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Relation Set Algebras
Let U be a set. We de�ne operations on elements of ℘(U × U).

Composition

X ;Y = {(u, v) | (u,w) ∈ X and (w , v) ∈ Y for some w ∈ U}

Converse
X^ = {(u, v) | (v , u) ∈ X}

Identity
1′ = {(u, u) | u ∈ U}

for every X ,Y ⊆ U × U.

Relation Set Algebras, Rs

A relation set algebra is a subalgebra of

(℘(U × U),+, ·,−, ;,^, 0, 1, 1′)

where U is a set, + is union, · is intersection, − is complement (w.r.t.
U × U), 0 is the bottom element ∅, 1 is the top element U × U.
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Representable Relation Algebras

Representable Relation Algebras, RRA

RRA = SPRs

i.e., the closure of the class of relation set algebras under (isomorphic
copies of) direct products and subalgebras.

The (quasi)variety RRA

RRA is a variety, i.e.,
RRA = HSPRRA

but it cannot be axiomatized by �nitely many equations [Monk].
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For which fragment of RRA do we have a �nitely
axiomatizable (quasi)variety?

Let τ be a collection of operations de�nable in RRA. The τ -reduct RdτA
of an A ∈ RRA is an algebra (A, o | o ∈ τ).

Generalized τ -subreduct

R(τ) = S{Rdτ (A) | A ∈ RRA}

The Questions

For which τ

1 is R(τ) a �nitely axiomatizable (quasi)variety?

2 does R(τ) generate a �nitely axiomatizable variety?
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Relational Representation of Semigroups

Given a class of semigroup-like structures (ordered, involuted, residuated),

1 does it coincide with a class of algebras of binary relations?

2 is the equational theory coincide with that of a class of algebras of
binary relations?

The Base Case

For semigroups and monoids the Cayley representation works:

x 7→ {(a, b) | a ; x = b}

i.e., R(;) and R(;, 1′) are �nitely axiomatizable varieties.

Adding Order

1 R(;,≤) is �nitely axiomatizable [Zarecki].

2 R(;, 1′,≤) is not �nitely axiomatizable [Hirsch].
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Adding a (Semi)lattice Structure

Lower Semilattice
1 R(·, ;) is a �nitely axiomatizable variety [Bredikhin�Schein].

2 R(·, ;, 1′) is not �nitely axiomatizable [Hirsch�M].

Upper Semilattice

R(+, ;) and R(+, ;, 1′) are non-�nitely axiomatizable quasivarieties
[Andréka].

Distributive Lattice

R(+, ·, ;) and R(+, ·, ;, 1′) are non-�nitely axiomatizable quasivarieties
[Andréka].
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Generated Varieties

Let V(τ) denote the variety generated by R(τ).

Ordered Semigroups

The varieties V(+, ;) and V(+, ·, ;) are �nitely axiomatizable [Andréka].

Ordered Monoids
1 The variety V(+, ;, 1′) is �nitely axiomatizable [Andréka�M].

2 ???Are the varieties V(·, ;, 1′) and V(+, ·, ;, 1′) �nitely
axiomatizable???
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Involuted Semigroups and Monoids

Without Semilattice-stucture

R(;,^) and R(;,^, 1′) are not �nitely axiomatizable quasivarieties
[Bredikhin].

Lower semilattice

For τ ⊇ {·, ;,^}, R(τ) and V(τ) are not �nitely axiomatizable [Haiman],
[Hodkinson�M].

Upper Semilattice

1 R(+, ;,^) and R(+, ;,^, 1′) are not �nitely axiomatizable [Andréka].

2 The varieties V(+, ;,^) and V(+, ;,^, 1′) are �nitely axiomatizable
[Andréka�M].
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More RRA-de�nable Operations

Domain: 1′ · (X ; X^)

D(X ) = {(u, u) | (u, v) ∈ X for some v ∈ U}

Range: 1′ · (X^ ; X )

R(X ) = {(v , v) | (u, v) ∈ X for some u ∈ U}

Antidomain: 1′ · −(X ; X^)

A(X ) = {(u, u) | u ∈ U, (u, v) /∈ X for any v}

for all X ⊆ U × U.
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Domain�Range Semigroups

Representable Domain�Range Semigroups

A representable domain�range semigroup is a subalgebra of

(℘(U × U), ;,D,R)

With motivation in software veri�cation:

Jipsen�Struth

Is the class R(D,R, ;) of representable domain�range semigroups �nitely
axiomatizable?

Domain Semigroups

Let τ be a similarity type such that {;,D} ⊆ τ ⊆ {;, 1′, 0,D,R,A}. The
class R(τ) of representable τ -algebras is not �nitely axiomatizable in
�rst-order logic [Hirsch�M, JLAP 2011].
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Adding a Semilattice Structure

Adding join?

Upper Semilattice

Let τ be a similarity type such that
{+, ;} ⊆ τ ⊆ {+, ;,^, ∗, 0, 1, 1′,D,R,A}. The class R(τ) of representable
τ -algebras is not �nitely axiomatizable in �rst-order logic [Hirsch�M, JLAP
2011] using [Andréka 1988].

Adding meet?
The class R(·, ;, 1′) is not �nitely axiomatizable in �rst-order logic
[Hirsch�M, AU 2007]. An ultraproduct construction of non-representable
algebras, where 1′ is an atom. Thus we can augment these algebras with
D,R.

Lower Semilattice

Thus R(·, ;,D,R) is not �nitely axiomatizable.
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Adding a Lattice Structure

Let τ be a similarity type such that {+, ·, ;} ⊆ τ ⊆ {+, ·,−, ;,^, ∗, 1′, 0, 1}.
The class R(τ) of representable τ -algebras is not �nitely axiomatizable in
�rst-order logic [Andréka, AU 1991].
Another ultraproduct construction. Observe that we can de�ne
D(x) = (x ; x^) · 1′, R(x) = (x^ ; x) · 1′ and A(x) = −D(x) · 1′.

Distributive Lattice

R(D,R,A, ;,+, ·, . . .) is not �nitely axiomatizable.

But, surprisingly, a Cayley-type representation works for the following.

Ordered Structures

R(;,^, 0, 1′,D,R,≤) is �nitely axiomatizable [Bredikhin], [Hirsch�M].
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Axiomatizing the Equational Theory

Recall that antidomain is de�ned as

A(X ) = {(u, u) | (u, v) /∈ X for any v}

Observe that D(x) = A(A(x)).

Antidomain

The varieties V(;,A) and V(;,+,A) generated by R(;,A) and R(;,+,A),
respectively, are �nitely axiomatizable [Hollenberg, JOLLI 1997]

Domain and Range

The variety V(+, ;,D,R) generated by R(+, ;,D,R) is �nitely
axiomatizable [Jackson�M].
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Upper Semi-lattice Ordered Domain�Range Semigroups

De�ne x ≤ y by x + y = y .
The axioms Ax :

(D1) D(x) ; x = x (R1) x ; R(x) = x

(D2) D(x ; y) = D(x ; D(y)) (R2) R(x ; y) = R(R(x) ; y)

(D3) D(D(x) ; y) = D(x) ; D(y) (R3) R(x ; R(y)) = R(x) ; R(y)

(D4) D(x) ; D(y) = D(y) ; D(x) (R4) R(x) ; R(y) = R(y) ; R(x)

(D5) D(R(x)) = R(x) (R5) R(D(x)) = D(x)

(D6) D(x) ; y ≤ y (R6) x ; R(y) ≤ x

together with associativity of ; and +, idempotency of + and additivity of
;,D,R.
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Eliminating Join

Assume
V(+, ;,D,R) |= s ≤ t

and we need Ax ` s ≤ t, for all terms s, t.
Using additivity of the operations we have that

V(+, ;,D,R) |= s1 + . . .+ sn = s ≤ t = t1 + . . .+ tm

for some join-free terms s1, . . . , sn, t1, . . . , tm.
It is not di�cult to show that this happens i� for every i there is j such that

V(+, ;,D,R) |= si ≤ tj

Thus it is enough to show Ax ` si ≤ tj for join-free terms.
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Domain Elements (in the Free Algebra)

Claim

Let A be a model of Ax .

1 The algebra (D(A), ;) of domain elements is a (lower) semilattice and
the semilattice ordering coincides with ≤.

2 For every a ∈ A, D(a) (resp. R(a)) is the minimal element d in D(A)
such that d ; a = a (resp. a ; d = a).

Let FVar = (FVar,+, ;,D,R, ) be the free algebra of the variety de�ned by
Ax freely generated by a set Var of variables.

Claim

Let r , s, t be join-free terms such that FVar |= D(r) ≤ s ; t. Then
FVar |= D(r) ≤ s = D(s) and FVar |= D(r) ≤ t = D(t).

Claim

Let s, t be join-free terms such that FVar |= s ≤ D(t). Then
FVar |= s = D(s).
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Creating a Representable Algebra Witnessing Ax 6` s ≤ t

Let T−
Var

be the set of join-free terms and s, t ∈ T−
Var

. We assume that
Ax 6` s ≤ t and we will construct a representable algebra A ∈ R(+, ;,D,R)
witnessing s 6≤ t: A 6|= s ≤ t.
Let F−

Var
be the equivalence classes of join-free terms (elements of FVar).

We will de�ne a labelled, directed graph Gω as the union of a chain of
labelled, directed graphs Gn = (Un, `n,En) for n ∈ ω, where

Un is the set of nodes,

`n : Un × Un → ℘(F−
Var

) is a labelling of edges,

En = {(u, v) ∈ Un × Un | `n(u, v) 6= ∅}
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Coherence

We will make sure that the following coherence conditions are maintained
during the construction:

GenC En is a re�exive, transitive and antisymmetric relation on Un.

PriC For every (u, v) ∈ En, `n(u, v) is a principal upset:
`n(u, v) = a↑ = {x ∈ F−

Var
| a ≤ x} for some a ∈ F−

Var
.

CompC For all (u, v), (u,w), (w , v) ∈ Un × Un and a, b ∈ F−
Var

, if
a ∈ `n(u,w) and b ∈ `n(w , v), then a ; b ∈ `n(u, v).

DomC For all (u, v) ∈ Un × Un and a ∈ F−
Var

, if `n(u, v) = a↑, then
`n(u, u) = D(a)↑.

RanC For all (u, v) ∈ Un × Un and a ∈ F−
Var

, if `n(u, v) = a↑, then
`n(v , v) = R(a)↑.

IdeC For all (u, v) ∈ Un × Un, u = v i� `n(u, v) = D(a)↑ for some
a ∈ F−

Var
.
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Saturation

The construction will terminate in ω steps, yielding Gω = (Uω, `ω,Eω)
where Uω =

⋃
n Un, `ω =

⋃
n `n and Eω =

⋃
n En.

By the end of the construction we will achieve the following saturation

conditions:

CompS For all (u, v) ∈ Uω × Uω and a, b ∈ F−
Var

, if a ; b ∈ `ω(u, v),
then a ∈ `ω(u,w) and b ∈ `ω(w , v) for some w ∈ Uω.

DomS For all (u, u) ∈ Uω × Uω and a ∈ F−
Var

, if D(a) ∈ `ω(u, u),
then a ∈ `ω(u,w) for some w ∈ Uω.

RanS For all (u, u) ∈ Uω × Uω and a ∈ F−
Var

, if R(a) ∈ `ω(u, u),
then a ∈ `ω(w , u) for some w ∈ Uω.
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Initial Step

In the 0th step of the step-by-step construction we de�ne
G0 = (U0, `0,W0) by creating an edge for every element of F−

Var
. We de�ne

U0 by choosing elements ua, va, . . . ∈ ω so that {ua, va} ∩ {ub, vb} = ∅ for
distinct a, b, and ua = va i� D(a) = a (i.e., a is a domain element of FVar).
We can assume that |ω \ U0| = ω. We de�ne

`0(ua, va) = a↑

`0(ua, ua) = D(a)↑

`0(va, va) = R(a)↑

and we label all other edges by ∅.
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Step for Domain

Our aim is to extend Gm to create an edge (u,w) witnessing a, provided
D(a) ∈ `m(u, u) = c↑.

w

R(D(c);a)

��

uD(c)=c 99

D(c);a

OO

p
d

oo

d ;a

__
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Domain Step

We assume that we have a loop (u, u) labelled by the upset of a domain
element c = D(c) ≤ a such that D(c) ; a is not a domain element, but we
may miss an edge (u,w) witnessing a.
We choose w ∈ ω \ Um, extend `m by

`m+1(u,w) = (D(c) ; a)↑

`m+1(w ,w) = (R(D(c) ; a))↑

and for every (p, u) ∈ Em with `m(p, u) = d↑ (some d ∈ F−
Var

)

`m+1(p,w) = (d ; a)↑

All other edges involving the point w have empty labels.
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Step for Composition
Our aim is to extend Gm to create edges (u,w) and (w , v) witnessing a
and b, provided a ; b ∈ `m(u, v) = c↑.

w

R(D(c);a);D(b;R(c))

��

R(D(c);a);b;R(c)

  

R(D(c);a);b;e
��

uD(c) 99

D(c);a;D(b;R(c))

>>

c // v R(c)ee

e

��
p

d

OO

d ;a;D(b;R(c))

GG

q
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Composition Step
We assume that

(CC1) u 6= v ,
(CC2) D(c) ; a ; D(b ; R(c)) 6= D(D(c) ; a ; D(b ; R(c))),
(CC3) R(D(c) ; a) ; b ; R(c) 6= R(R(D(c) ; a) ; b ; R(c)),

otherwise we de�ne Gm+1 = Gm. If (CC1)�(CC3) hold, then we choose
w ∈ ω \ Um, extend `m by

`m+1(u,w) = (D(c) ; a ; D(b ; R(c)))↑

`m+1(w , v) = (R(D(c) ; a) ; b ; R(c))↑

`m+1(w ,w) = (R(D(c) ; a) ; D(b ; R(c)))↑

and for (p, u), (v , q) ∈ Em with `m(p, u) = d↑ and `m(v , q) = e↑ (some
d , e ∈ F−

Var
)

`m+1(p,w) = (d ; a ; D(b ; R(c)))↑

`m+1(w , q) = (R(D(c) ; a) ; b ; e)↑

All other edges involving w will have empty labels.
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In the Limit

Lemma

Gω is coherent and saturated.

Coherence of Gω follows from the coherence of each Gm (easy but tedious).
Saturation of Gω follows from the fact that we constructed the required
witness edges (if they were not present yet in Gm).
Next we de�ne a valuation [ of variables. Let for term r , its equivalence
class in FVar be denoted by r . We let

x [ = {(u, v) ∈ Uω × Uω : x ∈ `ω(u, v)}

for every variable x ∈ Var.
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Truth Lemma

Let A = (A,+, ;,D,R) be the subalgebra of the full algebra
(℘(Uω × Uω),+, ;,D,R) generated by {x [ : x ∈ Var}. Clearly A is
representable.

Lemma

For every join-free term r and (u, v) ∈ Uω × Uω,

(u, v) ∈ r [ i� r ∈ `ω(u, v)

where r [ is the interpretation of r in A under the valuation [.

By coherence and saturation of Gω.
Recall that we assumed that FVar 6|= s ≤ t. In the initial step of the
construction we created the edge (us , vs) such that `0(us , vs) = s↑. Thus

s ∈ `ω(us , vs) and t /∈ `ω(us , vs). Hence, by Lemma, (us , vs) ∈ s[ and
(us , vs) /∈ t[. That is, A 6|= s ≤ t, as desired.
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Open Problems

Adding meet and/or antidomain.

Open problems

Are the varieties generated by

R(+, ;,D,R,A)
R(+, ·, ;,D,R)
R(+, ·, ;,D,R,A)

�nitely axiomatizable?
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