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1. Ehresmann semigroups:
Unary and biunary semigroups

A unary semigroup is a semigroup equipped with a unary operation,
normally denoted by

a 7→ a+.

A biunary semigroup is a semigroup equipped with two unary operations,
normally denoted by

a 7→ a+ and a 7→ a∗.

We regard unary [biunary] semigroups as algebras with signature (2, 1)
[(2, 1, 1)].

Similarly for unary and biunary monoids.
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1. Ehresmann semigroups:
Inverse semigroups

A semigroup S is inverse if for each a ∈ S there exists a unique a′ ∈ S
such that

a = aa′a and a′ = a′aa′.

If S is inverse, then for any a ∈ S we have aa′, a′a ∈ E (S) and

ef = fe for all e, f ∈ E (S).

It follows that E (S) is a semilattice i.e. a commutative semigroup of
idempotents.

A semilattice is partially ordered under

e ≤ f if and only if ef = e

and ef is the meet of e and f .
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1. Ehresmann semigroups:
Inverse semigroups

Clearly, an inverse semigroup is a unary semigroup under

a 7→ a′.

An inverse semigroup is also biunary where

a 7→ a+ = aa′ and a 7→ a∗ = a′a.



1. Left Ehresmann semigroups:
A variety of unary semigroups

Definition A unary semigroup (S , · ,+ ) is left Ehresmann if it satisfies
the identities Σℓ:

a+a+ = a+, a+b+ = b+a+, (a+b+)+ = a+b+, a+a = a, (ab+)+ = (ab)+.

Let
E = {a+ : a ∈ S}.

Then E is a semilattice, the semilattice of projections of S .

Example 1 Inverse semigroups are left Ehresmann under a+ = aa′.

Example 2 Any monoid is left Ehresmann with a+ = 1 for all a ∈ M. It is
a reduced left Ehresmann semigroup.
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1. Ehresmann semigroups:
Observations, examples

• The name ‘Ehresmann’ was coined by Lawson, 1991; he first
established the connection between Ehresmann semigroups and the
bi-ordered categories of C. Ehresmann.

• Inverse semigroups are Ehresmann and inverse semigroups are

important!!

• As Ehresmann semigroups are varieties, they are closed under H,S,P;
free algebras exist.

• Any biunary subsemigroup of an inverse semigroup is Ehresmann.

• Type A semigroups (later called ample) are Ehresmann; restriction
semigroups are Ehresmann.

• Ehresmann semigroups are the variety generated by the quasi-variety
of adequate semigroups.

• Above in one-sided case and monoid case.
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1. Ehresmann semigroups:
Observations, examples

• PT X is Ehresmann where α+ (α∗) is the identity map in the domain
(range) of α; in fact, PT X is left restriction Trokhimenko, 1973.

• BX is Ehresmann under

ρ+ = {(a, a) : a ∈ dom ρ} and ρ∗ = {(a, a) : a ∈ im ρ}.

• Any semidirect product Y ⋊M, where Y is a semilattice and M a
monoid is left restriction, hence left Ehresmann.

• Let Y be a semilattice. Then the free idempotent generated

semigroup IG(Y ) is adequate, hence Ehresmann. G, Yang, 2013.
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1. Ehresmann semigroups: The bigger picture:
Classes of biunary semigroups with semilattices of
idempotents

inverse

ample:

adequate:

Ehresmann:

ample identities ab+ = (ab)+a

b∗a = a(ba)∗no ample identities

variety

restriction:quasi-variety variety

quasi-variety



1. Left Ehresmann semigroups: The bigger picture:
Classes of unary semigroups with semilattices of
idempotents

inverse

left ample:

left adequate:

left Ehresmann:

ample identities

no ample identities

ab+ = (ab)+a

variety

left restriction:quasi-variety variety
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2. The classical background
Proper inverse semigroups

Let S be an inverse semigroup.

• σ = 〈E (S)× E (S)〉 is the least group congruence on S .
• S is proper if

(a+ = b+ and a σ b) implies a = b;

this definition is left/right dual.
• Free inverse semigroups are proper.
• If S is proper, S → E (S)× S/σ given by

s 7→ (s+, sσ)

is clearly a SET embedding.

The McAlister Theorems, 1974 Let S be an inverse semigroup.
(i) S is proper if and only if S is isomorphic to a P-semigroup;

(ii) S has a proper cover. That is, there exists a proper inverse semigroup
Ŝ and an idempotent separating morphism Ŝ ։ S .
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2. The classical background
Proper inverse semigroups and generalisations

• Let S be Ehresmann; put σ = 〈E × E 〉.

• S/σ is reduced.

• A restriction semigroup S is proper if the following condition and its
dual holds:

(a+ = b+ and a σ b) implies a = b.

• The free restriction semigroup is proper.

• Results for proper restriction semigroups involving semidirect
products, analogous to those in the inverse case hold where group is
replaced by monoid Branco, Cornock, El Qallali, Fountain, Gomes, G,
Lawson, Szendrei; more recently, Kudryavtseva, Jones.

• The above has analogues in the one-sided case and ample case.
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2. The classical background
What makes such results involving semidirect products
work?

Let M be a left Ehresmann monoid.

1 Suppose that M = 〈X 〉(2,1,0). Put T = 〈X 〉(2,0) so that T is the
monoid generated by X .

2 M = 〈T ∪ E 〉(2) so that any s ∈ M can be written as

s = t0e1t1 . . . entn,

for some t0, . . . , tn ∈ T and e1, . . . , en ∈ E .

3 If the ample identities hold, e.g. in the inverse case or restriction case,
then s = ft0t1 . . . tn for some f ∈ E , so that M = ET .

4 The above is what is behind results connecting (left)
restriction/ample/inverse monoids to semidirect products Y ⋊ T of a
semilattice Y and a monoid T .
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3. Some candidates for propriety:
What do we know from former work?

Let M be left Ehresmann and let T be a submonoid. Then T acts on E
by order-preserving maps via

t · e = (te)+.

If M is inverse/left ample/left restriction, then this action is by morphisms
of the semilattice E .



3. Some candidates for propriety:
What are we looking for?

The old notion of ‘proper’ is no good - it leads inexorably to a semidirect
product construction, which is no longer appropriate.

• Want condition P for left Ehresmann monoids such that:
(i) left Ehresmann monoids satisfying P have their structure
described by monoids acting on semilattices;
(ii) if M is left Ehresmann then there exists a left Ehresmann M̂
satisfying P and a projection-separating morphism

M̂ ։ M,

i.e. M̂ is a cover of M;
(iii) free left Ehresmann monoids satisfy P.
(iv) P plays a role in defining categories and varieties of left
Ehresmann monoids.
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3. Some candidates for propriety:
Generators and T -normal form
Branco, Gomes, G
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Suppose that M = 〈E ∪ T 〉(2) where T is a submonoid of M.

Any x ∈ M can be written as

x = t0e1t1 . . . entn,

where n ≥ 0, e1, ..., en ∈ E , t1, ..., tn−1 ∈ T \ {1}, t0, tn ∈ T and for
1 ≤ i ≤ n

ei < (tiei+1 . . . tn)
+.

Such an expression is in T -normal form and may be effectively calculated.

M has uniqueness of T -normal forms if every x ∈ M has a unique such
expression.
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3. Some candidates for propriety

M is said to be strongly T -proper if for all u, v ∈ T ,

u σ v ⇒ u = v ;

M is said to be very T -proper if for all u, v ∈ T ,

u σ v ⇒ u+v = v+u;

M is said to be T -proper if for all u, v ∈ T , e, f ∈ E

(ue)+ = (ve)+ and ue σ ve, then ue = ve.

Note If M is left restriction, then M is (very) M-proper if and only if it is
proper.
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3. Some candidates for propriety:

Proposition Let M = 〈T ∪ E 〉(2) be a left Ehresmann monoid. Then we
have the following implications

M has uniqueness of T -normal forms ⇒ M is strongly T -proper
⇒ M is very T -proper
⇒ M is T -proper.

A typical calculation if u+v = v+u and (ue)+ = (ve)+ then

ue = (ue)+ue = (ve)+(ue) = (ve)+u+(ue) = u+(ve)+(ue)

= (u+ve)+(ue) = (v+ue)+(ve) = · · · = ve.
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Theorem Branco, Gomes, G Let T be a monoid acting on the left of a
semilattice E with identity, via order-preserving maps. Then there is a left
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4. S-labelled trees: G, Hartmann and Wang
A category of left Ehresmann monoids

Let X 6= ∅ and let C(X ) be the category such that

(i) objects are triples (M,X , µ) where M is left Ehresmann and
µ : X → M is a map such that M = 〈Xµ〉(2,1,0);

(ii) an arrow θ : (M,X , µ) → (N,X , τ) is a morphism θ : M → N such
that τ = µθ.

N

X M

τ

µ

θ

Then C(X ) is the category of X -generated left Ehresmann monoids.



4. S-labelled trees:
A category of left Ehresmann monoids

Let X 6= ∅, let S be a monoid let τ : X → S such that S = 〈X τ〉.

Let C(X , τ, S) be the full subcategory of C(X ) such that an object
(M,X , µ) of C(X ) lies in the subcategory if there is a morphism
κ : M → S such that Ker κ = σ and µκ = τ , and M is strongly T -proper,
where T is the monoid 〈Xµ〉:

S

X M

τ

µ

κ



4. S-labelled trees:
A category of left Ehresmann monoids

Let F (X ) be the free left Ehresmann monoid on X , with ι : X → F (X ).

S is a monoid, τ : X → S such that S = 〈X τ〉.

Theorem The category C(X , τ, S) has initial object

(F (X )/ρ,X , ιρ♮)

where
ρ = 〈(uι, v ι) : u, v ∈ X ∗, uτ = vτ〉.

Theorem The left Ehresmann monoid F (X )/ρ is isomorphic to Pℓ(E , S)
and hence has uniqueness of S-normal forms.



4. S-labelled trees:
Free left Ehresmann monoid F(X ) Kambites 2011

X -labelled trees with root ‘start’ vertex and an ‘end’ vertex

◦ •

• •⊗

•

•

•

•
x

y

y

xx

x
y

z

Tree Γ: word (y(xy)+z+)+(xy)+xx+

Γ∆: glue end of Γ to start of ∆

for + take ⊗ to ◦

Take equivalence classes under ∼, where Γ ∼ ∆ if Γ,∆ have a common
retract
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4. S-labelled trees:
G, Hartmann and Wang

Relabel edges by elements of S : here a = xτ, b = yτ, c = zτ
Delete vertices of degree 2

⊗ •

• ••

•

•

•

•
a

b

b

aa

a
b

c
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Relabel edges by elements of S
Delete vertices of degree 2

⊗ •

•

•
•

•

ab

b

ab
a2

c
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Foldings:
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• • •

•

•

s

p

r

q

r

t

If pq = sk , for some k , ‘fold’ the branch labelled s to the path labelled pq:
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4. S-labelled trees
Foldings:

⊗ •

• •

•

•
p
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pq = sk ; ‘fold’ the branch labelled s to the path labelled pq
kr = uℓ = vw ; fold the branches labelled u and v to the path labelled kr



S-labelled trees

Theorem G, Hartmann, Wang Let Σ,∆ be idempotent X -trees and let
ΣS ,∆S be the corresponding S-trees. Then ΣS = ∆S in F (X )/ρ if and
only if ΣS folds to ∆S and vice versa.

Consequently as F (X )/ρ has uniqueness of S-normal forms, and we have
an effective procedure to obtain such, the word problem in F (X )/ρ is
solvable (modulo solving systems of equations in S).



Questions:

1 The word problem in the corresponding very T -proper case.

2 Are the subalgebras of Pℓ(T ,E ) exactly those satisfying some
properness condition?

3 Is there an analogue of the McAlister P-theorem?

4 Closure properties of classes of left Ehresmann monoids having covers
over given varieties of monoids.
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