvement

For each i ∈ {1, . . . , n}, let Si = 〈Xi〉 be a semigroup,
and define Ai and Bi so that

(S2
i ∩ Xi) ⊆ (AiXi) ∩ (XiBi).

Then S1 × · · · × Sn is generated by:

n⋃
i=1

( (
B1 × · · · × Bi−1 × (S2

i ∩ Xi)× Ai+1 × · · · × An
)
∪

∪
(
S1 × · · · × Si−1 × (Si \ S2

i )× Si+1 × · · · × Sn
) )

.
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Corollaries

Let S1, . . . , Sn be decomposable semigroups. Then

rank(S1 × · · · × Sn) 6 n ·
n∏

i=1

rank(Si).

Let S1, . . . , Sn be semigroups and suppose Sj = 〈Sj \ S2
j 〉

for some j. Then

n⋃
i=1

(
S1 × · · · × Si−1 × (Si \ S2

i )× Si+1 × · · · × Sn
)

is the unique minimal generating set.
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Putting this into practice

To construct a generating set, we must:
I Find the indecomposable generators; and
I Construct the sets Ai and Bi .

These steps can be combined.

I Creating Ai and Bi requires non-trivial
factorizations of generators over the generators.

I An element has a non-trivial factorization if and
only if it is decomposable.

Wilf Wilson Computing direct products of semigroups Page 21 of 27



Finding non-trivial factorizations

I Search for paths in the Cayley graph.
I Look at the multiplication table.
I Use the Green’s structure of the semigroup.
I A non-trivial factorization of a generator x of a

finitely-presented semigroup 〈X | R〉 is a relation of
the form x = w, for some w ∈ XX+.

Finding non-trivial factorizations is fairly quick.
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What SEMIGROUPS has improved upon
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What SEMIGROUPS can now do
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SEMIGROUPS handles more representations
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Minimal transformation representations

Define µ(S) = min
{
n ∈ N : S ↪→ Tn

}
, the minimal

degree of a transformation representation of S.

In general, µ(S × T ) 6 µ(S) + µ(T ).

Also define:
I Lm = left zero semigroup of order m;
I Rn = right zero semigroup of order n;
I Bm,n = m × n rectangular band.

Then:
I µ(L6) = µ(L2 × L3) = 5 � 7 = 3 + 4 = µ(L2) + µ(L3).
I µ(R25) = µ(R5 × R5) = 9 � 10 = 2 · µ(R5).
I µ(B2,2) = µ(L2×R2) = 4 � 5 = 3+2 = µ(L2) +µ(R2).

(D. Easdown, D. Easdown, J. D. Mitchell.)
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A different direction. . .

Let S2 = S and T2 = T be finitely generated semigroups.
I Define l to be the number of maximal L -classes of

S that are regular, and l ′ to be the number that
are not.

I Define r to be the number of maximal R-classes of
T that are regular, and r ′ to be the number that
are not.

Then:

rank(S × T ) 6 rank(S) · (r + 2r ′) + (l + 2l ′) · rank(T ).

(This can be smaller than 2 rank(S) rank(T ).)
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