Cohomological dimension of inverse semigroups

Nick Gilbert, Heriot-Watt University, Edinburgh

An outline of homological algebra

- Projective modules are good.
- Free modules are better.
- ► R a ring, G a group: the group ring RG consists of all finite R-linear combinations ∑_{g∈G} a_gg of the elements of G with obvious operations.

Resolutions

A *projective resolution* of a module M is a sequence of module maps

$$\cdots \to P_{k+1} \stackrel{\partial_{k+1}}{\to} P_k \stackrel{\partial_k}{\to} \cdots \to P_2 \to P_1 \to P_0 \stackrel{\varepsilon}{\to} M \to 0$$

such that:

- each P_j is projective,
- for each $k \ge 0$, ker $\partial_k = \operatorname{im} \partial_{k+1}$,
- ε is surjective.

A resolution is an attempt to approximate M using projectives: it might involve non-zero terms for ever, or eventually become zero - we then say the resolution is of finite length.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

• *M* projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.

- ▶ *M* projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.
- For Z-modules, aka abelian groups, every module has a free resolution of length ≤ 1: 0 → ker ε → F → M → 0.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- ▶ *M* projective implies that $0 \rightarrow P_0 \rightarrow M \rightarrow 0$ with $P_0 = M$ is a resolution of length 0.
- For Z-modules, aka abelian groups, every module has a free resolution of length ≤ 1: 0 → ker ε → F → M → 0.
- As a trivial module over R = Z[t]/(t² − 1), the integral group ring of C₂, Z has an infinite free resolution

$$\cdots \to R \xrightarrow{t-1} R \xrightarrow{t+1} R \xrightarrow{t-1} R \to \mathbb{Z} \to 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and none of finite length.

- M projective implies that 0 → P₀ → M → 0 with P₀ = M is a resolution of length 0.
- For Z–modules, aka abelian groups, every module has a free resolution of length ≤ 1: 0 → ker ε → F → M → 0.
- As a trivial module over R = ℤ[t]/(t² − 1), the integral group ring of C₂, ℤ has an infinite free resolution

$$\cdots \to R \xrightarrow{t-1} R \xrightarrow{t+1} R \xrightarrow{t-1} R \to \mathbb{Z} \to 0$$

and none of finite length.

If a group G acts freely on a contractible cell complex X then the cellular chain complex of X gives a free resolution of Z as a trivial ZG−module.

(日) (同) (三) (三) (三) (○) (○)

Modules for categories

For a small category ${\mathcal C}$ a ${\mathcal C}\text{-module}$ is

 \blacktriangleright a functor from ${\cal C}$ to abelian groups,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Modules for categories

For a small category C a C-module is

- a functor from C to abelian groups,
- equivalently, a collection of abelian groups indexed by the objects of C, and for each arrow

$$x \xrightarrow{\alpha} y$$

of $\mathcal C$ a homomorphism $A_x \to A_y$ satisfying some obvious rules.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Inverse semigroups

An inverse semigroup is

> a regular semigroup in which idempotents commute,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Inverse semigroups

An inverse semigroup is

- a regular semigroup in which idempotents commute,
- ▶ a semigroup S in which, for each $s \in S$, there exists a **unique** $s^{-1} \in S$ such that $ss^{-1}s = s$ and $s^{-1}ss^{-1} = s^{-1}$.

The natural partial order in S is given by

 $a \leq b \iff$ there exists $e \in E(S)$ such that a = eb.

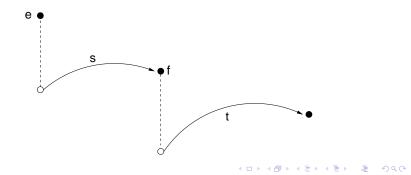
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Modules for inverse semigroups (I)

Loganathan's category $\mathfrak{L}(S)$:

- ▶ objects are idempotents in *S*,
- ▶ arrows are pairs (e, s) with $e \in E(S), s \in S$ such that $e \ge ss^{-1}$,
- (e, s) starts at e and ends at $s^{-1}s$,

•
$$(e,s)(f,t) = (e,st)$$
 when $s^{-1}s = f$.

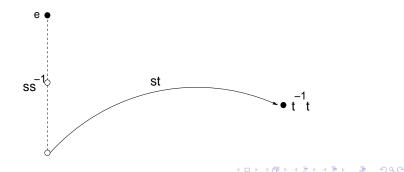


Modules for inverse semigroups (I 1/2)

Loganathan's category $\mathfrak{L}(S)$:

- ▶ objects are idempotents in *S*,
- ▶ arrows are pairs (e, s) with $e \in E(S), s \in S$ such that $e \ge ss^{-1}$,
- (e, s) starts at e and ends at $s^{-1}s$,

•
$$(e,s)(f,t) = (e,st)$$
 when $s^{-1}s = f$.



More about $\mathfrak{L}(S)$

- $\mathfrak{L}(S)$ is left cancellative,
- ▶ arrow (e, s) uniquely decomposable as $(e, ss^{-1})(ss^{-1}, s)$
- £(S) is a Zappa-Szép product of categories

$$\mathfrak{L}(S) = E(S) \bowtie S$$

Modules for inverse semigroups (II)

A module for S is now defined as a module for $\mathfrak{L}(S)$: Loganathan's 1981 recasting of ideas of Lausch (1975). So an $\mathfrak{L}(S)$ - module \mathcal{M} consists of:

- ▶ an abelian group M_e for each $e \in E(S)$,
- ▶ homomorphisms $M_e \rightarrow M_f$ whenever $e \ge f$,
- ▶ isomorphisms $M_{ss^{-1}} \rightarrow M_{s^{-1}s}$ (isoms since action by s on $M_{ss^{-1}}$ has inverse given by action by s^{-1} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ○○○

Cohomological dimension

The projective dimension of a module M is the smallest n such that M has a projective resolution of length n (so $P_n \neq 0$ but $P_k = 0$ for k > n).

The (integral) cohomological dimension cd G of a group G is the projective dimension of \mathbb{Z} as a trivial G-module.

The cohomological dimension of an inverse semigroup S is the projective dimension of the module $\underline{\mathbb{Z}}$ in which $\underline{\mathbb{Z}}_e = \mathbb{Z}$ for all $e \in E(S)$ and all maps are identities.

The Gruenberg resolution

Resolution by relations, as Gruenberg's paper (1960) had it:

• G a group, F a free group mapping on to G,

$$N = \ker(F \xrightarrow{\theta} G),$$

- induced $\theta : \mathbb{Z}F \to \mathbb{Z}G$ with kernel \mathfrak{r} ,
- augmentation ideal f of F is ker(ℤF → ℤ) where ε : w ↦ 1 for all w ∈ F.

Theorem (Gruenberg)

The complex of $\mathbb{Z}G$ -modules

$$\ldots \to \mathfrak{r}^2/\mathfrak{r}^3 \to \mathfrak{fr}/\mathfrak{fr}^2 \to \mathfrak{r}/\mathfrak{r}^2 \to \mathfrak{f}/\mathfrak{fr} \to \mathbb{Z} \, G \to \mathbb{Z} \to 0$$

is a G-free resolution of \mathbb{Z} , and this construction gives a functor from the category of free presentations of G to the category of G-free resolutions of \mathbb{Z} .

"Yes... wonderful things."

The Gruenberg resolution gives us:

- \blacktriangleright a free resolution from any free presentation of G,
- a module theory approach to the *relation module*: ker(f/ft → ZG) ≅ N^{ab} as G-modules. We don't need abelianisation.
- generalised Hopf formulae for the homology of G:

$$H_{2q}(G) = \frac{\mathfrak{r}^q \cap \mathfrak{f}\mathfrak{r}^{q-1}\mathfrak{f}}{\mathfrak{f}\mathfrak{r}^q + \mathfrak{r}^q\mathfrak{f}} \qquad H_{2q+1}(G) = \frac{\mathfrak{f}\mathfrak{r}^q \cap \mathfrak{r}^q\mathfrak{f}}{\mathfrak{r}^{q+1} + \mathfrak{f}\mathfrak{r}^q\mathfrak{f}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 Gives Webb's approach to the relation module etc for categories (2011).

Let's do all this for inverse semigroups

Loganathan defines $\mathbb{Z}S$ as the $\mathfrak{L}(S)$ -module with $(\mathbb{Z}S)_e$ free abelian on the \mathcal{L} -class of e in S:

 $(\mathbb{Z}S)_e$ = free abelian group { $s \in S : s^{-1}s = e$ }.

 $\mathbb{Z}S$ need not be free as a $\mathfrak{L}(S)$ -module, but it is projective. So we want to construct a version of the Gruenberg resolution:

$$\ldots \to \mathfrak{r}^2/\mathfrak{r}^3 \to \mathfrak{fr}/\mathfrak{fr}^2 \to \mathfrak{r}/\mathfrak{r}^2 \to \mathfrak{f}/\mathfrak{fr} \to \mathbb{Z}S \to \underline{\mathbb{Z}} \to 0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

using projective $\mathfrak{L}(S)$ -modules.

The limits to ambition

► Want:

 $\ldots \to \mathfrak{r}^2/\mathfrak{r}^3 \to \mathfrak{fr}/\mathfrak{fr}^2 \to \mathfrak{r}/\mathfrak{r}^2 \to \mathfrak{f}/\mathfrak{fr} \to \mathbb{Z}S \to \mathbb{Z} \to 0$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ○ ○ ○ ○

The limits to ambition

Want:

$$\ldots \to \mathfrak{r}^2/\mathfrak{r}^3 \to \mathfrak{fr}/\mathfrak{fr}^2 \to \mathfrak{r}/\mathfrak{r}^2 \to \mathfrak{f}/\mathfrak{fr} \to \mathbb{Z}S \to \underline{\mathbb{Z}} \to 0$$

Get:

$$\mathcal{F} \to D \to \mathbb{Z}S \to \underline{\mathbb{Z}} \to 0$$

Here D is an inverse semigroup version of Crowell's *derivation* module and/or Gruenberg's f/\mathfrak{fr} and \mathcal{F} is an $\mathfrak{L}(S)$ -module 'free on the relations'.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The derivation module

- ▶ θ : $T \to S$ a hom of inverse semigroups, $\mathcal{A} = \bigcup_{e \in E(S)} A_e$ an $\mathfrak{L}(S)$ -module.
- $\eta: T \to \mathcal{A}$ is a θ -derivation if,
 - aη ∈ A_{(a⁻¹a)θ},
 whenever a, b ∈ T with a⁻¹a ≥ bb⁻¹,

$$(ab)\eta = a\eta \lhd ((a^{-1}a)\theta, b\theta) + b\eta.$$

- the derivation module D_{θ} has $(D_{\theta})_e$
 - ▶ generated by all $(a, s) \in T \times S$ with $(a^{-1}a)\theta \ge ss^{-1}$ and $s^{-1}s = e$
 - subject to relations

$$(ab,s)-(b,s)=(a,(b\theta)s)$$

for all $a, b \in T$ with $a^{-1}a \ge bb^{-1}$.

• image of (a, s) in D_{θ} is written $\langle a, s \rangle$.

What is it good for? (I)

Derivation module D_{θ} converts θ -derivations to homomorphisms:

Theorem

There exists a canonical θ -derivation

$$\delta: T \to D_{\theta}, \qquad \delta: a \mapsto \langle t, (t^{-1}t)\theta \rangle$$

such that, given any θ -derivation $\eta : T \to A$ to an $\mathfrak{L}(S)$ -module A, there is a unique $\mathfrak{L}(S)$ -map $\xi : D_{\theta} \to A$ such that $\eta = \delta \xi$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

What is it good for? (II)

Theorem

If S is an inverse monoid and F a free inverse monoid with $\theta: F \to S$ surjective then

- D_{θ} is a projective $\mathfrak{L}(S)$ -module,
- ∂₁: D_θ → ZS, (a, s) → (aθ)s − s maps D_θ on to the augmentation module of S.

The kernel of ∂_1 , following Gruenberg, we define to be the *relation* module \mathcal{M}_{θ} of θ .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The relation module

Let $\langle X : \ell_1 = r_1, \ell_2 = r_2, \ldots \rangle$ be a presentation of the inverse monoid M, with F the free monoid generated by X.

Theorem

The relation module \mathcal{M}_{θ} is generated, as an $\mathfrak{L}(S)$ -module, by all elements of the form $\langle \ell_i, e \rangle - \langle r_i, e \rangle$ where $e = (\ell_i^{-1} r_i) \theta$.

Cohomological dimension 0

A group G has cohom dim 0 if and only if it is trivial. [Exercise: \mathbb{Z} is a projective G-module . . .]

Theorem

An inverse monoid has cohomological dimension 0 if and only if it is a semilattice (so every element is an idempotent).

Proof.

- ► (Leech 1975) Use Laudal's 1972 characterization of small categories of cd 0 and apply to £(S).
- ► or: use the fact that <u>Z</u> is a projective L(S)-module and generalise the argument for groups.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Arboreal inverse monoids

An *arboreal* inverse monoid M is one given by a presentation $\langle X : e_i = f_i \rangle$ where e_i, f_i are idempotents in F – that is, words whose freely reduced form is equal to 1.

Theorem (Margolis-Meakin 1993)

- X-generated arboreal inverse monoids are the E-unitary quotients of F with maximum group image free on X,
- M is arboreal if and only if each of its Schützenberger graphs is a tree,

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 finitely presented arboreal inverse monoids have decidable word problem.

Cohomological dimension 1

Theorem

An arboreal inverse monoid has cohomological dimension 1.

Proof.

For presentations of the type that define arboreal inverse monoids, the relation module $\mathcal{M}=0$ since

$$egin{aligned} &\langle e_i,(e_i) heta
angle &=\langle e_ie_i,(e_i) heta
angle \ &=\langle e_i,(e_i) heta(e_i) heta
angle +\langle e_i,(e_i) heta
angle \ &=\langle e_i,(e_i) heta
angle +\langle e_i,(e_i) heta
angle. \end{aligned}$$

So we have a projective resolution

$$0 \rightarrow D \rightarrow \mathbb{Z}S \rightarrow \mathbb{Z} \rightarrow 0.$$

▲ロト ▲母 ト ▲目 ト ▲目 ト → 目 → のへの

Conjecture: [Steinberg] An inverse monoid M acts freely on a presheaf of trees over E(M) if and only if it is E-unitary, has free maximum group image, and cd = 1.

Arboreal inverse monoids act freely on their Schützenberger trees.

Stallings-Swan Theorem (1969). A group G has $cd G \leq 1$ if and only if it is free.

What is the right notion of 'free'? Surely, guided by results of Margolis-Meakin-Yamamura 1999:

'free' should be: *M* is arboreal.