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Inverse semigroups

Definition

A semigroup S is inverse if

(∀s ∈ S)(∃!s ′ ∈ S) ss ′s = s and s ′ss ′ = s ′.

Equivalently (and non-trivially), S is inverse if:

S is regular: (∀s ∈ S)(∃t ∈ S) sts = s, and

idempotents of S commute.
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Inverse semigroups

Note that the above definition(s) are expressed in terms of
quasi-identities. For example, “idempotents commute”:

(∀x , y ∈ S)
(

(xx = x) ∧ (yy = y)
)

⇒ (xy = yx).

It is possible to define the class of inverse semigroups, as algebras
〈S , ·, ′〉 with a binary and unary operation, using only identities:

(xy)z = x(yz),

xx ′x = x , x ′xx ′ = x ′,

(xy)′ = y ′x ′, (x ′)′ = x ,

xx ′y ′y = y ′yxx ′.

In other words, the class of inverse semigroups is a variety: it is
closed under taking subalgebras, homomorphic images, and
arbitrary direct products.
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Inverse semigroups

Example

Any group is an inverse semigroup: g ′ = g−1.

Interesting fact: a semigroup S is a group if and only if it
satisfies the quasi-identity:

(∀s ∈ S)(∃!s ′ ∈ S) ss ′s = s.

Example

Any semilattice (semigroup of commuting idempotents) is an
inverse semigroup: e′ = e.
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Symmetric inverse monoids

The symmetric inverse monoid on a set X is

IX = {bijections A → B |A,B subsets of X}.

The semigroup operation is “compose wherever possible”
(composition as binary relations).

If α : A → B and β : C → D, then αβ : E → F , where

E = (B ∩ C )α−1 and F = (B ∩ C )β, and

x(αβ) = (xα)β for all x ∈ E .

The inverse semigroup structure is given by α′ = α−1 — the
inverse function, with dom(α−1) = im(α) and im(α−1) = dom(α),
etc.
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Symmetric inverse monoids

Pitcures help in the finite case:

α =

β =

= αβ
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The Wagner-Preston Theorem

Theorem (Wagner-Preston)

If S is an inverse semigroup, then there is a faithful representation

ϕ : S → IS : s 7→ ϕs ,

given by

ϕs : Ss
−1 → Ss : x 7→ xs.

Note: One may check that

ϕs = ρs ∩ (ρs−1)−1

where ρ : S → TS : s 7→ ρs is the Cayley representation, defined by

ρs : S → S : x 7→ xs.
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Dual symmetric inverse monoids

The dual symmetric inverse monoid on a set X is the set of all
block bijections on X :

I∗

X = {bijections A → B |A,B quotients of X}.

The semigroup operation is defined dually (in a categorical sense).

If α : X/ε1 → X/ε2 and β : X/η1 → X/η2, then

αβ : X/ζ1 → X/ζ2, where

ζ1 = (ε2 ∨ η1)α
−1 and ζ2 = (ε2 ∨ η1)β.

A block of X/ζ1 is a union of ε1-classes — it is mapped to a
ζ2-class as appropriate.
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Dual symmetric inverse monoids

Pitcures help in the finite case:

α =

β =

= αβ

The inverse semigroup structure on I∗

X
is given by turning pictures

upside down.
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The FitzGerald-Leech Theorem

Theorem (FitzGerald and Leech)

Let S be an inverse semigroup. For s ∈ S define an equivalence

εs =
{

(x , y) ∈ S × S
∣

∣ xs = ys
}

.

There is a faithful representation

χ : S → I∗

S : s 7→ χs ,

given by

χs : S/εs−1 → S/εs : [x ]ε
s−1

7→ [xs]εs .

Note: One may check that χs =
(

ρs ∪ (ρs−1)−1
)+

, where
ρ : S → TS : s 7→ ρs is the Cayley representation, and α+ denotes
the least block bijection containing the relation α.
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The FitzGerald-Leech Theorem

The Fitz-Gerald-Leech theorem is difficult. But there is a simple
embedding IX → I∗

Y
, where Y is a set with |Y | = |X |+ 1. In

pictures:

7→

A block bijection is uniform if blocks in the domain are mapped to
blocks of equal size in the image.

When X is finite, the image of the above embedding lies in the
submonoid

F∗

Y =
{

α ∈ I∗

Y

∣

∣α is uniform
}

.
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The factorisable part of I∗
X

The monoid
F∗

X =
{

α ∈ I∗

X

∣

∣α is uniform
}

is the largest factorisable inverse monoid contained in I∗

X
.

An inverse monoid S is factorisable if S = E (S)G (S), where

E (S) = {e ∈ S | e2 = e}, the semilattice of idempotents, and

G (S) = {g ∈ S | gg−1 = g−1g = 1}, the group of units.

Theorem

Any finite inverse semigroup S with |S | = n embeds in F∗

n+1.
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The factorisable part of I∗
X

The “n + 1” in the above theorem is sharp, even if S has an
identity.

Example

Let S = {1, s, s2} where s3 = s. The representation in F∗

4 from the
theorem is given by:

1 7→ , s 7→ , s2 7→ .

But S does not embed in F∗

3 — maximal subgroups of F∗

3 at
non-identity idempotents are trivial, but {s, s2} is a subgroup of S .

However, S does of course embed in I∗

3 . The embedding is:

1 7→ , s 7→ , s2 7→ .
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The factorisable part of IX

There is a notion of “uniform” for elements of the symmetric
inverse monoid IX .

Say α ∈ IX is uniform if

∣

∣X \ dom(α)
∣

∣ =
∣

∣X \ im(α)
∣

∣.

The monoid
FX =

{

α ∈ IX
∣

∣α is uniform
}

is the largest factorisable inverse monoid contained in IX . We
have

FX = IX iff X is finite.

So the Vagner-Preston Theorem implies that any finite inverse
semigroup embeds in some FX .
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The factorisable part of IX

Suppose now X is infinite. Let X ′ be disjoint from X , and let

′ : X → X ′ : x 7→ x ′

be a bijection. Considering the elements of IX as binary relations,
we have an obvious embedding

IX → FX∪X ′ : α 7→ α.

So every inverse semigroup embeds in some FX .

But if S is a monoid, this is not a monoid embedding.
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The factorisable part of IX

Let M be an infinite monoid, and φ : M → IX any monoid
embedding. Define

Φ : M → FX∪X ′ : m 7→

{

mφ ∪ idX ′ if m ∈ G (M)
mφ if m ∈ M \ G (M).

This is a bijective map.

It is a monoid homomorphism if and only if the set M \ G (M)
is an ideal of M.

And M \ G (M) is an ideal of M if and only if M contains no
bicyclic submonoid.
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The factorisable part of IX

Theorem

An infinite inverse monoid M embeds as a submonoid in FM if and

only if M contains no bicyclic submonoid.

The earlier embedding IX → I∗

X+1 restricts to an embedding

FX → F∗

X+1.

Theorem

An infinite inverse monoid M embeds as a submonoid in F∗

M
if and

only if M contains no bicyclic submonoid.
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