Coherent presentations arising from Garside families

Alen Đurić (joint work with Pierre-Louis Curien and Yves Guiraud)

Université Paris Cité, CNRS, Inria, IRIF https://www.irif.fr/~djuric/

York Semigroup, 8 June 2022

This program has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.

Coherent presentations

Homotopical transformations of polygraphs

Garside's presentations of Artin-Tits and Garside monoids

Garside families

Coherent presentations from Garside families

Generalisations of greedy normal form

Overview of coherent presentations

Polygraphs

Introduced by Street (1976, 1987), and by Burroni (1993)
 Terminology

- *n*-category: strict *n*-category
- (n, p)-category: its k-cells are invertible for all k > p
- ▶ *k*-sphere: a pair of parallel *k*-cells in an *n*-category *C*
- acyclic cellular extension of C: a set Γ of *n*-spheres of C
 s.t. all the *n*-spheres of C/Γ are of the form (f, f)
- 1-polygraph (X₀, X₁): a directed graph

• {generating k-cells}= X_k

► 2-polygraph: a triple X = (X₀, X₁, X₂) s.t. (X₀, X₁) is a 1-polygraph, and X₂ is a cellular extension of X₁^{*}, the free category generated by (X₀, X₁) (3, 1)-polygraph: a quadruple $X = (X_0, X_1, X_2, X_3)$, where (X_0, X_1, X_2) is a 2-polygraph and X_3 is a cellular extension of X_2^{\top} , the free (2, 1)-category over (X_0, X_1, X_2)

Let ${\mathscr C}$ be a category

- ▶ presentation of C: a 2-polygraph (X₀, X₁, X₂) s.t. C is isomorphic to X := X₁^{*}/X₂, the category presented by X
- extended presentation of \mathscr{C} : a (3,1)-polygraph X s.t. $\mathscr{C} \cong \overline{X}$

Definition

A coherent presentation of \mathscr{C} is an extended presentation (X_0, X_1, X_2, X_3) of \mathscr{C} s.t. X_3 is an acyclic cellular extension of X_2^{\top} .

Coherent presentations are closely related to

- weak actions of monoids on categories, investigated by Deligne for spherical Artin-Tits monoids
- cofibrant approximations in the canonical model structure on 2-categories, given by Lack

See theorem

 polygraphic resolutions of monoids, defined by Métayer, from which abelian resolutions can be deduced

Homotopical completion-reduction

Rewriting step of a 2-polygraph X: a 2-cell of the free category X_2^* which contains a single generating 2-cell of X

where $lpha \in X_2$, and w and w' are 1-cells of X_2^*

Let u and v be 1-cells of X_2^* (also called words if X_0 is a singleton)

- u rewrites to v: there is a finite rewriting sequence with source u and target v
- \blacktriangleright *u* is irreducible: there is no rewriting step whose source is *u*
- ▶ a normal form of u, denoted by \hat{u} : the irreducible 1-cell to which u rewrites, if it is unique

Rewriting properties of polygraphs

Let X be a 2-polygraph

Branching in X: a pair $\{\alpha,\beta\}$ of rewriting sequences having the same source

X is said to be

confluent if every branching
 {α, β} can be completed to
 sequences having the same
 target

 terminating if it has no infinite rewriting sequence convergent if it is both confluent and terminating

Termination order on X: a well-founded order \leq on parallel 1-cells of X_2^* , respecting the 0-composition, s.t. $s(\alpha) > t(\alpha)$ holds for all $\alpha \in X_2$

Critical branching: minimal nontrivial overlap of two rewriting steps

Theorem (Knuth, Bendix, 1970)

Every Knuth-Bendix completion of a 2-polygraph X equipped with a total termination order is a convergent presentation of the category \overline{X} .

Remark about Knuth-Bendix

There is an alternative to requiring a termination order at the beginning: orient the newly added generating 2-cells "by hand", and verify after each addition in an ad hoc manner whether a terminating presentation is maintained.

Squier completion

A family of generating confluences of convergent 2-polygraph X: a cellular extension of X_2^{\top} having, for each critical branching $\{\alpha, \beta\}$ of X, exactly one 3-cell A

A Squier completion of a convergent 2-polygraph X: a (3,1)-polygraph s.t. its generating 3-cells form a family of generating confluences of X

Theorem (Squier, 1994)

Let X be a convergent 2-polygraph. Every family of generating confluences of X is an acyclic cellular extension of X_2^{\top} .

Squier completion

A family of generating confluences of convergent 2-polygraph X: a cellular extension of X_2^{\top} having, for each critical branching $\{\alpha, \beta\}$ of X, exactly one 3-cell A

A homotopical completion of a terminating 2-polygraph X: a Squier completion of a Knuth-Bendix completion of X

Corollary

Let X be a terminating presentation of a category \mathscr{C} . Every homotopical completion of X is a coherent convergent presentation of \mathscr{C} .

Example of homotopical completion

The Klein bottle monoid:

$$\left\langle \mathsf{a},\mathsf{b}\,\Big|\,\mathsf{bab}\stackrel{lpha}{\Rightarrow}\mathsf{a}
ight
angle ^{+}$$

- 1. Termination order: compare lengths then apply lexicographic order, e.g. b < aa < ab
- 2. Exactly one critical branching: $\{\alpha ab, ba\alpha\}$
- 3. The Knuth-Bendix completion adds β : baa \Rightarrow aab
- 4. The Squier completion adds the generating 3-cell A

- 5. β causes only one new critical branching: { $\alpha aa, ba\beta$ }
- 6. The generating 3-cell B is added

Homotopical reduction

- Systematic way of recursively removing some redundant and collapsible generating cells
- Analogous to collapsing scheme (now aka Morse matching) introduced by Brown (1989)

Theorem

Let X be a terminating 2-polygraph presenting a category \mathscr{C} . Then, every homotopical completion-reduction of X is a coherent presentation of \mathscr{C} .

Example

A homotopical reduction of the (3, 1)-polygraph constructed on the previous slide is the presentation $(a, b \mid bab \stackrel{\alpha}{\Rightarrow} a \mid \emptyset)$.

Garside's presentation of Artin-Tits monoids

- Introduced by Deligne (1997) for spherical Artin-Tits monoids, and by Michel (1999) for general Artin-Tits monoids
- Let $B^+(W)$ be an Artin-Tits monoid associated to a Coxeter group W (See definition)

Graphical notation for $u, v, w \in B^+(W)$

•
$$u v: ||uv|| = ||u|| + ||v||$$
 holds in W
• $u v w: u v, v w$ and $||uvw|| = ||u|| + ||v|| + ||w||$

Definition

Garside's presentation of $B^+(W)$ is a 2-polygraph $Gar_2(W)$ having:

- a single generating 0-cell,
- elements of $W \setminus \{1\}$ as generating 1-cells,
- ▶ and a generating 2-cell $\alpha_{u,v} : u | v \Rightarrow uv$ for all $u, v \in W \setminus \{1\}$ such that $u \land v$.

Gar₃ (*W*): the extended presentation of B^+ (*W*) obtained by adjoining to Gar₂ (*W*) a 3-cell $A_{u,v,w}$ for all $u, v, w \in W \setminus \{1\}$ s.t. $u \lor w$

Theorem (Gaussent, Guiraud, Malbos, 2015)

For every Coxeter group W, the Artin-Tits monoid $B^+(W)$ admits $Gar_3(W)$ as a coherent presentation.

adapts in a straightforward way to Garside monoids See definition

Idea of the proof: homotopical completion-reduction of Garside's presentation of $B^+(W)$

Let S be a subfamily of a left-cancellative monoid M

Greedy decomposition: an S-word s₁|···|s_q is said to be S-normal if for all i < q</p>

$$\forall t \in S, \forall f \in M, (t \leq fs_i s_{i+1} \implies t \leq fs_i)$$

Garside family in M: a subfamily S such that every element of M admits an S-normal decomposition

See examples

Properties of Garside families

Let M be a left-cancellative monoid having no nontrivial invertible element, and S a Garside family in M

- S is closed under right divisor and right-mcm
- Normalisation map N^S: S^{*} → S^{*} assigns to each w ∈ S^{*} \ {1} the strict S-normal decomposition of the evaluation of w, and N^S (1) = 1
- N^S is left-weighted, i.e. for all s, t ∈ S, the element s is a left divisor in M of the leftmost letter of N^S (s|t)
- ▶ Rewriting rules $s|t \Rightarrow N^{S}(s|t)$, for all $s, t \in S \setminus \{1\}$ with s|t not *S*-normal, yield a convergent presentation of *M*

Proposition about $Gar_2(S)$ (Dehornoy, Guiraud, 2016)

Let *M* be a left-cancellative monoid containing no nontrivial invertible element, and $S \subseteq M$ a Garside family s.t. $1 \in S$. Then *M* admits, as a presentation, the 2-polygraph $\text{Gar}_2(S)$, with $u \lor v$ denoting $uv \in S$.

Garside's presentation of M, with respect to S: Gar₂(S)

Motivation

- 1. One can use Proposition about $Gar_2(S)$ to interpret $Gar_2(W)$ as a special case of $Gar_2(S)$
- 2. Although certain steps of the proof by Gaussent, Guiraud and Malbos do rely on the arithmetic properties of Artin-Tits monoids, the general structure of the proof mostly relies on the specific "shape" of the relations involved

Challenges

- Attaining termination
- Computing homotopical completion

Notation formally redefined

Let M be a monoid generated by a set S containing 1

2-polygraph $Gar_2(S)$

- a single generating 0-cell
- elements of $S \setminus \{1\}$ as generating 1-cells
- ▶ and a generating 2-cell $\alpha_{u,v} : u | v \Rightarrow uv$ for all $u, v \in S \setminus \{1\}$ such that $u \land v$ (meaning $uv \in S$)

(3,1)-polygraph Gar₃(S)

• $\operatorname{Gar}_2(S)$ • and 3-cell $A_{u,v,w}$ for all $u, v, w \in S \setminus \{1\}$ s.t. $u \quad v \quad w \quad (\text{meaning } u \quad v, v \quad v \quad w \quad \text{and } uvw \in S)$

Definition

Given a subfamily S of a monoid M, we say that M is S-right-noetherian if there exists no $g \in S$ admitting an infinite sequence $(h_n)_{n=1}^{\infty}$ in $S \cap \text{Div}(g)$ such that for every n there exists a non-invertible f_n in S satisfying $h_n f_n = h_{n+1}$.

Theorem

Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and that it is S-right-noetherian for a Garside family containing 1. If M admits right-mcms, then M admits the (3,1)-polygraph Gar₃(S) as a coherent presentation.

Attaining termination

Let M be a monoid generated by a set S containing 1

2-polygraph $\underline{Gar}_{2}(S) := Gar_{2}(S) + generating 2-cells \beta$

- a single generating 0-cell
- elements of $S \setminus \{1\}$ as generating 1-cells
- generating 2-cells

$$\begin{aligned} \alpha_{u,v} &: u | v \Rightarrow uv, & u, v \in S \setminus \{1\}, \quad u \neq v \\ \beta_{u,v,w} &: u | vw \Rightarrow uv | w, & u, v, w \in S \setminus \{1\}, \quad u \neq v \\ \end{aligned}$$

Proposition about $\underline{Gar}_2(S)$

Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and that it is S-right-noetherian for a Garside family S containing 1. Then the 2-polygraph $\underline{Gar}_2(S)$ is terminating.

See sketch of proof

$\underline{Gar}_{3}(S) := \underline{Gar}_{2}(S) + \text{ nine families of generating 3-cells}$ See diagrams

Proposition about $\underline{Gar}_3(S)$

Let *M* be a left-cancellative monoid admitting right-mcms, and *S* a subfamily of *M* closed under right-mcm and right divisor. Assume that the 2-polygraph $\underline{Gar}_2(S)$ is a terminating presentation of *M*. Then *M* admits, as a coherent convergent presentation, the (3, 1)-polygraph $\underline{Gar}_3(S)$.

Idea of proof

- Relying on Proposition about Gar₂ (S), mimic the proof by Gaussent, Guiraud and Malbos
- Make new justifications as demanded by a more general setting

Theorem

Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and that it is S-right-noetherian for a Garside family S containing 1.

- 1. The 2-polygraph $\underline{Gar}_2(S)$ is a convergent presentation of M.
- 2. If M admits right-mcms, then M admits the (3,1)-polygraph <u>Gar₃</u>(S) as a coherent convergent presentation

Proposition (Gaussent, Guiraud, Malbos, 2015)

The (3, 1)-polygraph Gar₃ (S) can be obtained as a homotopical reduction of <u>Gar₃</u> (S).

Corollary

Let M be a left-cancellative noetherian monoid containing no nontrivial invertible element, and $S \subseteq M$ a Garside family containing 1. Then M admits the (3,1)-polygraph Gar₃(S) as a coherent presentation.

Applications

Free abelian monoid $\mathbb{N}^{(I)}$ over an infinite basis

- not of finite type, hence neither Artin-Tits nor Garside
- Garside family

$$S_{I} = \left\{ g \in \mathbb{N}^{(I)} \mid \forall k \in I, g(k) \in \{0, 1\} \right\}$$

- ► conditions of Theorem: product on N⁽¹⁾ is based on the addition of integers
- u v : u and v have disjoint supports

Monoid B^+_{∞} of all positive braids on infinitely many strands indexed by positive integers

not of finite type, hence neither Artin-Tits nor Garside

Garside family

$$S_{\infty} = \bigcup_{n \ge 1} \operatorname{Div}(\Delta_n)$$

conditions of Theorem: preserved from braid monoids
 u v: uv is a simple braid

Applications, continued

Dual braid monoid B_n^{+*}

- generators: $a_{i,j}$ with $1 \le i < j \le n$
- ▶ relations: $a_{i,j}a_{i',j'} = a_{i',j'}a_{i,j}$ for [i,j] and [i',j'] disjoint or nested; $a_{i,j}a_{j,k} = a_{j,k}a_{i,k} = a_{i,k}a_{i,j}$ for $1 \le i < j < k \le n$
- ▶ Garside monoid: (B_n^{+*}, Δ_n^*) with $\Delta_n^* = a_{1,2} \cdots a_{n-1,n}$
- further homotopical reduction after Theorem for B_4^{+*}

Artin-Tits monoid of type \widetilde{A}_2

presented by

 $\langle \sigma_1, \sigma_2, \sigma_3 | \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2, \sigma_2 \sigma_3 \sigma_2 = \sigma_3 \sigma_2 \sigma_3, \sigma_3 \sigma_1 \sigma_3 = \sigma_1 \sigma_3 \sigma_1 \rangle^+$ (1)

- Garside family: sixteen right divisors of the elements $\sigma_3\sigma_1\sigma_2\sigma_1$, $\sigma_1\sigma_2\sigma_3\sigma_2$, and $\sigma_2\sigma_3\sigma_1\sigma_3$ (Dehornoy, Dyer, Hohlweg, 2015)
- ▶ Theorem and further homotopical reduction: (1) is coherent

Further directions

Prove that a monoid *M* having a Garside family *S* admits the following polygraphic resolution

$$\mathsf{Gar}(S) = \left\{ \gamma_{u_0 \cdots u_n} \middle| u_0 \cdots u_n \in S \setminus \{1\}, u_0 \cdots u_n \right\}$$

where $\gamma_{u_0 \cdots u_n}$ denotes *n*-cube

challenge: determine boundary maps

- Extend our results to a wider class of monoids, guided by the plactic monoids See perspective
- Generalise application of our results from B₄^{+*} to general dual braid monoids
 - ► challenges: describe those pairs of elements of Div (B_n^{+*}) \ {1} whose product is in Div (B_n^{+*}); formalise the additional heuristic reduction
 - way: study noncrossing partitions (e.g. the paper by Bessis, Digne and Michel)
- Extend application of our results from \widetilde{A}_2 to \widetilde{A}_n , relying on the paper by Dehornoy, Dyer and Hohlweg (2015)
 - challenges: as in the previous direction

Thank you!

Let X be a (3, 1)-polygraph

• $\widetilde{X} = X_2^\top / X_3$: the (2, 1)-category presented by X

Theorem (Gaussent, Guiraud, Malbos, 2015)

Let X be an extended presentation of a category \mathscr{C} . TFAE:

- ► X is a coherent presentation of C;
- \tilde{X} is a cofibrant approximation of \mathscr{C} (viewed as a 2-category);
- For every 2-category D, the category of pseudofunctors from C to D and the category of 2-functors from X̃ to D are equivalent, and this equivalence is natural in D.

Coxeter groups and Artin-Tits monoids

Coxeter group: group W presented by

$$\left\langle S \text{ finite } \left| \left\{ s^2 = 1, sts \cdots = tst \cdots \right| s, t \in S \right\} \right\rangle$$

Spherical Artin-Tits monoid corresponding to a finite Coxeter group *W*:

$$B^+(W) = \langle S \text{ finite} | \{ sts \cdots = tst \cdots | s, t \in S \} \rangle^+$$

Examples

The permutation group S_n , e.g. $S_3 = \left\langle s, t \mid s^2 = t^2 = 1, tst = sts \right\rangle$

The braid monoid $B_n^+ = B^+(S_n)$, e.g. $B_3 = \langle s, t \mid tst = sts \rangle^+$

Properties of Artin-Tits monoids

- cancellative
- contain no nontrivial invertible element
- admit conditional right-lcms
- noetherian

Definition

A Garside monoid is a pair (M, Δ) such that the following conditions hold:

- ► *M* is a cancellative monoid;
- ▶ there is a map $\lambda : M \to \mathbb{N}$ such that $\lambda(fg) \ge \lambda(f) + \lambda(g)$ and $\lambda(f) = 0 \implies f = 1$;
- every two elements have a left-gcd and a right-gcd and a left-lcm and a right-lcm;
- Δ ∈ M, called the Garside element, is such that the left and the right divisors of Δ coincide, and they generate M;
- the family of all divisors of Δ is finite.

Theorem (Gaussent, Guiraud, Malbos, 2015) Every Garside monoid M admits $Gar_3(M)$, with u v denoting $uv \in Div(\Delta)$, as a coherent presentation.

Examples of Garside families

- Coxeter group W is a Garside family in Artin-Tits monoid B⁺ (W)
- Every Artin-Tits monoid B⁺ (W) admits a finite Garside family (Dehornoy, Dyer, Hohlweg 2015)
- If $B^+(W)$ is spherical, a finite Garside family is given by W
- In the particular case of a braid monoid, the family of all simple braids is a Garside family
- Every Garside monoid (M, Δ) has a finite Garside family given by Div (Δ)
- ► The monoid B⁺_∞ of all positive braids on infinitely many strands indexed by positive integers admits

$$S_{\infty} = \bigcup_{n \ge 1} \operatorname{Div}(\Delta_n)$$

as a Garside family

Sketch of proof

Notation

- h(w): the leftmost letter of word w
- χ -step for a generating 2-cell χ :

- χ_i : a χ -step where w has length i-1
- For an infinite sequence of positive integers u = i₁|i₂|····, we write χ_u for the path ···· ∘ χ_{i₂} ∘ χ_{i₁}

Suppose there is an infinite rewriting path

- $\beta_{i_1|i_2|...}$: an infinite rewriting path of β -steps having source u of minimal length
- ▶ position 1 occurs infinitely many times in $i_1|i_2|\cdots$
- ▶ i_{c1}|i_{c2}|··· : constant subsequence of i₁|i₂|··· taking all the members whose value is 1
- $u^{(n)}$: the *n*th word in $\beta_{i_1|i_2|...}$, i.e. the source of β_{i_n}

Sketch of proof, continued

Consider the leftmost letter

$$h\left(u^{(n+1)}\right) = \begin{cases} h\left(u^{(n)}\right) & \text{if } i_{n+1} \neq 1\\ h\left(u^{(n)}\right) f_n \text{ for some } f_n \in S & \text{if } i_{n+1} = 1 \end{cases}$$
(2)

g : the leftmost letter of the S-normal form of u
 ▶ normalisation map N^S left-weighted: h (u⁽ⁿ⁾) left divides g for all n

Consider the sequence in $S \cap \text{Div}(g)$

$$\left(\mathsf{h}\left(u^{(c_n)}\right)\right)_{n=1}^{\infty} \tag{3}$$

- ▶ by (2), we have $h(u^{(c_{n+1})}) = h(u^{(c_n)}) f_{c_n}$
- existence of the sequence (3) contradicts the fact that M is S-right-noetherian

Conclusion: $\underline{Gar}_2(S)$ is terminating

$\underline{Gar_3}(S) := \underline{Gar_2}(S) + generating 3-cells$

 $\begin{array}{c} \alpha_{u,v}|_{WX} \qquad uv|_{WX} \qquad \beta_{uv,w,x} \\ u|_{v}|_{WX} \qquad C_{u,v,w,x} \qquad uvw|_{x} \\ u|_{\beta_{v,w,x}} \qquad u|_{vw|_{x}} \qquad \alpha_{u,vw}|_{x} \end{array}$

Back to main

See sketch of proof

Squier completion of $\underline{Gar}_2(S)$

 $\underline{Gar}_{3}(S) := \underline{Gar}_{2}(S) + \text{ nine families of generating 3-cells}$ See diagrams

Proposition about $\underline{Gar}_3(S)$

Let *M* be a left-cancellative monoid admitting right-mcms, and *S* a subfamily of *M* closed under right-mcm and right divisor. Assume that the 2-polygraph $Gar_2(S)$ is a terminating presentation of *M*. Then *M* admits, as a coherent convergent presentation, the (3, 1)-polygraph $Gar_3(S)$.

Sketch of proof

Discussion: length of the intersection of the sources of 2-cells forming a critical branching

Length-one case: exactly as proved by Gaussent, Guiraud and Malbos; all critical branchings confluent; the generating 3-cells A, ..., G added

Squier completion of $\underline{Gar}_2(S)$

 $\underline{Gar}_{3}(S) := \underline{Gar}_{2}(S) + \text{ nine families of generating 3-cells}$ See diagrams

Proposition about $\underline{Gar}_3(S)$

Let *M* be a left-cancellative monoid admitting right-mcms, and *S* a subfamily of *M* closed under right-mcm and right divisor. Assume that the 2-polygraph $\underline{Gar}_2(S)$ is a terminating presentation of *M*. Then *M* admits, as a coherent convergent presentation, the (3, 1)-polygraph $\underline{Gar}_3(S)$.

Sketch of proof

Discussion: length of the intersection of the sources of 2-cells forming a critical branching

Length-two case: new justifications needed the only way for this case to occur: $\vec{u} v_1 w_1$ and $\vec{u} v_2 w_2$ s.t. $v_1 w_1 = v_2 w_2$

$$uv_1|w_1 \stackrel{\beta_{u,v_1,w_1}}{\longleftarrow} u|v_1w_1 = u|v_2w_2 \stackrel{\beta_{u,v_2,w_2}}{\longrightarrow} uv_2|w_2$$

Assumptions of the theorem yield

- $\exists v' \in S$: a right-mcm of v_1 and v_2
- ▶ $\exists ! x_k \in S$: the right complement of v_k in v'
- ▶ $\exists ! y \in S$: the right complement of v' in $v_k w_k$

$$\blacktriangleright w_k = x_k y$$

Verify that all the generating 1-cells in the definitions of the generating 3-cells of $\underline{Gar}_{3}(S)$ are, indeed, elements of $S \setminus \{1\}$

•
$$y \neq 1$$

• x_1 and x_2 are not both equal to 1

•
$$x_k = 1$$
 yields H with $x \coloneqq x_k$

•
$$x_1 \neq 1$$
 and $x_2 \neq 1$ yield I

