Coherent presentations arising from Garside families

Alen Đurić
 (joint work with Pierre-Louis Curien and Yves Guiraud)

Université Paris Cité, CNRS, Inria, IRIF
https://www.irif.fr/~djuric/

York Semigroup, 8 June 2022

This program has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 754362.

Contents

Coherent presentations

Homotopical transformations of polygraphs

Garside's presentations of Artin-Tits and Garside monoids

Garside families

Coherent presentations from Garside families

Generalisations of greedy normal form

Overview of coherent presentations

Polygraphs

- Introduced by Street $(1976,1987)$, and by Burroni (1993)

Terminology

- n-category: strict n-category
- (n, p)-category: its k-cells are invertible for all $k>p$
- k-sphere: a pair of parallel k-cells in an n-category \mathscr{C}
- acyclic cellular extension of \mathscr{C} : a set Γ of n-spheres of \mathscr{C} s.t. all the n-spheres of \mathscr{C} / Γ are of the form (f, f)
- 1-polygraph $\left(X_{0}, X_{1}\right)$: a directed graph

- $\{$ generating k-cells $\}=X_{k}$
- 2-polygraph: a triple $X=\left(X_{0}, X_{1}, X_{2}\right)$ s.t. $\left(X_{0}, X_{1}\right)$ is a 1-polygraph, and X_{2} is a cellular extension of X_{1}^{*}, the free category generated by $\left(X_{0}, X_{1}\right)$

Coherent presentations

(3, 1)-polygraph: a quadruple $X=\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$, where $\left(X_{0}, X_{1}, X_{2}\right)$ is a 2-polygraph and X_{3} is a cellular extension of X_{2}^{\top}, the free $(2,1)$-category over $\left(X_{0}, X_{1}, X_{2}\right)$
Let \mathscr{C} be a category

- presentation of \mathscr{C} : a 2-polygraph $\left(X_{0}, X_{1}, X_{2}\right)$ s.t. \mathscr{C} is isomorphic to $\bar{X}:=X_{1}^{*} / X_{2}$, the category presented by X
- extended presentation of \mathscr{C} : a $(3,1)$-polygraph X s.t. $\mathscr{C} \cong \bar{X}$

Definition
A coherent presentation of \mathscr{C} is an extended presentation $\left(X_{0}, X_{1}, X_{2}, X_{3}\right)$ of \mathscr{C} s.t. X_{3} is an acyclic cellular extension of X_{2}^{\top}.

Motivation

Coherent presentations are closely related to

- weak actions of monoids on categories, investigated by Deligne for spherical Artin-Tits monoids
- cofibrant approximations in the canonical model structure on 2-categories, given by Lack

See theorem

- polygraphic resolutions of monoids, defined by Métayer, from which abelian resolutions can be deduced

Homotopical completion-reduction

Rewriting

Rewriting step of a 2-polygraph X : a 2-cell of the free category X_{2}^{*} which contains a single generating 2 -cell of X

where $\alpha \in X_{2}$, and w and w^{\prime} are 1-cells of X_{2}^{*}
Let u and v be 1-cells of X_{2}^{*} (also called words if X_{0} is a singleton)

- u rewrites to v : there is a finite rewriting sequence with source u and target v
- u is irreducible: there is no rewriting step whose source is u
- a normal form of u, denoted by \widehat{u} : the irreducible 1-cell to which u rewrites, if it is unique

Rewriting properties of polygraphs

Let X be a 2-polygraph
Branching in X : a pair $\{\alpha, \beta\}$ of rewriting sequences having the same source
X is said to be

- confluent if every branching $\{\alpha, \beta\}$ can be completed to sequences having the same target
- terminating if it has no infinite rewriting sequence

- convergent if it is both confluent and terminating

Termination order on X : a well-founded order \leq on parallel 1-cells of X_{2}^{*}, respecting the 0 -composition, s.t. $s(\alpha)>t(\alpha)$ holds for all $\alpha \in X_{2}$

Knuth-Bendix completion

Critical branching: minimal nontrivial overlap of two rewriting steps

Theorem (Knuth, Bendix, 1970)

Every Knuth-Bendix completion of a 2-polygraph X equipped with a total termination order is a convergent presentation of the category \bar{X}.

Remark about Knuth-Bendix

There is an alternative to requiring a termination order at the beginning: orient the newly added generating 2-cells "by hand", and verify after each addition in an ad hoc manner whether a terminating presentation is maintained.

Squier completion

A family of generating confluences of convergent 2-polygraph X : a cellular extension of X_{2}^{\top} having, for each critical branching $\{\alpha, \beta\}$ of X, exactly one 3 -cell A

A Squier completion of a convergent 2-polygraph X : a $(3,1)$ polygraph s.t. its generating 3-cells form a family of generating confluences of X

Theorem (Squier, 1994)

Let X be a convergent 2-polygraph. Every family of generating confluences of X is an acyclic cellular extension of X_{2}^{\top}.

Squier completion

A family of generating confluences of convergent 2-polygraph X : a cellular extension of X_{2}^{\top} having, for each critical branching $\{\alpha, \beta\}$ of X, exactly one 3 -cell A

A homotopical completion of a terminating 2-polygraph X : a Squier completion of a Knuth-Bendix completion of X

Corollary

Let X be a terminating presentation of a category \mathscr{C}. Every homotopical completion of X is a coherent convergent presentation of \mathscr{C}.

Example of homotopical completion

The Klein bottle monoid:

$$
\langle a, b \mid b a b \stackrel{\alpha}{\Rightarrow} a\rangle^{+}
$$

1. Termination order: compare lengths then apply lexicographic order, e.g. $b<a a<a b$
2. Exactly one critical branching: $\{\alpha a b, b a \alpha\}$
3. The Knuth-Bendix completion adds $\beta: b a a \Rightarrow a a b$
4. The Squier completion adds the generating 3-cell A

5. β causes only one new critical branching: $\{\alpha a a, b a \beta\}$
6. The generating 3 -cell B is added

Homotopical reduction

- Systematic way of recursively removing some redundant and collapsible generating cells
- Analogous to collapsing scheme (now aka Morse matching) introduced by Brown (1989)

Theorem

Let X be a terminating
2-polygraph presenting a category
\mathscr{C}. Then, every homotopical completion-reduction of X is a coherent presentation of \mathscr{C}.

Example

A homotopical reduction of the (3,1)-polygraph constructed on the previous slide is the presentation $(a, b|b a b \stackrel{\alpha}{\Rightarrow} a| \emptyset)$.

Garside's presentation of Artin-Tits monoids

- Introduced by Deligne (1997) for spherical Artin-Tits monoids, and by Michel (1999) for general Artin-Tits monoids

Let $B^{+}(W)$ be an Artin-Tits monoid associated to a Coxeter group

W See definition

Graphical notation for $u, v, w \in B^{+}(W)$

- $\widehat{u v}:\|u v\|=\|u\|+\|v\|$ holds in W
$\widehat{\widehat{u} w}$: $\widehat{u v}, \widehat{v}$ and $\|u v w\|=\|u\|+\|v\|+\|w\|$

Definition

Garside's presentation of $B^{+}(W)$ is a 2-polygraph $\operatorname{Gar}_{2}(W)$ having:

- a single generating 0-cell,
- elements of $W \backslash\{1\}$ as generating 1-cells,
- and a generating 2-cell $\alpha_{u, v}: u \mid v \Rightarrow u v$ for all $u, v \in W \backslash\{1\}$ such that $\widehat{u v}$.

Garside's coherent presentation of Artin-Tits monoids

$\operatorname{Gar}_{3}(W)$: the extended presentation of $B^{+}(W)$ obtained by adjoining to $\mathrm{Gar}_{2}(W)$ a 3-cell $A_{u, v, w}$ for all $u, v, w \in W \backslash\{1\}$
s.t.

Theorem (Gaussent, Guiraud, Malbos, 2015)
For every Coxeter group W, the Artin-Tits monoid $B^{+}(W)$ admits $\operatorname{Gar}_{3}(W)$ as a coherent presentation.

- adapts in a straightforward way to Garside monoids

Idea of the proof: homotopical completion-reduction of Garside's presentation of $B^{+}(W)$

Definition of Garside family

Let S be a subfamily of a left-cancellative monoid M

- Greedy decomposition: an S-word $s_{1}|\cdots| s_{q}$ is said to be S-normal if for all $i<q$

$$
\forall t \in S, \forall f \in M,\left(t \preceq f s_{i} s_{i+1} \Longrightarrow t \preceq f s_{i}\right)
$$

- Garside family in M : a subfamily S such that every element of M admits an S-normal decomposition

Properties of Garside families

Let M be a left-cancellative monoid having no nontrivial invertible element, and S a Garside family in M

- S is closed under right divisor and right-mem
- Normalisation map $N^{S}: S^{*} \rightarrow S^{*}$ assigns to each $w \in S^{*} \backslash\{1\}$ the strict S-normal decomposition of the evaluation of w, and $N^{S}(1)=1$
- N^{S} is left-weighted, i.e. for all $s, t \in S$, the element s is a left divisor in M of the leftmost letter of $N^{S}(s \mid t)$
- Rewriting rules $s \mid t \Rightarrow N^{S}(s \mid t)$, for all $s, t \in S \backslash\{1\}$ with $s \mid t$ not S-normal, yield a convergent presentation of M

Proposition about Gar_{2} (S) (Dehornoy, Guiraud, 2016)

Let M be a left-cancellative monoid containing no nontrivial invertible element, and $S \subseteq M$ a Garside family s.t. $1 \in S$. Then M admits, as a presentation, the 2-polygraph $\operatorname{Gar}_{2}(S)$, with $\widehat{u v}$ denoting $u v \in S$.

Garside's presentation of M, with respect to S : $G a r_{2}(S)$

Direction of our contribution

Motivation

1. One can use Proposition about $\operatorname{Gar}_{2}(S)$ to interpret $\operatorname{Gar}_{2}(W)$ as a special case of $\mathrm{Gar}_{2}(S)$
2. Although certain steps of the proof by Gaussent, Guiraud and Malbos do rely on the arithmetic properties of Artin-Tits monoids, the general structure of the proof mostly relies on the specific "shape" of the relations involved
Challenges

- Attaining termination
- Computing homotopical completion

Notation formally redefined

Let M be a monoid generated by a set S containing 1
2-polygraph $\mathrm{Gar}_{2}(S)$

- a single generating 0-cell
- elements of $S \backslash\{1\}$ as generating 1-cells
- and a generating 2-cell $\alpha_{u, v}: u \mid v \Rightarrow u v$ for all $u, v \in S \backslash\{1\}$ such that $\widehat{u \quad v}$ (meaning $u v \in S$)
$(3,1)$-polygraph $\operatorname{Gar}_{3}(S)$
- $\operatorname{Gar}_{2}(S)$
- and 3-cell $A_{u, v, w}$ for all $u, v, w \in S \backslash\{1\}$ s.t. $\widehat{u \vee W}$ (meaning \widehat{u}, \widehat{v} and $u v w \in S)$

Main statement

Definition

Given a subfamily S of a monoid M, we say that M is
S-right-noetherian if there exists no $g \in S$ admitting an infinite sequence $\left(h_{n}\right)_{n=1}^{\infty}$ in $S \cap \operatorname{Div}(g)$ such that for every n there exists a non-invertible f_{n} in S satisfying $h_{n} f_{n}=h_{n+1}$.

Theorem
Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and that it is S-right-noetherian for a Garside family containing 1. If M admits right-mcms, then M admits the $(3,1)$-polygraph $\operatorname{Gar}_{3}(S)$ as a coherent presentation.

Overview of proof

Attaining termination

Let M be a monoid generated by a set S containing 1
2-polygraph $\underline{\mathrm{Gar}}_{2}(S):=\operatorname{Gar}_{2}(S)+$ generating 2-cells β

- a single generating 0-cell
- elements of $S \backslash\{1\}$ as generating 1-cells
- generating 2-cells

$$
\begin{array}{cl}
\alpha_{u, v}: u \mid v \Rightarrow u v, & u, v \in S \backslash\{1\}, \quad \widehat{u} \\
\beta_{u, v, w}: u|v w \Rightarrow u v| w, & u, v, w \in S \backslash\{1\}, \widehat{u \times v^{\times}}
\end{array}
$$

Proposition about $\underline{G a r}_{2}(S)$

Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and that it is S-right-noetherian for a Garside family S containing 1. Then the 2-polygraph $\underline{\operatorname{Gar}}_{2}(S)$ is terminating.

Squier completion of $\underline{G a r}_{2}(S)$

$\underline{G a r}_{3}(S):=\underline{G a r}_{2}(S)+$ nine families of generating 3-cells

See diagrams

Proposition about $\underline{\mathrm{Gar}}_{3}(S)$

Let M be a left-cancellative monoid admitting right-mems, and S a subfamily of M closed under right-mem and right divisor. Assume that the 2-polygraph $\underline{\mathrm{Gar}}_{2}(S)$ is a terminating presentation of M. Then M admits, as a coherent convergent presentation, the $(3,1)$-polygraph $\underline{\mathrm{Gar}}_{3}(S)$.
Idea of proof

- Relying on Proposition about $\operatorname{Gar}_{2}(S)$, mimic the proof by Gaussent, Guiraud and Malbos
- Make new justifications as demanded by a more general setting

Corollaries and reduction

Theorem

Assume that M is a left-cancellative monoid containing no nontrivial invertible element, and that it is S-right-noetherian for a Garside family S containing 1.

1. The 2-polygraph $\underline{\mathrm{Gar}}_{2}(S)$ is a convergent presentation of M.
2. If M admits right-mcms, then M admits the $(3,1)$-polygraph $\mathrm{Gar}_{3}(S)$ as a coherent convergent presentation

Proposition (Gaussent, Guiraud, Malbos, 2015)
The (3,1)-polygraph $\mathrm{Gar}_{3}(S)$ can be obtained as a homotopical reduction of $\underline{G a r}_{3}(S)$.

Corollary

Let M be a left-cancellative noetherian monoid containing no nontrivial invertible element, and $S \subseteq M$ a Garside family containing 1. Then M admits the $(3,1)$-polygraph $\operatorname{Gar}_{3}(S)$ as a coherent presentation.

Applications

Free abelian monoid $\mathbb{N}^{(I)}$ over an infinite basis

- not of finite type, hence neither Artin-Tits nor Garside
- Garside family

$$
S_{I}=\left\{g \in \mathbb{N}^{(I)} \mid \forall k \in I, g(k) \in\{0,1\}\right\}
$$

- conditions of Theorem: product on $\mathbb{N}^{(I)}$ is based on the addition of integers
- $\widehat{u} v: u$ and v have disjoint supports

Monoid B_{∞}^{+}of all positive braids on infinitely many strands indexed by positive integers

- not of finite type, hence neither Artin-Tits nor Garside
- Garside family

$$
S_{\infty}=\bigcup_{n \geq 1} \operatorname{Div}\left(\Delta_{n}\right)
$$

- conditions of Theorem: preserved from braid monoids
- \widehat{u} : $u v$ is a simple braid

Applications, continued

Dual braid monoid B_{n}^{+*}

- generators: $a_{i, j}$ with $1 \leq i<j \leq n$
- relations: $a_{i, j} a_{i^{\prime}, j^{\prime}}=a_{i^{\prime}, j^{\prime}} a_{i, j}$ for $[i, j]$ and $\left[i^{\prime}, j^{\prime}\right]$ disjoint or nested; $a_{i, j} a_{j, k}=a_{j, k} a_{i, k}=a_{i, k} a_{i, j}$ for $1 \leq i<j<k \leq n$
- Garside monoid: $\left(B_{n}^{+*}, \Delta_{n}^{*}\right)$ with $\Delta_{n}^{*}=a_{1,2} \cdots a_{n-1, n}$
- further homotopical reduction after Theorem for B_{4}^{+*}

Artin-Tits monoid of type \widetilde{A}_{2}

- presented by

$$
\begin{equation*}
\left\langle\sigma_{1}, \sigma_{2}, \sigma_{3} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}, \sigma_{2} \sigma_{3} \sigma_{2}=\sigma_{3} \sigma_{2} \sigma_{3}, \sigma_{3} \sigma_{1} \sigma_{3}=\sigma_{1} \sigma_{3} \sigma_{1}\right\rangle^{+} \tag{1}
\end{equation*}
$$

- Garside family: sixteen right divisors of the elements $\sigma_{3} \sigma_{1} \sigma_{2} \sigma_{1}$, $\sigma_{1} \sigma_{2} \sigma_{3} \sigma_{2}$, and $\sigma_{2} \sigma_{3} \sigma_{1} \sigma_{3}$ (Dehornoy, Dyer, Hohlweg, 2015)
- Theorem and further homotopical reduction: (1) is coherent

Further directions

- Prove that a monoid M having a Garside family S admits the following polygraphic resolution

$$
\operatorname{Gar}(S)=\left\{\gamma_{u_{0} \cdots u_{n}} \mid u_{0} \cdots u_{n} \in S \backslash\{1\}, u_{0} \widehat{\cdots u_{n}}\right\}
$$

where $\gamma_{u_{0} \cdots u_{n}}$ denotes n-cube

- challenge: determine boundary maps
- Extend our results to a wider class of monoids, guided by the plactic monoids See perspective
- Generalise application of our results from B_{4}^{+*} to general dual braid monoids
- challenges: describe those pairs of elements of $\operatorname{Div}\left(B_{n}^{+*}\right) \backslash\{1\}$ whose product is in $\operatorname{Div}\left(B_{n}^{+*}\right)$; formalise the additional heuristic reduction
- way: study noncrossing partitions (e.g. the paper by Bessis, Digne and Michel)
- Extend application of our results from \widetilde{A}_{2} to \widetilde{A}_{n}, relying on the paper by Dehornoy, Dyer and Hohlweg (2015)
- challenges: as in the previous direction

Thank you!

Motivation for coherent presentations

Let X be a $(3,1)$-polygraph

- $\widetilde{X}=X_{2}^{\top} / X_{3}$: the $(2,1)$-category presented by X

Theorem (Gaussent, Guiraud, Malbos, 2015)
Let X be an extended presentation of a category \mathscr{C}. TFAE:

- X is a coherent presentation of \mathscr{C};
- \widetilde{X} is a cofibrant approximation of \mathscr{C} (viewed as a 2-category);
- for every 2-category \mathscr{D}, the category of pseudofunctors from \mathscr{C} to \mathscr{D} and the category of 2-functors from \widetilde{X} to \mathscr{D} are equivalent, and this equivalence is natural in \mathscr{D}.

Coxeter groups and Artin-Tits monoids

Coxeter group: group W presented by

$$
\left\langle S \text { finite } \mid\left\{s^{2}=1, s t s \cdots=t s t \cdots \mid s, t \in S\right\}\right\rangle
$$

Spherical Artin-Tits monoid corresponding to a finite Coxeter group W:

$$
B^{+}(W)=\langle S \text { finite } \mid\{s t s \cdots=t s t \cdots \mid s, t \in S\}\rangle^{+}
$$

Examples

The permutation group S_{n}, e.g. $S_{3}=\langle s, t| s^{2}=t^{2}=1$, tst $\left.=s t s\right\rangle$
The braid monoid $B_{n}^{+}=B^{+}\left(S_{n}\right)$, e.g. $B_{3}=\langle s, t \mid t s t=s t s\rangle^{+}$
Properties of Artin-Tits monoids

- cancellative
- contain no nontrivial invertible element
- admit conditional right-Icms
- noetherian

Garside monoids

Definition

A Garside monoid is a pair (M, Δ) such that the following conditions hold:

- M is a cancellative monoid;
- there is a map $\lambda: M \rightarrow \mathbb{N}$ such that $\lambda(f g) \geq \lambda(f)+\lambda(g)$ and $\lambda(f)=0 \Longrightarrow f=1$;
- every two elements have a left-gcd and a right-gcd and a left-lcm and a right-lcm;
- $\Delta \in M$, called the Garside element, is such that the left and the right divisors of Δ coincide, and they generate M;
- the family of all divisors of Δ is finite.

Theorem (Gaussent, Guiraud, Malbos, 2015)
Every Garside monoid M admits $\operatorname{Gar}_{3}(M)$, with $\widehat{u} v$ denoting $u v \in \operatorname{Div}(\Delta)$, as a coherent presentation.

Examples of Garside families

- Coxeter group W is a Garside family in Artin-Tits monoid $B^{+}(W)$
- Every Artin-Tits monoid $B^{+}(W)$ admits a finite Garside family (Dehornoy, Dyer, Hohlweg 2015)
- If $B^{+}(W)$ is spherical, a finite Garside family is given by W
- In the particular case of a braid monoid, the family of all simple braids is a Garside family
- Every Garside monoid (M, Δ) has a finite Garside family given by $\operatorname{Div}(\Delta)$
- The monoid B_{∞}^{+}of all positive braids on infinitely many strands indexed by positive integers admits

$$
S_{\infty}=\bigcup_{n \geq 1} \operatorname{Div}\left(\Delta_{n}\right)
$$

as a Garside family

Sketch of proof

Notation

- $\mathrm{h}(w)$: the leftmost letter of word w
- χ-step for a generating 2 -cell χ :

- χ_{i} : a χ-step where w has length $i-1$
- for an infinite sequence of positive integers $u=i_{1}\left|i_{2}\right| \cdots$, we write χ_{u} for the path $\cdots \circ \chi_{i_{2}} \circ \chi_{i_{1}}$
Suppose there is an infinite rewriting path
$-\beta_{i_{1}\left|i_{2}\right| \ldots}$: an infinite rewriting path of β-steps having source u of minimal length
- position 1 occurs infinitely many times in $i_{1}\left|i_{2}\right| \cdots$
- $i_{c_{1}}\left|i_{c_{2}}\right| \cdots$: constant subsequence of $i_{1}\left|i_{2}\right| \cdots$ taking all the members whose value is 1
- $u^{(n)}$: the nth word in $\beta_{i_{1}\left|i_{2}\right| \ldots,}$, i.e. the source of $\beta_{i_{n}}$

Sketch of proof, continued

Consider the leftmost letter

$$
\mathrm{h}\left(u^{(n+1)}\right)= \begin{cases}\mathrm{h}\left(u^{(n)}\right) & \text { if } i_{n+1} \neq 1 \tag{2}\\ \mathrm{~h}\left(u^{(n)}\right) f_{n} \text { for some } f_{n} \in S & \text { if } i_{n+1}=1\end{cases}
$$

g : the leftmost letter of the S-normal form of u

- normalisation map N^{S} left-weighted: $\mathrm{h}\left(u^{(n)}\right)$ left divides g for all n

Consider the sequence in $S \cap \operatorname{Div}(g)$

$$
\begin{equation*}
\left(\mathrm{h}\left(u^{\left(c_{n}\right)}\right)\right)_{n=1}^{\infty} \tag{3}
\end{equation*}
$$

- by (2), we have $\mathrm{h}\left(u^{\left(c_{n+1}\right)}\right)=\mathrm{h}\left(u^{\left(c_{n}\right)}\right) f_{c_{n}}$
- existence of the sequence (3) contradicts the fact that M is S-right-noetherian
Conclusion: $\underline{G a r}_{2}(S)$ is terminating

$\mathrm{Gar}_{3}(S):=\mathrm{Gar}_{2}(S)+$ generating 3-cells

Squier completion of $\mathrm{Gar}_{2}(S)$

$\underline{\operatorname{Gar}}_{3}(S):=\underline{\operatorname{Gar}}_{2}(S)+$ nine families of generating 3-cells

See diagrams

Proposition about $\underline{G a r}_{3}(S)$
Let M be a left-cancellative monoid admitting right-mems, and S a subfamily of M closed under right-mcm and right divisor. Assume that the 2-polygraph $\underline{\mathrm{Gar}}_{2}(S)$ is a terminating presentation of M. Then M admits, as a coherent convergent presentation, the $(3,1)$-polygraph $\underline{G a r}_{3}(S)$.

Sketch of proof
Discussion: length of the intersection of the sources of 2-cells forming a critical branching

Length-one case: exactly as proved by Gaussent, Guiraud and Malbos; all critical branchings confluent; the generating 3 -cells A, \ldots, G added

Squier completion of $\mathrm{Gar}_{2}(S)$

$\underline{\operatorname{Gar}}_{3}(S):=\underline{\operatorname{Gar}}_{2}(S)+$ nine families of generating 3-cells

See diagrams

Proposition about $\underline{G a r}_{3}(S)$
Let M be a left-cancellative monoid admitting right-mems, and S a subfamily of M closed under right-mcm and right divisor. Assume that the 2-polygraph $\underline{\mathrm{Gar}}_{2}(S)$ is a terminating presentation of M. Then M admits, as a coherent convergent presentation, the $(3,1)$-polygraph $\underline{G a r}_{3}(S)$.

Sketch of proof
Discussion: length of the intersection of the sources of 2-cells forming a critical branching

Length-two case: new justifications needed the only way for this case to occur: $\widehat{u}_{v_{1}}^{\times} \widehat{w}_{1}$ and $\widehat{u}_{V_{2}}^{\times} \widehat{w}_{2}$ s.t. $v_{1} w_{1}=v_{2} w_{2}$

Sketch of proof, continued

$$
u v_{1}\left|w_{1} \stackrel{\beta_{u, v_{1}, w_{1}}}{\Longleftrightarrow} u\right| v_{1} w_{1}=u\left|v_{2} w_{2} \stackrel{\beta_{u, v_{2}, w_{2}}}{\Longleftrightarrow} u v_{2}\right| w_{2}
$$

Assumptions of the theorem yield

- $\exists v^{\prime} \in S$: a right-mcm of v_{1} and v_{2}
- $\exists!x_{k} \in S$: the right complement of v_{k} in v^{\prime}
- $\exists!y \in S$: the right complement of v^{\prime} in $v_{k} w_{k}$
- $w_{k}=x_{k} y$

Verify that all the generating 1-cells in the definitions of the generating 3-cells of $\underline{G a r}_{3}(S)$ are, indeed, elements of $S \backslash\{1\}$

- $y \neq 1$
- x_{1} and x_{2} are not both equal to 1
- $x_{k}=1$ yields H with $x:=x_{k}$
- $x_{1} \neq 1$ and $x_{2} \neq 1$ yield I

Perspective

