Symmetric and dual symmetric inverse monoids

James East

University of Sydney

Study Semigroup University of York 20th May 2010

Definition

A semigroup *S* is inverse if

$$(\forall s \in S)(\exists ! s' \in S) \quad ss's = s \text{ and } s'ss' = s'.$$

Equivalently (and non-trivially), S is inverse if:

- S is regular: $(\forall s \in S)(\exists t \in S) \ sts = s$, and
- idempotents of *S* commute.

Note that the above definition(s) are expressed in terms of quasi-identities. For example, "idempotents commute":

$$(\forall x, y \in S) \quad ((xx = x) \land (yy = y)) \Rightarrow (xy = yx).$$

It is possible to define the class of inverse semigroups, as algebras $\langle S, \cdot, ' \rangle$ with a binary and unary operation, using only identities:

$$(xy)z = x(yz),$$

 $xx'x = x, x'xx' = x',$
 $(xy)' = y'x', (x')' = x,$
 $xx'y'y = y'yxx'.$

In other words, the class of inverse semigroups is a variety: it is closed under taking subalgebras, homomorphic images, and arbitrary direct products.

Example

Any group is an inverse semigroup:
$$g' = g^{-1}$$
.

Interesting fact: a semigroup S is a group if and only if it satisfies the quasi-identity:

$$(\forall s \in S)(\exists ! s' \in S) \quad ss's = s.$$

Example

Any semilattice (semigroup of commuting idempotents) is an inverse semigroup: e' = e.

ヨッ イヨッ イヨッ

The symmetric inverse monoid on a set X is

$$\mathcal{I}_X = \{ \text{bijections } A \to B \, | \, A, B \text{ subsets of } X \}.$$

The semigroup operation is "compose wherever possible" (composition as binary relations).

If $\alpha : A \to B$ and $\beta : C \to D$, then $\alpha\beta : E \to F$, where

•
$$E = (B \cap C)\alpha^{-1}$$
 and $F = (B \cap C)\beta$, and
• $x(\alpha\beta) = (x\alpha)\beta$ for all $x \in E$.

The inverse semigroup structure is given by $\alpha' = \alpha^{-1}$ — the inverse function, with dom $(\alpha^{-1}) = im(\alpha)$ and $im(\alpha^{-1}) = dom(\alpha)$, etc.

Pitcures help in the finite case:

Theorem (Wagner-Preston)

If S is an inverse semigroup, then there is a faithful representation

$$\varphi: S \to \mathcal{I}_S: s \mapsto \varphi_s,$$

given by

$$\varphi_s: Ss^{-1} \to Ss: x \mapsto xs.$$

Note: One may check that

$$\varphi_{s} = \rho_{s} \cap (\rho_{s^{-1}})^{-1}$$

where $\rho: S \to \mathcal{T}_S : s \mapsto \rho_s$ is the Cayley representation, defined by

$$\rho_{s}: S \to S: x \mapsto xs.$$

The dual symmetric inverse monoid on a set X is the set of all block bijections on X:

$$\mathcal{I}_X^* = \{ \text{bijections } \mathbf{A} \to \mathbf{B} \, | \, \mathbf{A}, \mathbf{B} \text{ quotients of } X \}.$$

The semigroup operation is defined dually (in a categorical sense).

If
$$\alpha: X/\varepsilon_1 \to X/\varepsilon_2$$
 and $\beta: X/\eta_1 \to X/\eta_2$, then
 $\alpha\beta: X/\zeta_1 \to X/\zeta_2$, where

•
$$\zeta_1 = (\varepsilon_2 \vee \eta_1) \alpha^{-1}$$
 and $\zeta_2 = (\varepsilon_2 \vee \eta_1) \beta$.

A block of X/ζ_1 is a union of ε_1 -classes — it is mapped to a ζ_2 -class as appropriate.

Pitcures help in the finite case:

The inverse semigroup structure on \mathcal{I}_X^* is given by turning pictures upside down.

Theorem (FitzGerald and Leech)

Let S be an inverse semigroup. For $s \in S$ define an equivalence

$$\varepsilon_s = \{(x, y) \in S \times S \mid xs = ys\}.$$

There is a faithful representation

$$\chi: S \to \mathcal{I}_S^*: s \mapsto \chi_s,$$

given by

$$\chi_{s}: S/\varepsilon_{s^{-1}} \to S/\varepsilon_{s}: [x]_{\varepsilon_{s^{-1}}} \mapsto [xs]_{\varepsilon_{s}}.$$

Note: One may check that $\chi_s = (\rho_s \cup (\rho_{s^{-1}})^{-1})^+$, where $\rho: S \to \mathcal{T}_S : s \mapsto \rho_s$ is the Cayley representation, and α^+ denotes the least block bijection containing the relation α .

The FitzGerald-Leech Theorem

The Fitz-Gerald-Leech theorem is difficult. But there is a simple embedding $\mathcal{I}_X \to \mathcal{I}_Y^*$, where Y is a set with |Y| = |X| + 1. In pictures:

A block bijection is uniform if blocks in the domain are mapped to blocks of equal size in the image.

When X is finite, the image of the above embedding lies in the submonoid

$$\mathfrak{F}_{Y}^{*} = \big\{ lpha \in \mathcal{I}_{Y}^{*} \, \big| \, lpha \text{ is uniform} \big\}.$$

The monoid

$$\mathfrak{F}_X^* = \left\{ \alpha \in \mathcal{I}_X^* \, \big| \, \alpha \text{ is uniform} \right\}$$

is the largest factorisable inverse monoid contained in \mathcal{I}_X^* .

An inverse monoid S is factorisable if S = E(S)G(S), where

• $E(S) = \{e \in S \mid e^2 = e\}$, the semilattice of idempotents, and • $G(S) = \{g \in S \mid gg^{-1} = g^{-1}g = 1\}$, the group of units.

Theorem

Any finite inverse semigroup S with |S| = n embeds in \mathfrak{F}_{n+1}^* .

The factorisable part of \mathcal{I}_X^*

The "n + 1" in the above theorem is sharp, even if S has an identity.

Example

Let $S = \{1, s, s^2\}$ where $s^3 = s$. The representation in \mathfrak{F}_4^* from the theorem is given by:

$$1\mapsto \fbox{}$$
 $\rag{}$ $\rag{}$ $s\mapsto \rag{}$ $\rag{}$ $s^2\mapsto \rag{}$ $\rag{}$ $\rag{}$

But S does not embed in \mathfrak{F}_3^* — maximal subgroups of \mathfrak{F}_3^* at non-identity idempotents are trivial, but $\{s, s^2\}$ is a subgroup of S.

However, S does of course embed in \mathcal{I}_3^* . The embedding is:

$$1\mapsto \fbox{}$$
 , $s\mapsto \bigstar{}$, $s^2\mapsto \fbox{}$

There is a notion of "uniform" for elements of the symmetric inverse monoid \mathcal{I}_X .

Say $\alpha \in \mathcal{I}_X$ is uniform if

$$|X \setminus \operatorname{dom}(\alpha)| = |X \setminus \operatorname{im}(\alpha)|.$$

The monoid

$$\mathfrak{F}_X = \left\{ \alpha \in \mathcal{I}_X \mid \alpha \text{ is uniform} \right\}$$

is the largest factorisable inverse monoid contained in \mathcal{I}_X . We have

$$\mathfrak{F}_X = \mathcal{I}_X$$
 iff X is finite.

So the Vagner-Preston Theorem implies that any finite inverse semigroup embeds in some \mathfrak{F}_X .

Suppose now X is infinite. Let X' be disjoint from X, and let

$$': X \to X': x \mapsto x'$$

be a bijection. Considering the elements of \mathcal{I}_{X} as binary relations, we have an obvious embedding

$$\mathcal{I}_X \to \mathfrak{F}_{X \cup X'} : \alpha \mapsto \alpha.$$

So every inverse semigroup embeds in some \mathfrak{F}_X .

But if S is a monoid, this is not a *monoid embedding*.

Let M be an infinite monoid, and $\phi: M \to \mathcal{I}_X$ any monoid embedding. Define

$$\Phi: M \to \mathfrak{F}_{X \cup X'}: m \mapsto \left\{ \begin{array}{cc} m\phi \cup \operatorname{id}_{X'} & \text{if } m \in G(M) \\ m\phi & \text{if } m \in M \setminus G(M). \end{array} \right.$$

- This is a bijective map.
- It is a monoid homomorphism if and only if the set $M \setminus G(M)$ is an ideal of M.
- And M \ G(M) is an ideal of M if and only if M contains no bicyclic submonoid.

Theorem

An infinite inverse monoid M embeds as a submonoid in \mathfrak{F}_M if and only if M contains no bicyclic submonoid.

The earlier embedding $\mathcal{I}_X \to \mathcal{I}^*_{X+1}$ restricts to an embedding

 $\mathfrak{F}_X \to \mathfrak{F}^*_{X+1}.$

Theorem

An infinite inverse monoid M embeds as a submonoid in \mathfrak{F}_M^* if and only if M contains no bicyclic submonoid.