Relational Representation of Semigroups

Szabolcs Mikulás Department of Computer Science and Information Systems Birkbeck College, University of London www.dcs.bbk.ac.uk/~szabolcs

24/10/2018 — York Semigroup

24/10/2018 — York Semigroup

Relation Set Algebras

Let U be a set. We define operations on elements of $\wp(U \times U)$. Composition

$$X;Y=\{(u,v) \mid (u,w) \in X ext{ and } (w,v) \in Y ext{ for some } w \in U\}$$

Converse

$$X^{\smile} = \{(u, v) \mid (v, u) \in X\}$$

Identity

$$1' = \{(u, u) \mid u \in U\}$$

for every $X, Y \subseteq U \times U$.

Relation Set Algebras, Rs

A relation set algebra is a subalgebra of

$$(\wp(U \times U), +, \cdot, -, ;, {}^{\smile}, 0, 1, 1')$$

where U is a set, + is union, \cdot is intersection, - is complement (w.r.t. $U \times U$), 0 is the bottom element \emptyset , 1 is the top element $U \times U$.

24/10/2018 - York Semigroup

Representable Relation Algebras

Representable Relation Algebras, RRA

 $\mathsf{RRA} = \mathbb{SPRs}$

i.e., the closure of the class of relation set algebras under (isomorphic copies of) direct products and subalgebras.

The (quasi)variety RRA

RRA is a variety, i.e.,

 $\mathsf{RRA}=\mathbb{HSPRRA}$

but it cannot be axiomatized by finitely many equations [Monk].

24/10/2018 — York Semigroup

For which fragment of RRA do we have a finitely axiomatizable (quasi)variety?

Let τ be a collection of operations definable in RRA. The τ -reduct $\operatorname{Rd}_{\tau}\mathfrak{A}$ of an $\mathfrak{A} \in \operatorname{RRA}$ is an algebra $(A, o \mid o \in \tau)$.

Generalized τ -subreduct

 $\mathbb{R}(\tau) = \mathbb{S}\{\mathsf{Rd}_{\tau}(\mathfrak{A}) \mid \mathfrak{A} \in \mathsf{RRA}\}$

The Questions

For which au

- is $\mathbb{R}(au)$ a finitely axiomatizable (quasi)variety?
- 2 does $\mathbb{R}(au)$ generate a finitely axiomatizable variety?

Relational Representation of Semigroups

Given a class of semigroup-like structures (ordered, involuted, residuated),

- does it coincide with a class of algebras of binary relations?
- is the equational theory coincide with that of a class of algebras of binary relations?

The Base Case

For semigroups and monoids the Cayley representation works:

$$x \mapsto \{(a, b) \mid a; x = b\}$$

i.e., $\mathbb{R}(;)$ and $\mathbb{R}(;,1')$ are finitely axiomatizable varieties.

Adding Order

- $\textcircled{0} \ \mathbb{R}(;,\leq) \text{ is finitely axiomatizable [Zarecki]}.$
- **2** $\mathbb{R}(;, 1', \leq)$ is not finitely axiomatizable [Hirsch].

Adding a (Semi)lattice Structure

Lower Semilattice

- $\ \ \, {\mathbb R}(\cdot,;) \text{ is a finitely axiomatizable variety [Bredikhin-Schein]}.$
- **2** $\mathbb{R}(\cdot,;,1')$ is not finitely axiomatizable [Hirsch-M].

Upper Semilattice

 $\mathbb{R}(+,;)$ and $\mathbb{R}(+,;,1')$ are non-finitely axiomatizable quasivarieties [Andréka].

Distributive Lattice

 $\mathbb{R}(+,\cdot,;)$ and $\mathbb{R}(+,\cdot,;,1')$ are non-finitely axiomatizable quasivarieties [Andréka].

Generated Varieties

Let $\mathbb{V}(au)$ denote the variety generated by $\mathbb{R}(au)$.

Ordered Semigroups The varieties $\mathbb{V}(+,;)$ and $\mathbb{V}(+,\cdot,;)$ are finitely axiomatizable [Andréka].

Ordered Monoids

- $\textbf{O} \ \ \text{The variety } \mathbb{V}(+,;,1') \text{ is finitely axiomatizable [Andréka-M]}.$
- ② ???Are the varieties V(·, ;, 1') and V(+, ·, ;, 1') finitely axiomatizable???

Involuted Semigroups and Monoids

Without Semilattice-stucture

 $\mathbb{R}(;, \sim)$ and $\mathbb{R}(;, \sim, 1')$ are not finitely axiomatizable quasivarieties [Bredikhin].

Lower semilattice

For $\tau \supseteq \{\cdot, ;, \check{}\}$, $\mathbb{R}(\tau)$ and $\mathbb{V}(\tau)$ are not finitely axiomatizable [Haiman], [Hodkinson-M].

Upper Semilattice

- G The varieties V(+,;, ⊂) and V(+,;, ⊂, 1') are finitely axiomatizable [Andréka-M].

More RRA-definable Operations

Domain: $1' \cdot (X; X^{\smile})$ $D(X) = \{(u, u) \mid (u, v) \in X \text{ for some } v \in U\}$ Range: $1' \cdot (X^{\smile}; X)$ $\mathsf{R}(X) = \{(v, v) \mid (u, v) \in X \text{ for some } u \in U\}$ Antidomain: $1' \cdot -(X; X^{\smile})$ $A(X) = \{(u, u) \mid u \in U, (u, v) \notin X \text{ for any } v\}$ for all $X \subset U \times U$.

Domain-Range Semigroups

Representable Domain-Range Semigroups

A representable domain-range semigroup is a subalgebra of

 $(\wp(U \times U),;,\mathsf{D},\mathsf{R})$

With motivation in software verification:

Jipsen-Struth

Is the class $\mathbb{R}(D, R, ;)$ of representable domain-range semigroups finitely axiomatizable?

Domain Semigroups

Let τ be a similarity type such that $\{;, D\} \subseteq \tau \subseteq \{;, 1', 0, D, R, A\}$. The class $\mathbb{R}(\tau)$ of representable τ -algebras is not finitely axiomatizable in first-order logic [Hirsch-M, JLAP 2011].

Adding a Semilattice Structure

Adding join?

Upper Semilattice

Let τ be a similarity type such that $\{+,;\} \subseteq \tau \subseteq \{+,;, \check{}, *, 0, 1, 1', D, R, A\}$. The class $\mathbb{R}(\tau)$ of representable τ -algebras is not finitely axiomatizable in first-order logic [Hirsch-M, JLAP] 2011] using [Andréka 1988].

Adding meet? The class $\mathbb{R}(\cdot, ;, 1')$ is not finitely axiomatizable in first-order logic [Hirsch-M, AU 2007]. An ultraproduct construction of non-representable algebras, where 1' is an atom. Thus we can augment these algebras with D, R.

Lower Semilattice Thus $\mathbb{R}(\cdot, ;, D, R)$ is not finitely axiomatizable. 24/10/2018 — York Semigroup / 27

Adding a Lattice Structure

Let τ be a similarity type such that $\{+, \cdot, ;\} \subseteq \tau \subseteq \{+, \cdot, -, ;, \check{}, *, 1', 0, 1\}$. The class $\mathbb{R}(\tau)$ of representable τ -algebras is not finitely axiomatizable in first-order logic [Andréka, AU 1991]. Another ultraproduct construction. Observe that we can define $D(x) = (x; x\check{}) \cdot 1'$, $R(x) = (x\check{}; x) \cdot 1'$ and $A(x) = -D(x) \cdot 1'$.

Distributive Lattice

 $\mathbb{R}(\mathsf{D},\mathsf{R},\mathsf{A},;,+,\cdot,\ldots)$ is not finitely axiomatizable.

But, surprisingly, a Cayley-type representation works for the following.

Ordered Structures $\mathbb{R}(;, \, \check{}, 0, 1', D, R, \leq)$ is finitely axiomatizable [Bredikhin], [Hirsch-M].

Axiomatizing the Equational Theory

Recall that antidomain is defined as

$$\mathsf{A}(X) = \{(u, u) \mid (u, v) \notin X \text{ for any } v\}$$

Observe that D(x) = A(A(x)).

Antidomain

The varieties $\mathbb{V}(;, A)$ and $\mathbb{V}(;, +, A)$ generated by $\mathbb{R}(;, A)$ and $\mathbb{R}(;, +, A)$, respectively, are finitely axiomatizable [Hollenberg, JOLLI 1997]

Domain and Range

The variety $\mathbb{V}(+,;,D,R)$ generated by $\mathbb{R}(+,;,D,R)$ is finitely axiomatizable [Jackson-M].

Upper Semi-lattice Ordered Domain-Range Semigroups

Define $x \le y$ by x + y = y. The axioms Ax:

$$\begin{array}{lll} (D1) & \mathsf{D}(x)\,;\,x=x & (R1) & x\,;\,\mathsf{R}(x)=x \\ (D2) & \mathsf{D}(x\,;\,y)=\mathsf{D}(x\,;\,\mathsf{D}(y)) & (R2) & \mathsf{R}(x\,;\,y)=\mathsf{R}(\mathsf{R}(x)\,;\,y) \\ (D3) & \mathsf{D}(\mathsf{D}(x)\,;\,y)=\mathsf{D}(x)\,;\,\mathsf{D}(y) & (R3) & \mathsf{R}(x\,;\,\mathsf{R}(y))=\mathsf{R}(x)\,;\,\mathsf{R}(y) \\ (D4) & \mathsf{D}(x)\,;\,\mathsf{D}(y)=\mathsf{D}(y)\,;\,\mathsf{D}(x) & (R4) & \mathsf{R}(x)\,;\,\mathsf{R}(y)=\mathsf{R}(y)\,;\,\mathsf{R}(x) \\ (D5) & \mathsf{D}(\mathsf{R}(x))=\mathsf{R}(x) & (R5) & \mathsf{R}(\mathsf{D}(x))=\mathsf{D}(x) \\ (D6) & \mathsf{D}(x)\,;\,y\leq y & (R6) & x\,;\,\mathsf{R}(y)\leq x \end{array}$$

together with associativity of ; and +, idempotency of + and additivity of ;, D, R.

Eliminating Join

Assume

 $\mathbb{V}(+,;,\mathsf{D},\mathsf{R}) \models s \leq t$

and we need $Ax \vdash s \leq t$, for all terms s, t. Using additivity of the operations we have that

$$\mathbb{V}(+,;,\mathsf{D},\mathsf{R})\models s_1+\ldots+s_n=s\leq t=t_1+\ldots+t_m$$

for some join-free terms $s_1, \ldots, s_n, t_1, \ldots, t_m$.

It is not difficult to show that this happens iff for every *i* there is *j* such that

$$\mathbb{V}(+,;,\mathsf{D},\mathsf{R}) \models s_i \leq t_j$$

Thus it is enough to show $Ax \vdash s_i \leq t_i$ for join-free terms.

Domain Elements (in the Free Algebra)

Claim

Let \mathfrak{A} be a model of Ax.

- In algebra (D(A), ;) of domain elements is a (lower) semilattice and the semilattice ordering coincides with ≤.
- ② For every a ∈ A, D(a) (resp. R(a)) is the minimal element d in D(A) such that d; a = a (resp. a; d = a).

Let $\mathfrak{F}_{Var} = (F_{Var}, +, ;, D, R,)$ be the free algebra of the variety defined by Ax freely generated by a set Var of variables.

Claim

Let r, s, t be join-free terms such that $\mathfrak{F}_{Var} \models D(r) \leq s$; t. Then $\mathfrak{F}_{Var} \models D(r) \leq s = D(s)$ and $\mathfrak{F}_{Var} \models D(r) \leq t = D(t)$.

Claim

Let s, t be join-free terms such that $\mathfrak{F}_{Var} \models s \leq D(t)$. Then $\mathfrak{F}_{Var} \models s = D(s)$. 24/10/2018 — York Semigroup Sz. Mikulás Relational Representation of Semigroups

Creating a Representable Algebra Witnessing $Ax \not\vdash s \leq t$

Let T_{Var}^- be the set of join-free terms and $s, t \in T_{Var}^-$. We assume that $Ax \not\vdash s \leq t$ and we will construct a representable algebra $\mathfrak{A} \in \mathbb{R}(+,;,\mathsf{D},\mathsf{R})$ witnessing $s \not\leq t$: $\mathfrak{A} \not\models s \leq t$.

Let F_{Var}^- be the equivalence classes of join-free terms (elements of \mathfrak{F}_{Var}). We will define a labelled, directed graph G_{ω} as the union of a chain of labelled, directed graphs $G_n = (U_n, \ell_n, E_n)$ for $n \in \omega$, where

• U_n is the set of nodes,

•
$$\ell_n \colon U_n \times U_n \to \wp(F_{Var}^-)$$
 is a labelling of edges,

• $E_n = \{(u, v) \in U_n \times U_n \mid \ell_n(u, v) \neq \emptyset\}$

Coherence

We will make sure that the following *coherence conditions* are maintained during the construction:

GenC E_n is a reflexive, transitive and antisymmetric relation on U_n . PriC For every $(u, v) \in E_n$, $\ell_n(u, v)$ is a principal upset: $\ell_n(u, v) = a^{\uparrow} = \{x \in F^-_{Var} \mid a \leq x\}$ for some $a \in F^-_{Var}$ CompC For all $(u, v), (u, w), (w, v) \in U_n \times U_n$ and $a, b \in F_{Var}^-$ if $a \in \ell_n(u, w)$ and $b \in \ell_n(w, v)$, then $a; b \in \ell_n(u, v)$. DomC For all $(u, v) \in U_n \times U_n$ and $a \in F^-_{Var}$ if $\ell_n(u, v) = a^{\uparrow}$, then $\ell_n(u, u) = \mathsf{D}(a)^{\uparrow}$ RanC For all $(u, v) \in U_n \times U_n$ and $a \in F^-_{Var}$ if $\ell_n(u, v) = a^{\uparrow}$, then $\ell_n(v,v) = \mathsf{R}(a)^{\uparrow}$ IdeC For all $(u, v) \in U_n \times U_n$, u = v iff $\ell_n(u, v) = D(a)^{\uparrow}$ for some $a \in F_{Var}^{-}$

Saturation

The construction will terminate in ω steps, yielding $G_{\omega} = (U_{\omega}, \ell_{\omega}, E_{\omega})$ where $U_{\omega} = \bigcup_{n} U_{n}$, $\ell_{\omega} = \bigcup_{n} \ell_{n}$ and $E_{\omega} = \bigcup_{n} E_{n}$. By the end of the construction we will achieve the following *saturation conditions*:

- CompS For all $(u, v) \in U_{\omega} \times U_{\omega}$ and $a, b \in F_{Var}^{-}$, if a; $b \in \ell_{\omega}(u, v)$, then $a \in \ell_{\omega}(u, w)$ and $b \in \ell_{\omega}(w, v)$ for some $w \in U_{\omega}$.
 - DomS For all $(u, u) \in U_{\omega} \times U_{\omega}$ and $a \in F_{Var}^{-}$, if $D(a) \in \ell_{\omega}(u, u)$, then $a \in \ell_{\omega}(u, w)$ for some $w \in U_{\omega}$.
 - RanS For all $(u, u) \in U_{\omega} \times U_{\omega}$ and $a \in F_{Var}^{-}$, if $R(a) \in \ell_{\omega}(u, u)$, then $a \in \ell_{\omega}(w, u)$ for some $w \in U_{\omega}$.

Initial Step

In the 0th step of the step-by-step construction we define $G_0 = (U_0, \ell_0, W_0)$ by creating an edge for every element of F_{Var}^- . We define U_0 by choosing elements $u_a, v_a, \ldots \in \omega$ so that $\{u_a, v_a\} \cap \{u_b, v_b\} = \emptyset$ for distinct a, b, and $u_a = v_a$ iff D(a) = a (i.e., a is a domain element of \mathfrak{F}_{Var}). We can assume that $|\omega \setminus U_0| = \omega$. We define

$$\ell_0(u_a, v_a) = a^{\uparrow}$$

 $\ell_0(u_a, u_a) = D(a)^{\uparrow}$
 $\ell_0(v_a, v_a) = R(a)^{\uparrow}$

and we label all other edges by \emptyset .

Step for Domain

Our aim is to extend G_m to create an edge (u, w) witnessing a, provided $\mathsf{D}(a) \in \ell_m(u, u) = c^{\uparrow}$.

24/10/2018 — York Semigroup

Domain Step

We assume that we have a loop (u, u) labelled by the upset of a domain element $c = D(c) \le a$ such that D(c); *a* is not a domain element, but we may miss an edge (u, w) witnessing *a*. We choose $w \in \omega \setminus U_m$, extend ℓ_m by

$$\ell_{m+1}(u, w) = (\mathsf{D}(c); a)^{\uparrow}$$

 $\ell_{m+1}(w, w) = (\mathsf{R}(\mathsf{D}(c); a))^{\uparrow}$

and for every $(p,u)\in E_m$ with $\ell_m(p,u)=d^{\uparrow}$ (some $d\in \mathcal{F}_{Var}^-$)

$$\ell_{m+1}(p,w) = (d;a)^{\uparrow}$$

All other edges involving the point w have empty labels.

Step for Composition

Our aim is to extend G_m to create edges (u, w) and (w, v) witnessing a and b, provided a; $b \in \ell_m(u, v) = c^{\uparrow}$.

24/10/2018 — York Semigroup

27

Composition Step

We assume that

$$(CC1) \quad u \neq v, \\ (CC2) \quad D(c); a; D(b; R(c)) \neq D(D(c); a; D(b; R(c))), \\ (CC3) \quad R(D(c); a); b; R(c) \neq R(R(D(c); a); b; R(c)), \\ \text{otherwise we define } G_{m+1} = G_m. \text{ If } (CC1)-(CC3) \text{ hold, then we choose } \\ w \in \omega \setminus U_m, \text{ extend } \ell_m \text{ by } \\ \ell_{m+1}(u, w) = (D(c); a; D(b; R(c)))^{\uparrow} \\ \ell_{m+1}(w, v) = (R(D(c); a); b; R(c))^{\uparrow} \\ \ell_{m+1}(w, w) = (R(D(c); a); D(b; R(c)))^{\uparrow}$$

and for $(p, u), (v, q) \in E_m$ with $\ell_m(p, u) = d^{\uparrow}$ and $\ell_m(v, q) = e^{\uparrow}$ (some $d, e \in F_{Var}^{-}$)

$$\ell_{m+1}(p, w) = (d; a; D(b; R(c)))^{\uparrow}$$

 $\ell_{m+1}(w, q) = (R(D(c); a); b; e)^{\uparrow}$

All other edges involving w will have empty labels. $\frac{24/10}{2018} - Y_{ork} S_{emigroup}$

In the Limit

Lemma

 G_{ω} is coherent and saturated.

Coherence of G_{ω} follows from the coherence of each G_m (easy but tedious). Saturation of G_{ω} follows from the fact that we constructed the required witness edges (if they were not present yet in G_m). Next we define a valuation b of variables. Let for term r, its equivalence class in F_{Var} be denoted by \overline{r} . We let

$$x^{\flat} = \{(u,v) \in U_{\omega} \times U_{\omega} : \overline{x} \in \ell_{\omega}(u,v)\}$$

for every variable $x \in Var$.

24/10/2018 — York Semigroup

Truth Lemma

Let $\mathfrak{A} = (A, +, ;, \mathsf{D}, \mathsf{R})$ be the subalgebra of the full algebra $(\wp(U_{\omega} \times U_{\omega}), +, ;, \mathsf{D}, \mathsf{R})$ generated by $\{x^{\flat} : x \in Var\}$. Clearly \mathfrak{A} is representable.

Lemma

For every join-free term r and $(u, v) \in U_{\omega} \times U_{\omega}$,

$$(u,v) \in r^{\flat}$$
 iff $\overline{r} \in \ell_{\omega}(u,v)$

where r^{\flat} is the interpretation of r in \mathfrak{A} under the valuation \flat .

By coherence and saturation of G_{ω} . Recall that we assumed that $\mathfrak{F}_{Var} \not\models s \leq t$. In the initial step of the construction we created the edge $(u_{\overline{s}}, v_{\overline{s}})$ such that $\ell_0(u_{\overline{s}}, v_{\overline{s}}) = \overline{s}^{\uparrow}$. Thus $\overline{s} \in \ell_{\omega}(u_{\overline{s}}, v_{\overline{s}})$ and $\overline{t} \notin \ell_{\omega}(u_{\overline{s}}, v_{\overline{s}})$. Hence, by Lemma, $(u_{\overline{s}}, v_{\overline{s}}) \in s^{\flat}$ and $(u_{\overline{s}}, v_{\overline{s}}) \notin t^{\flat}$. That is, $\mathfrak{A} \not\models s \leq t$, as desired.

Open Problems

Adding meet and/or antidomain.

Open problems

Are the varieties generated by

- ℝ(+,;, D, R, A)
- $\mathbb{R}(+,\cdot,;,\mathsf{D},\mathsf{R})$
- $\mathbb{R}(+,\cdot,;,\mathsf{D},\mathsf{R},\mathsf{A})$

finitely axiomatizable?

Sz. Mikulás

24/10/2018 — York Semigroup