Y. H. Wang

(Yanhui Wang)

Structure theorems for weakly B-abundant se

8th June 2010 1 / 17

- An element a of a semigroup S is called *regular* if there exists x ∈ S such that axa = a.
- A semigroup *S* is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

- An element a of a semigroup S is called *regular* if there exists $x \in S$ such that axa = a.
- A semigroup *S* is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

- An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

- An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

- An element a of a semigroup S is called regular if there exists x ∈ S such that axa = a.
- A semigroup S is called *regular* if all its elements are regular.
- A regular semigroup is called an *orthodox semigroup* if the set of all its idempotents forms a band.
- A regular semigroup is called an *inverse semigroup* if the set of all its idempotents forms a semilattice.

Green's equivalences

Definition

 Given a semigroup S, J.A. Green defined the following relations on S in 1951. For any a, b ∈ S

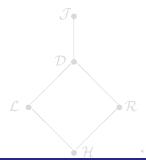
$$a \mathcal{L} b \Leftrightarrow S^{1}a = S^{1}b,$$

$$a \mathcal{R} b \Leftrightarrow aS^{1} = bS^{1},$$

$$a \mathcal{J} b \Leftrightarrow S^{1}aS^{1} = S^{1}bS^{1},$$

$$\mathcal{H} = \mathcal{L} \land \mathcal{R}, \qquad \mathcal{D} = \mathcal{L} \lor \mathcal{R}.$$

For Green's equivalences, we have the following figure.



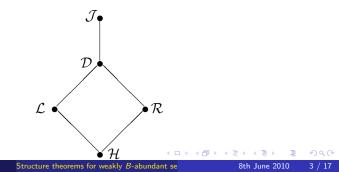
Green's equivalences

Definition

 Given a semigroup S, J.A. Green defined the following relations on S in 1951. For any a, b ∈ S

a
$$\mathcal{L} \ b \Leftrightarrow S^{1}a = S^{1}b$$
,
a $\mathcal{R} \ b \Leftrightarrow aS^{1} = bS^{1}$,
a $\mathcal{J} \ b \Leftrightarrow S^{1}aS^{1} = S^{1}bS^{1}$,
 $\mathcal{H} = \mathcal{L} \land \mathcal{R}, \qquad \mathcal{D} = \mathcal{L} \lor \mathcal{R}.$

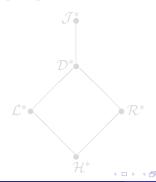
For Green's equivalences, we have the following figure.



Green's star equivalences

Definition

Given a semigroup S, for any a, b ∈ S, a L* b if a L b in a semigroup T such that S ⊆ T. Dually, The relation R*on S is defined. D* denotes the join of the relations L* and R*. H* denotes the intersection of the relations L* and R*.
Also, we have the following diagram.

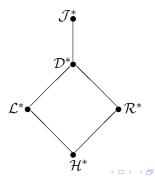


Green's star equivalences

Definition

• Given a semigroup S, for any $a, b \in S$, $a \mathcal{L}^* b$ if $a \mathcal{L} b$ in a semigroup T such that $S \subseteq T$. Dually, The relation \mathcal{R}^* on S is defined. \mathcal{D}^* denotes the join of the relations \mathcal{L}^* and \mathcal{R}^* . \mathcal{H}^* denotes the intersection of the relations \mathcal{L}^* and \mathcal{R}^* .

• Also, we have the following diagram.



- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S, then a^* and a^{\dagger} denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (*IC*) if for each element a in S and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e.
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (*IC*) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* is S satisfies the condition (*IC*) and its set of idempotents forms a semilattice.

- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S, then a^* and a^{\dagger} denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (*IC*) if for each element a in S and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e.
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (*IC*) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* is S satisfies the condition (*IC*) and its set of idempotents forms a semilattice.

- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S, then a^* and a^{\dagger} denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (*IC*) if for each element a in S and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e.
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (*IC*) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* is S satisfies the condition (*IC*) and its set of idempotents forms a semilattice.

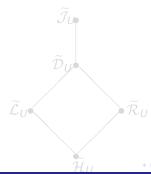
- A semigroup is called *abundant* if each \mathcal{L}^* -class and each \mathcal{R}^* -class contains an idempotent.
- Let S be an abundant semigroup and E be its set of idempotents. if a is an element of S, then a^* and a^{\dagger} denote typical idempotents in L_a^* and R_a^* , respectively. S is said to be *idempotent-connected* (*IC*) if for each element a in S and for some a^{\dagger} , a^* , there exists a bijection $\alpha : \langle a^{\dagger} \rangle \rightarrow \langle a^* \rangle$ satisfying $xa = a(x\alpha)$ for all $x \in \langle a^{\dagger} \rangle$, where for any $e \in E$, $\langle e \rangle$ is the principal order ideal generated by e.
- An abundant semigroup S is called a *type W semigroup* if S satisfies the condition (*IC*) and its set of idempotents forms a band.
- An abundant semigroup S is called a *type A semigroup* is S satisfies the condition (*IC*) and its set of idempotents forms a semilattice.

$\widetilde{\mathcal{L}}_U$, $\widetilde{\mathcal{R}}_U$ equivalences

Definition

 Given a semigroup S, M.V. Lawson studied the subset of all its idempotents U instead of the whole idempotent set E(S) and further more generalized Green's star relations. For any a, b ∈ S,

$$\begin{aligned} & a \, \widetilde{\mathcal{L}}_U \, b \Leftrightarrow (\forall e \in U) (ae = a \text{ if and only if } be = b), \\ & a \, \widetilde{\mathcal{R}}_U \, b \Leftrightarrow (\forall e \in U) (ea = a \text{ if and only if } eb = b), \\ & \widetilde{\mathcal{H}}_U = \widetilde{\mathcal{L}}_U \wedge \widetilde{\mathcal{R}}_U, \qquad \widetilde{\mathcal{D}}_U = \widetilde{\mathcal{L}}_U \vee \widetilde{\mathcal{R}}_U. \end{aligned}$$

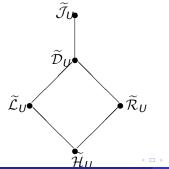


$\widetilde{\mathcal{L}}_U$, $\widetilde{\mathcal{R}}_U$ equivalences

Definition

 Given a semigroup S, M.V. Lawson studied the subset of all its idempotents U instead of the whole idempotent set E(S) and further more generalized Green's star relations. For any a, b ∈ S,

$$\begin{aligned} & a \, \widetilde{\mathcal{L}}_U \, b \Leftrightarrow (\forall e \in U) (ae = a \text{ if and only if } be = b), \\ & a \, \widetilde{\mathcal{R}}_U \, b \Leftrightarrow (\forall e \in U) (ea = a \text{ if and only if } eb = b), \\ & \widetilde{\mathcal{H}}_U = \widetilde{\mathcal{L}}_U \wedge \widetilde{\mathcal{R}}_U, \quad \widetilde{\mathcal{D}}_U = \widetilde{\mathcal{L}}_U \vee \widetilde{\mathcal{R}}_U. \end{aligned}$$



- A semigroup S with subset of all its idempotents U is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies the congruence condition
 (C) if *L* U is a right congruence and *R* U is a left congruence.
 otation

•
$$B :=$$
 a band
 $a^{\dagger} :=$ a typical idempotent in $\widetilde{R}_a \cap B$
 $a^* :=$ a typical idempotent in $\widetilde{L}_a \cap B$
 $\langle e \rangle :=$ the principal order ideal generated by $e \in B$
 $= \{x \in B : x \leq e\}$
 $= \{x \in B : ex = xe = x\}$

- A semigroup S with subset of all its idempotents U is said to be weakly U-abundant if each $\tilde{\mathcal{L}}_U$ -class and each $\tilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies the congruence condition
 (C) if \$\tilde{L}_U\$ is a right congruence and \$\tilde{R}_U\$ is a left congruence.

Notation

```
• B := a band

a^{\dagger} := a typical idempotent in \widetilde{R}_a \cap B

a^* := a typical idempotent in \widetilde{L}_a \cap B

\langle e \rangle := the principal order ideal generated by e \in B

= \{x \in B : x \le e\}

= \{x \in B : ex = xe = x\}
```

- A semigroup S with subset of all its idempotents U is said to be weakly U-abundant if each $\widetilde{\mathcal{L}}_U$ -class and each $\widetilde{\mathcal{R}}_U$ -class contains an idempotent in U.
- A weakly U-abundant semigroup S satisfies the congruence condition (C) if $\widetilde{\mathcal{L}}_U$ is a right congruence and $\widetilde{\mathcal{R}}_U$ is a left congruence.

Notation

•
$$B :=$$
 a band
 $a^{\dagger} :=$ a typical idempotent in $\widetilde{R}_a \cap B$
 $a^* :=$ a typical idempotent in $\widetilde{L}_a \cap B$
 $\langle e \rangle :=$ the principal order ideal generated by $e \in B$
 $= \{x \in B : x \le e\}$
 $= \{x \in B : ex = xe = x\}$

Let S be a weakly B-abundant semigroup.

- S satisfies the condition (PIC) if for each a ∈ S and for any a[†], a^{*}, there is an isomorphism α : ⟨a[†]⟩ → ⟨a^{*}⟩ satisfying xa = a(xα) for all x ∈ ⟨a[†]⟩.
- S satisfies the condition (IC) (with respect to B) if for any a ∈ S and some a*, a[†], there exists an order isomorphism α : ⟨a[†]⟩ → ⟨a*⟩ such that xa = a(xα).
- S satisfies the condition (WIC) (with respect to B) if for any a ∈ S and some a*, a[†], if x ∈ ⟨a[†]⟩ then there exists y ∈ B with xa = ay, and dually, if z ∈ ⟨a*⟩ then there exists t ∈ B with ta = az.

Let S be a weakly B-abundant semigroup.

- S satisfies the condition (PIC) if for each a ∈ S and for any a[†], a^{*}, there is an isomorphism α : ⟨a[†]⟩ → ⟨a^{*}⟩ satisfying xa = a(xα) for all x ∈ ⟨a[†]⟩.
- S satisfies the condition (IC) (with respect to B) if for any a ∈ S and some a*, a[†], there exists an order isomorphism α : ⟨a[†]⟩ → ⟨a*⟩ such that xa = a(xα).
- S satisfies the condition (WIC) (with respect to B) if for any a ∈ S and some a*, a[†], if x ∈ ⟨a[†]⟩ then there exists y ∈ B with xa = ay, and dually, if z ∈ ⟨a^{*}⟩ then there exists t ∈ B with ta = az.

Let S be a weakly B-abundant semigroup.

- S satisfies the condition (PIC) if for each a ∈ S and for any a[†], a^{*}, there is an isomorphism α : ⟨a[†]⟩ → ⟨a^{*}⟩ satisfying xa = a(xα) for all x ∈ ⟨a[†]⟩.
- S satisfies the condition (IC) (with respect to B) if for any a ∈ S and some a*, a[†], there exists an order isomorphism α : ⟨a[†]⟩ → ⟨a*⟩ such that xa = a(xα).
- S satisfies the condition (WIC) (with respect to B) if for any a ∈ S and some a*, a[†], if x ∈ ⟨a[†]⟩ then there exists y ∈ B with xa = ay, and dually, if z ∈ ⟨a^{*}⟩ then there exists t ∈ B with ta = az.

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R.Gould showed that a weakly *B*-abundant semigroup *S* with (*C*) and (*WIC*)(res. (*IC*)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly *B*-abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly *B*-abundant semigroup *S* with (*C*) and (*PIC*) if and only if it is the spined product of W_B with a weakly B/D-ample semigroup.

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R.Gould showed that a weakly *B*-abundant semigroup *S* with (*C*) and (*WIC*)(res. (*IC*)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly *B*-abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly *B*-abundant semigroup *S* with (*C*) and (*PIC*) if and only if it is the spined product of W_B with a weakly B/D-ample semigroup.

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R.Gould showed that a weakly *B*-abundant semigroup *S* with (*C*) and (*WIC*)(res. (*IC*)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly *B*-abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.

• In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly *B*-abundant semigroup *S* with (*C*) and (*PIC*) if and only if it is the spined product of W_B with a weakly B/D-ample semigroup.

- A regular semigroup S is an orthodox semigroup if and only if it is the spined product of the Hall semigroup W_B with an inverse semigroup, where the Hall semigroup W_B is a fundamental subsemigroup of $\mathcal{OP}(B/\mathcal{L}) \times \mathcal{OP}^*(B/\mathcal{R})$.
- In 1981, A. El-Qallali and J. Fountain showed that an abundant semigroup is a type W semigroup if and only if it is the spined product of the Hall semigroup W_B with a type A semigroup.
- In 2008, A. El-Qallali, J. Fountain and V.A.R.Gould showed that a weakly *B*-abundant semigroup *S* with (*C*) and (*WIC*)(res. (*IC*)) if and only if it is the spined product of U_B (res. V_B) with a weakly B/\mathcal{D} -ample semigroup which is the analogue for weakly *B*-abundant semigroup of inverse semigroups, where $W_B \subseteq V_B \subseteq U_B$.
- In 2009, X.M. Ren, Y.H. Wang and K.P. Shum show that a weakly *B*-abundant semigroup *S* with (*C*) and (*PIC*) if and only if it is the spined product of W_B with a weakly B/D-ample semigroup.

In 2008, G.M.S. Gomes and V.A.R. Gould constructed S_B from a band B, which is a B
-fundamental weakly B
-abundant semigroup with (C), where B
= {(ρ_e, λ_e) : e ∈ B}.

Lemma (Gomes and Gould) Let S be a weakly B-abundant semigroup with (C). Then $\theta: S \to S_B$ given by

$$a\theta = (\alpha_a, \beta_a),$$

where for all $x \in B^1$, $L_x \alpha_a = L_{(xa)^*}$ and $R_x \beta_a = R_{(ax)^{\dagger}}$, is an admissible homomorphism with kernel μ_B . Moreover, $\theta|_B : B \to \overline{B}$ is an isomorphism.

In 2008, G.M.S. Gomes and V.A.R. Gould constructed S_B from a band B, which is a B
-fundamental weakly B
-abundant semigroup with (C), where B
= {(ρ_e, λ_e) : e ∈ B}.

Lemma (Gomes and Gould) Let S be a weakly B-abundant semigroup with (C). Then $\theta: S \to S_B$ given by

$$\mathbf{a}\boldsymbol{\theta} = (\boldsymbol{\alpha}_{\mathbf{a}}, \boldsymbol{\beta}_{\mathbf{a}}),$$

where for all $x \in B^1$, $L_x \alpha_a = L_{(xa)^*}$ and $R_x \beta_a = R_{(ax)^{\dagger}}$, is an admissible homomorphism with kernel μ_B . Moreover, $\theta|_B : B \to \overline{B}$ is an isomorphism.

Theorem 1 Let S be a weakly B-abundant semigroup with (C) and δ be the smallest admissible Ehresmann congruence on S. The mapping $\phi: a \mapsto (a\theta, a\delta)$ is an isomorphism from a weakly *B*-abundant semigroup S with (C) to the spined product $S_B * S/\delta$ of S_B and S/δ with respect to S_B/δ_1 , δ_1^{\natural} and ψ , where $\psi: S/\delta \to S_B/\delta_1$ defined by $s\delta\psi = s\theta\delta_1$ for any $s \in S$ is an admissible homomorphism and $\psi \mid_{B/\delta} : B/\delta \to \overline{B}/\delta_1$ is an isomorphism, if and only if (i) for any $a, b \in S$, $a \delta b$ implies $a\theta \delta_1 b\theta$ and $e \delta f$ if and only if $e\theta \delta_1 f\theta$ for any $e, f \in B$; (ii) $\delta \cap \mu_B = \iota$, where $\mu_B = ker\theta$; (iii) if $x \in S_B$ and $(x, s\delta) \in S_B * S/\delta$ for some $s \in S$ then there exists $t \in S$ such that $x = t\theta$ and $t\delta = s\delta$.

Definition A weakly *B*-abundant semigroup *S* is said to be a *weakly B*-abundant semigroup with (C) and (N) if *S* satisfies the congruence condition (C) and the set of distinguished idempotents is a normal band.

Lemma Let S be a weakly B-abundant semigroup with (C) and (N). Then the relation δ on S defined by the rule

 $a \, \delta \, b \Leftrightarrow a = a^{\dagger} b a^*$ and $b = b^{\dagger} a b^*$,

for some $a^{\dagger}, a^*, b^{\dagger}, b^* \in B$ with $a^{\dagger} \widetilde{\mathcal{R}}_B a \widetilde{\mathcal{L}}_B a^*$, and $b^{\dagger} \widetilde{\mathcal{R}}_B b \widetilde{\mathcal{L}}_B b^*$,is the smallest admissible Ehresmann congruence on S.

Lemma Let S be a weakly B-abundant semigroup with (C) and (N). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1. Definition A weakly *B*-abundant semigroup *S* is said to be a *weakly B*-abundant semigroup with (C) and (N) if *S* satisfies the congruence condition (C) and the set of distinguished idempotents is a normal band.

Lemma Let S be a weakly B-abundant semigroup with (C) and (N). Then the relation δ on S defined by the rule

 $a \,\delta \,b \Leftrightarrow a = a^{\dagger} b a^*$ and $b = b^{\dagger} a b^*$,

for some $a^{\dagger}, a^*, b^{\dagger}, b^* \in B$ with $a^{\dagger} \widetilde{\mathcal{R}}_B a \widetilde{\mathcal{L}}_B a^*$, and $b^{\dagger} \widetilde{\mathcal{R}}_B b \widetilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S.

Lemma Let S be a weakly B-abundant semigroup with (C) and (N). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1. Definition A weakly *B*-abundant semigroup *S* is said to be a *weakly B*-abundant semigroup with (C) and (N) if *S* satisfies the congruence condition (C) and the set of distinguished idempotents is a normal band.

Lemma Let S be a weakly B-abundant semigroup with (C) and (N). Then the relation δ on S defined by the rule

 $a \,\delta \,b \Leftrightarrow a = a^{\dagger} b a^*$ and $b = b^{\dagger} a b^*$,

for some $a^{\dagger}, a^*, b^{\dagger}, b^* \in B$ with $a^{\dagger} \widetilde{\mathcal{R}}_B a \widetilde{\mathcal{L}}_B a^*$, and $b^{\dagger} \widetilde{\mathcal{R}}_B b \widetilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S.

Lemma Let S be a weakly B-abundant semigroup with (C) and (N). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1.

Theorem 2 A weakly *B*-abundant semigroup *S* with (*C*) and (*N*) is isomorphic to the spined product $S_B * S/\delta$ of S_B and S/δ with respect to S_B/δ_1 , δ_1^{\natural} and ψ , where $\psi : S/\delta \to S_B/\delta_1$ defined by $s\delta\psi = s\theta\delta_1$ for any $s \in S$ is an admissible homomorphism and $\psi \mid_{B/\delta} : B/\delta \to \overline{B}/\delta_1$ is an isomorphism.

Definition A weakly *B*-abundant semigroup *S* is said to a *weakly B*-superabundant semigroup if every $\tilde{\mathcal{H}}_B$ -class contains a distinguished idempotent.

Lemma Let S be a weakly B-abundant semigroup. For any $e, f \in B$, $e \widetilde{\mathcal{D}}_B f \Leftrightarrow e \mathcal{D}^B f$ if and only if S is a weakly B-superabundant semigroup.

Lemma Let S be a weakly B-superabundant semigroup with (C). Then the relation δ on S defined by the rule

 $a \,\delta \, b \Leftrightarrow a = a^{\dagger} b a^*$ and $b = b^{\dagger} a b^*$,

for some $a^{\dagger}, a^*, b^{\dagger}, b^* \in B$ with $a^{\dagger} \widetilde{\mathcal{R}}_B a \widetilde{\mathcal{L}}_B a^*$, and $b^{\dagger} \widetilde{\mathcal{R}}_B b \widetilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S.

Definition A weakly *B*-abundant semigroup *S* is said to a *weakly B*-superabundant semigroup if every $\tilde{\mathcal{H}}_B$ -class contains a distinguished idempotent.

Lemma Let S be a weakly B-abundant semigroup. For any $e, f \in B$, $e \widetilde{\mathcal{D}}_B f \Leftrightarrow e \mathcal{D}^B f$ if and only if S is a weakly B-superabundant semigroup.

Lemma Let S be a weakly B-superabundant semigroup with (C). Then the relation δ on S defined by the rule

 $a \delta b \Leftrightarrow a = a^{\dagger} b a^*$ and $b = b^{\dagger} a b^*$,

for some $a^{\dagger}, a^*, b^{\dagger}, b^* \in B$ with $a^{\dagger} \widetilde{\mathcal{R}}_B a \widetilde{\mathcal{L}}_B a^*$, and $b^{\dagger} \widetilde{\mathcal{R}}_B b \widetilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S.

Definition A weakly *B*-abundant semigroup *S* is said to a *weakly B*-superabundant semigroup if every $\tilde{\mathcal{H}}_B$ -class contains a distinguished idempotent.

Lemma Let S be a weakly B-abundant semigroup. For any $e, f \in B$, $e \widetilde{\mathcal{D}}_B f \Leftrightarrow e \mathcal{D}^B f$ if and only if S is a weakly B-superabundant semigroup.

Lemma Let S be a weakly B-superabundant semigroup with (C). Then the relation δ on S defined by the rule

 $a \delta b \Leftrightarrow a = a^{\dagger} b a^*$ and $b = b^{\dagger} a b^*$,

for some $a^{\dagger}, a^*, b^{\dagger}, b^* \in B$ with $a^{\dagger} \widetilde{\mathcal{R}}_B a \widetilde{\mathcal{L}}_B a^*$, and $b^{\dagger} \widetilde{\mathcal{R}}_B b \widetilde{\mathcal{L}}_B b^*$, is the smallest admissible Ehresmann congruence on S.

Lemma Let S be a weakly B-superabundant semigroup with (C). Then the relation δ defined in the above Lemma satisfies these conditions (i), (ii), (iii) in Theorem 1.

Theorem 3 A weakly *B*-superabundant semigroup *S* with (*C*) is isomorphic to the spined product $S_B * S/\delta$ of S_B and S/δ with respect to S_B/δ_1 , δ_1^{\natural} and ψ , where $\psi : S/\delta \to S_B/\delta_1$ defined by $s\delta\psi = s\theta\delta_1$ for any $s \in S$ is an admissible homomorphism and $\psi \mid_{B/\delta} : B/\delta \to \overline{B}/\delta_1$ is an isomorphism.

Example 1 consider this normal band $B = \{e, f, 0\}$ with table

*	1	f	0
е	е	f	0
f	е	f	0
0	0	0	0

 S_B does not have (WIC).

< 🗇 🕨 < 🖃 🕨

3

Example 2 Let $\langle a \rangle$ be a monogenic monoid generated by a and $X = \{x_i : i \in N\}$ be a right zero semigroup. Set $S = \langle a \rangle \bigcup X$. We define the operation * as the following table:

*	1	а	a ⁿ	Xi
1	1	а	a ⁿ	xi
a a ^m	a a ^m	a ²	a^{n+1}	xi
		a^{m+1}	a^{m+n}	xi
x_j	xj	x_{j+1}	x_{j+n}	Xi

Then we can check that S is a weakly B-superabundant semigroup with the distinguished band $\{1\} \bigcup X$. Moreover we can find S satisfies the congruence condition. But we yet find that for any $x_i \in \langle 1 \rangle$ there doesn't exist $x_i \in X$ such that $x_i a^n \neq a^n x_i$, where $n \ge 1$, so S fails to have (WIC).

(日) (同) (ヨ) (ヨ) (ヨ)