Congruences and quotients of inverse semigroups

Nick Gilbert

Department of Mathematics Heriot-Watt University, Edinburgh

People with one idea

- William Hazlitt (1778-1830)
- On people with one idea in Table Talk (1822)
- "There are people who have but one idea: at least, if they have more, they keep it a secret ..."

Origins

- Idea arose in PhD work of Nouf AlYamani
- To construct a quotient of an ordered groupoid
- Some cases already considered:
 - Higgins 1971: *Categories and groupoids*. Normal subgroupoids and quotients
 - Matthews 2004: Bangor PhD thesis. Quotient of an ordered groupoid by a union of subgroups
- No general construction?

Two scenarios

• Optimism

- A new, useful, and interesting construction
- Applications to inverse semigroups . . .
- ... and other classes such as restriction semigroups?
- Another ordered groupoid construction with a home in semigroup theory

- Pessimism
- An obscure idea that has been around a while
- Already known about in semigroups
- Idea doesn't fulfill its promise
- Think about something else

Two scenarios

- A new, useful, and interesting construction
- Applications to inverse semigroups ...
- ... and other classes such as restriction semigroups?
- Another ordered groupoid construction with a home in semigroup theory

- An obscure idea that has been around a while
- Already known about in semigroups
- Idea doesn't fulfill its promise
- Think about something else
- 45%

Normal inverse subsemigroups

Inverse subsemigroup N of inverse semigroup S is *normal* if

•
$$E(N) = E(S)$$
. This says N is full

• for all $s \in S$, $n \in N$, $s^{-1}ns \in N$. This say N is self-conjugate.

E(S) itself is normal, and defines the *natural partial order*.

$$s \leq t \iff \exists e \in E(S) \text{ with } s = et \iff s = ss^{-1}t.$$

The N-preorder

Normal N now gives:

$$s \leq_N t \iff \exists a, b \in N \text{ with } a \cdot s \cdot b \leq t$$

where $x \cdot y$ is a *trace product*:

$$x \cdot y = xy$$
 and defined when $x^{-1}x = yy^{-1}$.

Symmetrize \leq_N to get \simeq_N :

$$s \simeq_N t \iff s \leq_N t$$
 and $t \leq_N s$.

Properties of \leq_N

- $\leq_{E(S)}$ is the natural partial order \leq ,
- $s \leq t \Longrightarrow s \leq_N t$,
- $s \leq_N e \Longrightarrow s \in N$,
- $s \leq_N t \Longrightarrow st^{-1} \in N$,
- \leq_N is a preorder.

Properties of \simeq_N

- If $n \in N$ then $nn^{-1} \simeq_N n \simeq_N n^{-1} \simeq_N n^{-1}n$,
- If $s \simeq_N t$ then $ss^{-1} \simeq_N tt^{-1}$, $s^{-1}s \simeq_N t^{-1}t$ and $s^{-1} \simeq_N t^{-1}$,
- \simeq_N restricted to E(S) is Green's \mathcal{J} -relation on E(N) = E(S) in N,
- if N = S then \simeq_S is \mathcal{J} ,
- if N = E(S) then $\simeq_{E(S)}$ is equality,
- \simeq_N is an equivalence relation that saturates N.

Only get an ordered groupoid

 \simeq_N need not be a congruence on S so quotient set $S/\!\!/N$ need not be an inverse semigroup, but:

Theorem

 $S/\!/N$ is an ordered groupoid.

Composition in S//N

 $[s]_N \cdot [t]_N = [sat]_N \,.$

3

э

Polycyclic monoids

Nivat-Perrot (1970): for
$$A = \{a_1, ..., a_n\}$$
,

$$P_n = \langle A : a_i a_i^{-1} = 1, a_i^{-1} a_j = 0 \ (i \neq j) \rangle.$$

Non-zero elements represented by $A^* \times A^*$:

$$(r, s)(s, u) = (r, u)$$

 $(r, s)(ps, u) = (pr, ps)(ps, u) = (pr, u)$
 $(r, pt)(t, u) = (r, pt)(pt, pu) = (r, pu)$
 $(r, s)(t, u) = 0$ otherwise

Full inverse subsemigroups of P_n

Non-zero elements of a submonoid \leftrightarrow subset of $A^* \times A^*$:

- Meakin-Sapir (1993): positively self-conjugate submonoids of *P_n* correspond to congruences on *A*^{*},
- Lawson (2009): full inverse submonoids correspond to left congruences on *A**,
- normal inverse submonoids correspond to right-cancellative congruences on *A**.

Gauge inverse monoids

Jones and Lawson (2012): gauge inverse monoid

$$G_n = \{(s,t) : |s| = |t|\} \cup \{0\} \subset P_n$$
.

- Corresponds to length relation on A^* ,
- Normal inverse submonoid of P_n ,
- $\mathcal{D} = \mathcal{J}$
- $\bullet~\mathcal{J}-\text{classes}$ indexed by word-length
- $P_n/\!\!/G_n$ is the Brandt semigroup on the non-negative integers.

Congruence pairs

For a relation ρ on S, its *trace* is its restriction to E(S) and its kernel is

$$\ker \rho = \{s \in S : s\rho e \text{ for some } e \in E(S)\}.$$

A congruence on E(S) is normal if

$$\forall s \in S : e \
ho \ f \Longrightarrow s^{-1} es \
ho \ s^{-1} fs$$
 .

A congruence pair is a normal inverse semigroup K and a normal congruence ν on E(S) such that

•
$$se \in K$$
 and $s^{-1}s \ \nu \ e \Longrightarrow s \in K$,

•
$$u \in K \Longrightarrow uu^{-1} \nu u^{-1}u$$
 .

Congruences vs Pairs

Reilly-Scheiblich (1967), Scheiblich (1974), D.G. Green (1975), M. Petrich (1978): congruences correspond to *congruence pairs*:

$$ho o (\operatorname{\mathsf{ker}}
ho, \operatorname{\mathsf{trace}}
ho)$$

 $st^{-1} \in \mathcal{K}, s^{-1}s \
u \ t^{-1}t \leftarrow (\mathcal{K},
u)$.

Congruences vs Quotients

Theorem

If K is the kernel of a congruence ρ then $s \simeq_K t \Longrightarrow s \rho t$ and

$$\kappa: S/\!\!/ K \to S/\rho$$

is a functor.

Theorem

If ρ is an idempotent separating congruence with kernel K then the relations \simeq_{κ} and ρ are equal and κ is an isomorphism.

The kernel property

Howie (*Fundamentals* . . .): full inverse subsemigroup N of S has the *kernel property* if

 $st \in N$ and $n \in N \Longrightarrow snt \in N$.

Theorem

- kernel property implies normality,
- (D G Green 1975) N is the kernel of a congruence iff it has the kernel property.

So if \simeq_N is a congruence, N has the kernel property.

Minimality

Theorem

If N has the kernel property then \simeq_N is a congruence if and only if \mathcal{J}_N is a normal congruence on E(S), and then \simeq_N is the minimal congruence on S with kernel N.

But:

- When is \mathcal{J}_N a normal congruence on E(S)?
- When is \mathcal{J}_N a congruence on E(S)?

