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People with one idea

William Hazlitt (1778-1830)

On people with one idea in
Table Talk (1822)

“There are people who have
but one idea: at least, if they
have more, they keep it a
secret . . . ”
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Origins

Idea arose in PhD work of Nouf AlYamani

To construct a quotient of an ordered groupoid

Some cases already considered:

Higgins 1971: Categories and groupoids. Normal subgroupoids
and quotients
Matthews 2004: Bangor PhD thesis. Quotient of an ordered
groupoid by a union of subgroups

No general construction?
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Two scenarios

Optimism

A new, useful, and interesting
construction

Applications to inverse
semigroups . . .

. . . and other classes such as
restriction semigroups?

Another ordered groupoid
construction with a home in
semigroup theory

Pessimism

An obscure idea that has
been around a while

Already known about in
semigroups

Idea doesn’t fulfill its promise

Think about something else
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A new, useful, and interesting
construction

Applications to inverse
semigroups . . .

. . . and other classes such as
restriction semigroups?

Another ordered groupoid
construction with a home in
semigroup theory

55%

An obscure idea that has
been around a while

Already known about in
semigroups

Idea doesn’t fulfill its promise

Think about something else

45%
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Normal inverse subsemigroups

Inverse subsemigroup N of inverse semigroup S is normal if

E (N) = E (S). This says N is full

for all s ∈ S , n ∈ N, s−1ns ∈ N. This say N is self-conjugate.

E (S) itself is normal, and defines the natural partial order:

s ≤ t ⇐⇒ ∃e ∈ E (S) with s = et ⇐⇒ s = ss−1t .
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The N–preorder

Normal N now gives:

s ≤N t ⇐⇒ ∃ a, b ∈ N with a · s · b ≤ t

where x · y is a trace product:

x · y = xy and defined when x−1x = yy−1 .

Symmetrize ≤N to get 'N :

s 'N t ⇐⇒ s ≤N t and t ≤N s .
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Properties of ≤N

≤E(S) is the natural partial order ≤,

s ≤ t =⇒ s ≤N t,

s ≤N e =⇒ s ∈ N,

s ≤N t =⇒ st−1 ∈ N,

≤N is a preorder.
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Properties of 'N

If n ∈ N then nn−1 'N n 'N n−1 'N n−1n,

If s 'N t then ss−1 'N tt−1, s−1s 'N t−1t and s−1 'N t−1,

'N restricted to E (S) is Green’s J –relation on E (N) = E (S)
in N,

if N = S then 'S is J ,

if N = E (S) then 'E(S) is equality,

'N is an equivalence relation that saturates N.
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Only get an ordered groupoid

'N need not be a congruence on S so quotient set S//N need not
be an inverse semigroup, but:

Theorem

S//N is an ordered groupoid.

[ss   ]−1

−1[s   s]

[s]
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Composition in S//N

If s−1s 'N tt−1:

s

t

a

≤

then
[s]N · [t]N = [sat]N .
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Polycyclic monoids

Nivat-Perrot (1970): for A = {a1, . . . , an},

Pn = 〈A : aia
−1
i = 1, a−1

i aj = 0 (i 6= j)〉 .

Non-zero elements represented by A∗ × A∗:

(r , s)(s, u) = (r , u)

(r , s)(ps, u) = (pr , ps)(ps, u) = (pr , u)

(r , pt)(t, u) = (r , pt)(pt, pu) = (r , pu)

(r , s)(t, u) = 0 otherwise
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Full inverse subsemigroups of Pn

Non-zero elements of a submonoid ↔ subset of A∗ × A∗:

Meakin-Sapir (1993): positively self-conjugate submonoids of
Pn correspond to congruences on A∗,

Lawson (2009): full inverse submonoids correspond to left
congruences on A∗,

normal inverse submonoids correspond to right-cancellative
congruences on A∗.
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Gauge inverse monoids

Jones and Lawson (2012): gauge inverse monoid

Gn = {(s, t) : |s| = |t|} ∪ {0} ⊂ Pn .

Corresponds to length relation on A∗,

Normal inverse submonoid of Pn,

D = J
J –classes indexed by word-length

Pn//Gn is the Brandt semigroup on the non-negative integers.
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Congruence pairs

For a relation ρ on S , its trace is its restriction to E (S) and its
kernel is

ker ρ = {s ∈ S : sρe for some e ∈ E (S)} .

A congruence on E (S) is normal if

∀s ∈ S : e ρ f =⇒ s−1es ρ s−1fs .

A congruence pair is a normal inverse semigroup K and a normal
congruence ν on E (S) such that

se ∈ K and s−1s ν e =⇒ s ∈ K ,

u ∈ K =⇒ uu−1 ν u−1u .
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Congruences vs Pairs

Reilly-Scheiblich (1967), Scheiblich (1974), D.G. Green (1975),
M. Petrich (1978): congruences correspond to congruence pairs:

ρ→ (ker ρ, trace ρ)

st−1 ∈ K , s−1s ν t−1t ← (K , ν) .
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Congruences vs Quotients

Theorem

If K is the kernel of a congruence ρ then s 'K t =⇒ s ρ t and

κ : S//K → S/ρ

is a functor.

Theorem

If ρ is an idempotent separating congruence with kernel K then the
relations 'K and ρ are equal and κ is an isomorphism.
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The kernel property

Howie (Fundamentals . . . ): full inverse subsemigroup N of S has
the kernel property if

st ∈ N and n ∈ N =⇒ snt ∈ N .

Theorem

kernel property implies normality,

(D G Green 1975) N is the kernel of a congruence iff it has
the kernel property.

So if 'N is a congruence, N has the kernel property.
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Minimality

Theorem

If N has the kernel property then 'N is a congruence if and only if
JN is a normal congruence on E (S), and then 'N is the minimal
congruence on S with kernel N.

But:

When is JN a normal congruence on E (S)?

When is JN a congruence on E (S)?
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