Relational Representation of Semigroups

Szabolcs Mikulás
Department of Computer Science and Information Systems
Birkbeck College, University of London
www.dcs.bbk.ac.uk/~szabolcs

24/10/2018 — York Semigroup

Relation Set Algebras

Let U be a set. We define operations on elements of $\wp(U \times U)$.
Composition

$$
X ; Y=\{(u, v) \mid(u, w) \in X \text { and }(w, v) \in Y \text { for some } w \in U\}
$$

Converse

$$
X^{\smile}=\{(u, v) \mid(v, u) \in X\}
$$

Identity

$$
1^{\prime}=\{(u, u) \mid u \in U\}
$$

for every $X, Y \subseteq U \times U$.

Relation Set Algebras, Rs

A relation set algebra is a subalgebra of

$$
\left(\wp(U \times U),+, \cdot,-, ;, \smile, 0,1,1^{\prime}\right)
$$

where U is a set, + is union, is intersection, - is complement (w.r.t. $U \times U), 0$ is the bottom element $\emptyset, 1$ is the top element $U \times U$.

Representable Relation Algebras

Representable Relation Algebras, RRA

RRA $=\mathbb{S P R s}$
i.e., the closure of the class of relation set algebras under (isomorphic copies of) direct products and subalgebras.

The (quasi)variety RRA
RRA is a variety, i.e.,

$$
\operatorname{RRA}=\mathbb{H S P R R A}
$$

but it cannot be axiomatized by finitely many equations [Monk].

For which fragment of RRA do we have a finitely axiomatizable (quasi)variety?

Let τ be a collection of operations definable in RRA. The τ-reduct $\operatorname{Rd}_{\tau} \mathfrak{A}$ of an $\mathfrak{A} \in \operatorname{RRA}$ is an algebra ($A, o \mid o \in \tau)$.

Generalized τ-subreduct

$$
\mathbb{R}(\tau)=\mathbb{S}\left\{\operatorname{Rd}_{\tau}(\mathfrak{A}) \mid \mathfrak{A} \in \operatorname{RRA}\right\}
$$

The Questions

For which τ
(1) is $\mathbb{R}(\tau)$ a finitely axiomatizable (quasi) variety?
(2) does $\mathbb{R}(\tau)$ generate a finitely axiomatizable variety?

Relational Representation of Semigroups

Given a class of semigroup-like structures (ordered, involuted, residuated),
(1) does it coincide with a class of algebras of binary relations?
(2) is the equational theory coincide with that of a class of algebras of binary relations?

The Base Case

For semigroups and monoids the Cayley representation works:

$$
x \mapsto\{(a, b) \mid a ; x=b\}
$$

i.e., $\mathbb{R}(;)$ and $\mathbb{R}\left(;, 1^{\prime}\right)$ are finitely axiomatizable varieties.

Adding Order

(1) $\mathbb{R}(;, \leq)$ is finitely axiomatizable [Zarecki].
(2) $\mathbb{R}\left(,, 1^{\prime}, \leq\right)$ is not finitely axiomatizable [Hirsch].

Adding a (Semi)lattice Structure

Lower Semilattice

(1) $\mathbb{R}(\cdot, ;)$ is a finitely axiomatizable variety [Bredikhin-Schein].
(3) $\mathbb{R}\left(\cdot,,, 1^{\prime}\right)$ is not finitely axiomatizable [Hirsch-M].

Upper Semilattice $\mathbb{R}(+, ;)$ and $\mathbb{R}\left(+, ;, 1^{\prime}\right)$ are non-finitely axiomatizable quasivarieties [Andréka].

Distributive Lattice

$\mathbb{R}(+, \cdot, ;)$ and $\mathbb{R}\left(+, \cdot,,, 1^{\prime}\right)$ are non-finitely axiomatizable quasivarieties [Andréka].

Generated Varieties

Let $\mathbb{V}(\tau)$ denote the variety generated by $\mathbb{R}(\tau)$.

Ordered Semigroups

The varieties $\mathbb{V}(+, ;)$ and $\mathbb{V}(+, \cdot, ;)$ are finitely axiomatizable [Andréka].

Ordered Monoids

(1) The variety $\mathbb{V}\left(+, ;, 1^{\prime}\right)$ is finitely axiomatizable [Andréka-M].
(2) ???Are the varieties $\mathbb{V}\left(\cdot, ;, 1^{\prime}\right)$ and $\mathbb{V}\left(+, \cdot, ;, 1^{\prime}\right)$ finitely axiomatizable???

Involuted Semigroups and Monoids

Without Semilattice-stucture

$\mathbb{R}\left(;,{ }^{`}\right)$ and $\mathbb{R}\left(;, \smile, 1^{\prime}\right)$ are not finitely axiomatizable quasivarieties [Bredikhin].

Lower semilattice

For $\tau \supseteq\left\{\cdot, ;,{ }^{-}\right\}, \mathbb{R}(\tau)$ and $\mathbb{V}(\tau)$ are not finitely axiomatizable [Haiman], [Hodkinson-M].

Upper Semilattice

(1) $\mathbb{R}\left(+, ;,^{\smile}\right)$ and $\mathbb{R}\left(+, ;,, 1^{\prime}\right)$ are not finitely axiomatizable [Andréka].
(2) The varieties $\mathbb{V}\left(+, ;,^{`}\right)$ and $\mathbb{V}\left(+, ;,{ }^{`}, 1^{\prime}\right)$ are finitely axiomatizable [Andréka-M].

More RRA-definable Operations

Domain: $1^{\prime} \cdot\left(X ; X^{\smile}\right)$

$$
\mathrm{D}(X)=\{(u, u) \mid(u, v) \in X \text { for some } v \in U\}
$$

Range: $1^{\prime} \cdot\left(X^{\smile} ; X\right)$

$$
\mathrm{R}(X)=\{(v, v) \mid(u, v) \in X \text { for some } u \in U\}
$$

Antidomain: $1^{\prime} \cdot-\left(X ; X^{\smile}\right)$

$$
\mathrm{A}(X)=\{(u, u) \mid u \in U,(u, v) \notin X \text { for any } v\}
$$

$$
\text { for all } X \subseteq U \times U
$$

Domain-Range Semigroups

Representable Domain-Range Semigroups
A representable domain-range semigroup is a subalgebra of

$$
(\wp(U \times U), ;, D, R)
$$

With motivation in software verification:

Jipsen-Struth

Is the class $\mathbb{R}(\mathrm{D}, \mathrm{R}, ;$) of representable domain-range semigroups finitely axiomatizable?

Domain Semigroups

Let τ be a similarity type such that $\{;, \mathrm{D}\} \subseteq \tau \subseteq\left\{;, 1^{\prime}, 0, \mathrm{D}, \mathrm{R}, \mathrm{A}\right\}$. The class $\mathbb{R}(\tau)$ of representable τ-algebras is not finitely axiomatizable in first-order logic [Hirsch-M, JLAP 2011].

Adding a Semilattice Structure

Adding join?

Upper Semilattice

Let τ be a similarity type such that
$\{+, ;\} \subseteq \tau \subseteq\left\{+, ;,{ }^{-},{ }^{*}, 0,1,1^{\prime}, \mathrm{D}, \mathrm{R}, \mathrm{A}\right\}$. The class $\mathbb{R}(\tau)$ of representable τ-algebras is not finitely axiomatizable in first-order logic [Hirsch-M, JLAP 2011] using [Andréka 1988].

Adding meet?
The class $\mathbb{R}\left(\cdot, ;, 1^{\prime}\right)$ is not finitely axiomatizable in first-order logic [Hirsch-M, AU 2007]. An ultraproduct construction of non-representable algebras, where 1^{\prime} is an atom. Thus we can augment these algebras with D, R.

Lower Semilattice

Thus $\mathbb{R}(\cdot,,, \mathrm{D}, \mathrm{R})$ is not finitely axiomatizable.

Adding a Lattice Structure

Let τ be a similarity type such that $\{+, \cdot, ;\} \subseteq \tau \subseteq\left\{+, \cdot,-, ;,{ }^{\smile},{ }^{*}, 1^{\prime}, 0,1\right\}$. The class $\mathbb{R}(\tau)$ of representable τ-algebras is not finitely axiomatizable in first-order logic [Andréka, AU 1991].
Another ultraproduct construction. Observe that we can define $\mathrm{D}(x)=\left(x ; x^{\smile}\right) \cdot 1^{\prime}, \mathrm{R}(x)=\left(x^{\smile} ; x\right) \cdot 1^{\prime}$ and $\mathrm{A}(x)=-\mathrm{D}(x) \cdot 1^{\prime}$.

Distributive Lattice
$\mathbb{R}(\mathrm{D}, \mathrm{R}, \mathrm{A}, ;,+, \cdot, \ldots)$ is not finitely axiomatizable.
But, surprisingly, a Cayley-type representation works for the following.

Ordered Structures

$\mathbb{R}\left(;^{\smile}, 0,1^{\prime}, \mathrm{D}, \mathrm{R}, \leq\right)$ is finitely axiomatizable [Bredikhin], [Hirsch-M].

Axiomatizing the Equational Theory

Recall that antidomain is defined as

$$
\mathrm{A}(X)=\{(u, u) \mid(u, v) \notin X \text { for any } v\}
$$

Observe that $\mathrm{D}(x)=\mathrm{A}(\mathrm{A}(x))$.

Antidomain

The varieties $\mathbb{V}(;, \mathrm{A})$ and $\mathbb{V}(;,+, \mathrm{A})$ generated by $\mathbb{R}(;, \mathrm{A})$ and $\mathbb{R}(;,+, \mathrm{A})$, respectively, are finitely axiomatizable [Hollenberg, JOLLI 1997]

Domain and Range

The variety $\mathbb{V}(+, ;, \mathrm{D}, \mathrm{R})$ generated by $\mathbb{R}(+, ;, \mathrm{D}, \mathrm{R})$ is finitely axiomatizable [Jackson-M].

Upper Semi-lattice Ordered Domain-Range Semigroups

Define $x \leq y$ by $x+y=y$.
The axioms $A x$:

$(D 1)$	$\mathrm{D}(x) ; x=x$	$(R 1)$	$x ; \mathrm{R}(x)=x$
$(D 2)$	$\mathrm{D}(x ; y)=\mathrm{D}(x ; \mathrm{D}(y))$	$(R 2)$	$\mathrm{R}(x ; y)=\mathrm{R}(\mathrm{R}(x) ; y)$
$(D 3)$	$\mathrm{D}(\mathrm{D}(x) ; y)=\mathrm{D}(x) ; \mathrm{D}(y)$	$(R 3)$	$\mathrm{R}(x ; \mathrm{R}(y))=\mathrm{R}(x) ; \mathrm{R}(y)$
$(D 4)$	$\mathrm{D}(x) ; \mathrm{D}(y)=\mathrm{D}(y) ; \mathrm{D}(x)$	$(R 4)$	$\mathrm{R}(x) ; \mathrm{R}(y)=\mathrm{R}(y) ; \mathrm{R}(x)$
$(D 5)$	$\mathrm{D}(\mathrm{R}(x))=\mathrm{R}(x)$	$(R 5)$	$\mathrm{R}(\mathrm{D}(x))=\mathrm{D}(x)$
$(D 6)$	$\mathrm{D}(x) ; y \leq y$	$(R 6)$	$x ; \mathrm{R}(y) \leq x$

together with associativity of ; and +, idempotency of + and additivity of ; D, R.

Eliminating Join

Assume

$$
\mathbb{V}(+, ;, \mathrm{D}, \mathrm{R}) \models s \leq t
$$

and we need $A x \vdash s \leq t$, for all terms s, t.
Using additivity of the operations we have that

$$
\mathbb{V}(+, ;, \mathrm{D}, \mathrm{R}) \models s_{1}+\ldots+s_{n}=s \leq t=t_{1}+\ldots+t_{m}
$$

for some join-free terms $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{m}$.
It is not difficult to show that this happens iff for every i there is j such that

$$
\mathbb{V}(+, ;, \mathrm{D}, \mathrm{R}) \models s_{i} \leq t_{j}
$$

Thus it is enough to show $A x \vdash s_{i} \leq t_{j}$ for join-free terms.

Domain Elements (in the Free Algebra)

Claim
Let \mathfrak{A} be a model of $A x$.
(1) The algebra $(\mathrm{D}(A)$, ;) of domain elements is a (lower) semilattice and the semilattice ordering coincides with \leq.
(c) For every $a \in A, \mathrm{D}(a)$ (resp. $\mathrm{R}(a)$) is the minimal element d in $\mathrm{D}(A)$ such that $d ; a=a($ resp. $a ; d=a)$.

Let $\mathfrak{F}_{V a r}=\left(F_{\text {Var }},+, ;, \mathrm{D}, \mathrm{R},\right)$ be the free algebra of the variety defined by $A x$ freely generated by a set Var of variables.

Claim

Let r, s, t be join-free terms such that $\mathfrak{F}_{V a r} \vDash \mathrm{D}(r) \leq s ; t$. Then $\mathfrak{F}_{\text {var }} \equiv \mathrm{D}(r) \leq s=\mathrm{D}(s)$ and $\mathfrak{F}_{\text {var }}=\mathrm{D}(r) \leq t=\mathrm{D}(t)$.

Claim

Let s, t be join-free terms such that \mathfrak{F} var $=s \leq \mathrm{D}(t)$. Then $\mathfrak{F}_{\text {var }} \models s=\mathrm{D}(s)$.

Creating a Representable Algebra Witnessing $A x \nvdash s \leq t$

Let $T_{V a r}^{-}$be the set of join-free terms and $s, t \in T_{V a r}^{-}$. We assume that $A x \nvdash s \leq t$ and we will construct a representable algebra $\mathfrak{A} \in \mathbb{R}(+, ;, \mathrm{D}, \mathrm{R})$ witnessing $s \not \leq t: \mathfrak{A} \mid=s \leq t$.
Let $F_{V a r}^{-}$be the equivalence classes of join-free terms (elements of $\mathfrak{F}_{V_{a r}}$). We will define a labelled, directed graph G_{ω} as the union of a chain of labelled, directed graphs $G_{n}=\left(U_{n}, \ell_{n}, E_{n}\right)$ for $n \in \omega$, where

- U_{n} is the set of nodes,
- $\ell_{n}: U_{n} \times U_{n} \rightarrow \wp\left(F_{V a r}^{-}\right)$is a labelling of edges,
- $E_{n}=\left\{(u, v) \in U_{n} \times U_{n} \mid \ell_{n}(u, v) \neq \emptyset\right\}$

Coherence

We will make sure that the following coherence conditions are maintained during the construction:

GenC E_{n} is a reflexive, transitive and antisymmetric relation on U_{n}.
PriC For every $(u, v) \in E_{n}, \ell_{n}(u, v)$ is a principal upset: $\ell_{n}(u, v)=a^{\uparrow}=\left\{x \in F_{V a r}^{-} \mid a \leq x\right\}$ for some $a \in F_{V a r}^{-}$.
CompC For all $(u, v),(u, w),(w, v) \in U_{n} \times U_{n}$ and $a, b \in F_{V a r}^{-}$, if $a \in \ell_{n}(u, w)$ and $b \in \ell_{n}(w, v)$, then $a ; b \in \ell_{n}(u, v)$.
DomC For all $(u, v) \in U_{n} \times U_{n}$ and $a \in F_{V a r}^{-}$, if $\ell_{n}(u, v)=a^{\uparrow}$, then $\ell_{n}(u, u)=\mathrm{D}(a)^{\uparrow}$.
RanC For all $(u, v) \in U_{n} \times U_{n}$ and $a \in F_{V a r}^{-}$, if $\ell_{n}(u, v)=a^{\uparrow}$, then $\ell_{n}(v, v)=\mathrm{R}(a)^{\uparrow}$.
IdeC For all $(u, v) \in U_{n} \times U_{n}, u=v$ iff $\ell_{n}(u, v)=\mathrm{D}(a)^{\uparrow}$ for some $a \in F_{V a r}^{-}$.

Saturation

The construction will terminate in ω steps, yielding $G_{\omega}=\left(U_{\omega}, \ell_{\omega}, E_{\omega}\right)$ where $U_{\omega}=\bigcup_{n} U_{n}, \ell_{\omega}=\bigcup_{n} \ell_{n}$ and $E_{\omega}=\bigcup_{n} E_{n}$. By the end of the construction we will achieve the following saturation conditions:

CompS For all $(u, v) \in U_{\omega} \times U_{\omega}$ and $a, b \in F_{V a r}^{-}$, if $a ; b \in \ell_{\omega}(u, v)$, then $a \in \ell_{\omega}(u, w)$ and $b \in \ell_{\omega}(w, v)$ for some $w \in U_{\omega}$.
DomS For all $(u, u) \in U_{\omega} \times U_{\omega}$ and $a \in F_{V a r}^{-}$, if $\mathrm{D}(a) \in \ell_{\omega}(u, u)$, then $a \in \ell_{\omega}(u, w)$ for some $w \in U_{\omega}$.
RanS For all $(u, u) \in U_{\omega} \times U_{\omega}$ and $a \in F_{V a r}^{-}$, if $\mathrm{R}(a) \in \ell_{\omega}(u, u)$, then $a \in \ell_{\omega}(w, u)$ for some $w \in U_{\omega}$.

Initial Step

In the 0th step of the step-by-step construction we define $G_{0}=\left(U_{0}, \ell_{0}, W_{0}\right)$ by creating an edge for every element of $F_{V a r}^{-}$. We define U_{0} by choosing elements $u_{a}, v_{a}, \ldots \in \omega$ so that $\left\{u_{a}, v_{a}\right\} \cap\left\{u_{b}, v_{b}\right\}=\emptyset$ for distinct a, b, and $u_{a}=v_{a}$ iff $\mathrm{D}(a)=a$ (i.e., a is a domain element of \mathfrak{F} var). We can assume that $\left|\omega \backslash U_{0}\right|=\omega$. We define

$$
\begin{aligned}
\ell_{0}\left(u_{a}, v_{a}\right) & =a^{\uparrow} \\
\ell_{0}\left(u_{a}, u_{a}\right) & =\mathrm{D}(a)^{\uparrow} \\
\ell_{0}\left(v_{a}, v_{a}\right) & =\mathrm{R}(a)^{\uparrow}
\end{aligned}
$$

and we label all other edges by \emptyset.

Step for Domain

Our aim is to extend G_{m} to create an edge (u, w) witnessing a, provided $\mathrm{D}(a) \in \ell_{m}(u, u)=c^{\uparrow}$.

Domain Step

We assume that we have a loop (u, u) labelled by the upset of a domain element $c=\mathrm{D}(c) \leq a$ such that $\mathrm{D}(c)$; a is not a domain element, but we may miss an edge (u, w) witnessing a.
We choose $w \in \omega \backslash U_{m}$, extend ℓ_{m} by

$$
\begin{aligned}
\ell_{m+1}(u, w) & =(\mathrm{D}(c) ; a)^{\uparrow} \\
\ell_{m+1}(w, w) & =(\mathrm{R}(\mathrm{D}(c) ; a))^{\uparrow}
\end{aligned}
$$

and for every $(p, u) \in E_{m}$ with $\ell_{m}(p, u)=d^{\uparrow}$ (some $d \in F_{V_{a r}}^{-}$)

$$
\ell_{m+1}(p, w)=(d ; a)^{\uparrow}
$$

All other edges involving the point w have empty labels.

Step for Composition

Our aim is to extend G_{m} to create edges (u, w) and (w, v) witnessing a and b, provided $a ; b \in \ell_{m}(u, v)=c^{\uparrow}$.

Composition Step

We assume that
(CC1) $u \neq v$,
(CC2) $\mathrm{D}(c) ; a ; \mathrm{D}(b ; \mathrm{R}(c)) \neq \mathrm{D}(\mathrm{D}(c) ; a ; \mathrm{D}(b ; \mathrm{R}(c)))$,
(CC3) $\mathrm{R}(\mathrm{D}(c) ; a) ; b ; \mathrm{R}(c) \neq \mathrm{R}(\mathrm{R}(\mathrm{D}(c) ; a) ; b ; \mathrm{R}(c))$,
otherwise we define $G_{m+1}=G_{m}$. If (CC1)-(CC3) hold, then we choose $w \in \omega \backslash U_{m}$, extend ℓ_{m} by

$$
\begin{aligned}
\ell_{m+1}(u, w) & =(\mathrm{D}(c) ; a ; \mathrm{D}(b ; \mathrm{R}(c)))^{\uparrow} \\
\ell_{m+1}(w, v) & =(\mathrm{R}(\mathrm{D}(c) ; a) ; b ; \mathrm{R}(c))^{\uparrow} \\
\ell_{m+1}(w, w) & =(\mathrm{R}(\mathrm{D}(c) ; a) ; \mathrm{D}(b ; \mathrm{R}(c)))^{\uparrow}
\end{aligned}
$$

and for $(p, u),(v, q) \in E_{m}$ with $\ell_{m}(p, u)=d^{\uparrow}$ and $\ell_{m}(v, q)=e^{\uparrow}$ (some $\left.d, e \in F_{V a r}^{-}\right)$

$$
\begin{aligned}
& \ell_{m+1}(p, w)=(d ; a ; \mathrm{D}(b ; \mathrm{R}(c)))^{\uparrow} \\
& \ell_{m+1}(w, q)=(\mathrm{R}(\mathrm{D}(c) ; a) ; b ; e)^{\uparrow}
\end{aligned}
$$

All other edges involving w will have empty labels.

In the Limit

Lemma

G_{ω} is coherent and saturated.
Coherence of G_{ω} follows from the coherence of each G_{m} (easy but tedious). Saturation of G_{ω} follows from the fact that we constructed the required witness edges (if they were not present yet in G_{m}).
Next we define a valuation b of variables. Let for term r, its equivalence class in $F_{V a r}$ be denoted by \bar{r}. We let

$$
x^{b}=\left\{(u, v) \in U_{\omega} \times U_{\omega}: \bar{x} \in \ell_{\omega}(u, v)\right\}
$$

for every variable $x \in$ Var.

Truth Lemma

Let $\mathfrak{A}=(A,+, ;, \mathrm{D}, \mathrm{R})$ be the subalgebra of the full algebra $\left(\wp\left(U_{\omega} \times U_{\omega}\right),+, ;, \mathrm{D}, \mathrm{R}\right)$ generated by $\left\{x^{b}: x \in \operatorname{Var}\right\}$. Clearly \mathfrak{A} is representable.

Lemma

For every join-free term r and $(u, v) \in U_{\omega} \times U_{\omega}$,

$$
(u, v) \in r^{b} \text { iff } \bar{r} \in \ell_{\omega}(u, v)
$$

where r^{b} is the interpretation of r in \mathfrak{A} under the valuation b.
By coherence and saturation of G_{ω}.
Recall that we assumed that \mathfrak{F} var $\not \vDash s \leq t$. In the initial step of the construction we created the edge $\left(u_{s}, v_{\bar{s})}\right.$ such that $\ell_{0}\left(u_{\bar{s}}, v_{s}\right)=\bar{s}^{\uparrow}$. Thus $\bar{s} \in \ell_{\omega}\left(u_{\bar{s}}, v_{\bar{s}}\right)$ and $\bar{t} \notin \ell_{\omega}\left(u_{\bar{s}}, v_{\bar{s}}\right)$. Hence, by Lemma, $\left(u_{\bar{s}}, v_{\bar{s}}\right) \in s^{b}$ and $\left(u_{\bar{s}}, v_{\bar{s}}\right) \notin t^{b}$. That is, $\mathfrak{A} \not \vDash s \leq t$, as desired.

Open Problems

Adding meet and/or antidomain.
Open problems
Are the varieties generated by

- $\mathbb{R}(+, ;, \mathrm{D}, \mathrm{R}, \mathrm{A})$
- $\mathbb{R}(+, \cdot, ;, \mathrm{D}, \mathrm{R})$
- $\mathbb{R}(+, \cdot, ;, \mathrm{D}, \mathrm{R}, \mathrm{A})$
finitely axiomatizable?

