Notions of properness for semigroups

York Semigroup 3rd December 2014

Victoria Gould University of York

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

A Farewell to CAUL

....originally presented as part of a Farewell to Centro de Algebra da Universidade de Lisboa

Gracinda

(日) (四) (王) (王) (王)

æ

- The classical background.
- Some candidates for propriety.
- Using one candidate: *S*-labelled trees.

<ロト (四) (三) (三) (三) (三)

- The classical background.
- Some candidates for propriety.
- Using one candidate: S-labelled trees.

(日) (四) (문) (문) (문)

- The classical background.
- Some candidates for propriety.
- Using one candidate: S-labelled trees.

(日) (四) (문) (문) (문)

- The classical background.
- Some candidates for propriety.
- Using one candidate: S-labelled trees.

- The classical background.
- Some candidates for propriety.
- Using one candidate: *S*-labelled trees.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- The classical background.
- Some candidates for propriety.
- Using one candidate: *S*-labelled trees.

 $a\mapsto a^+$.

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

 $a \mapsto a^+$ and $a \mapsto a^*$.

(日) (문) (문) (문) (문)

We regard unary [biunary] semigroups as algebras with signature (2,1) [(2,1,1)].

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

 $a \mapsto a^+$.

 $a \mapsto a^+$ and $a \mapsto a^*$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

We regard unary [biunary] semigroups as algebras with signature (2,1) [(2,1,1)].

 $a \mapsto a^+$.

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

 $a \mapsto a^+$ and $a \mapsto a^*$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

We regard unary [biunary] semigroups as algebras with signature (2,1) [(2,1,1)].

$$a\mapsto a^+.$$

A **biunary** semigroup is a semigroup equipped with two unary operations, normally denoted by

$$a \mapsto a^+$$
 and $a \mapsto a^*$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

We regard unary [biunary] semigroups as algebras with signature (2, 1) [(2, 1, 1)].

1. Ehresmann semigroups: Inverse semigroups

A semigroup S is **inverse** if for each $a \in S$ there exists a unique $a' \in S$ such that

$$a = aa'a$$
 and $a' = a'aa'$.

If S is inverse, then for any $a \in S$ we have $aa', a'a \in E(S)$ and

$$ef = fe$$
 for all $e, f \in E(S)$.

It follows that E(S) is a **semilattice** i.e. a commutative semigroup of idempotents.

A semilattice is **partially ordered** under

```
e \leq f if and only if ef = e
```

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

and ef is the meet of e and f.

1. Ehresmann semigroups: Inverse semigroups

A semigroup S is **inverse** if for each $a \in S$ there exists a unique $a' \in S$ such that

$$a = aa'a$$
 and $a' = a'aa'$.

If S is inverse, then for any $a \in S$ we have $aa', a'a \in E(S)$ and

$$ef = fe$$
 for all $e, f \in E(S)$.

It follows that E(S) is a **semilattice** i.e. a commutative semigroup of idempotents.

A semilattice is partially ordered under

$$e \leq f$$
 if and only if $ef = e$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

and ef is the meet of e and f.

1. Ehresmann semigroups: Inverse semigroups

Clearly, an inverse semigroup is a unary semigroup under

$$a\mapsto a^{\prime}.$$

An inverse semigroup is also biunary where

$$a\mapsto a^+=aa'$$
 and $a\mapsto a^*=a'a_*$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition A unary semigroup $(S, \cdot, +)$ is **left Ehresmann** if it satisfies the identities Σ_{ℓ} :

$$a^+a^+ = a^+, \ a^+b^+ = b^+a^+, \ (a^+b^+)^+ = a^+b^+, \ a^+a = a, \ (ab^+)^+ = (ab)^+, \ a^+a^+ = a^+, \ a$$

Let

$$E = \{a^+ : a \in S\}.$$

Then E is a semilattice, the semilattice of projections of S.

Example 1 Inverse semigroups are left Ehresmann under $a^+ = aa'$.

Example 2 Any monoid is left Ehresmann with $a^+ = 1$ for all $a \in M$. It is a **reduced** left Ehresmann semigroup.

Definition A unary semigroup $(S, \cdot, +)$ is **left Ehresmann** if it satisfies the identities Σ_{ℓ} :

$$a^+a^+=a^+,\ a^+b^+=b^+a^+,\ (a^+b^+)^+=a^+b^+,\ a^+a=a,\ (ab^+)^+=(ab)^+,\ a^+a^+=a^+,\ a^+a^+,\ a^+a^+=a^+,\ a^+a^+,\ a^+a^+=a^+,\ a^+a^+,\ a^+a$$

Let

$$E = \{a^+ : a \in S\}.$$

Then E is a **semilattice**, the semilattice of **projections** of S.

Example 1 Inverse semigroups are left Ehresmann under $a^+ = aa'$.

Example 2 Any monoid is left Ehresmann with $a^+ = 1$ for all $a \in M$. It is a **reduced** left Ehresmann semigroup.

Definition A unary semigroup $(S, \cdot, +)$ is **left Ehresmann** if it satisfies the identities Σ_{ℓ} :

$$a^{+}a^{+} = a^{+}, a^{+}b^{+} = b^{+}a^{+}, (a^{+}b^{+})^{+} = a^{+}b^{+}, a^{+}a = a, (ab^{+})^{+} = (ab)^{+}$$

Let

$$E = \{a^+ : a \in S\}.$$

Then E is a **semilattice**, the semilattice of **projections** of S.

Example 1 Inverse semigroups are left Ehresmann under $a^+ = aa'$.

Example 2 Any monoid is left Ehresmann with $a^+ = 1$ for all $a \in M$. It is a **reduced** left Ehresmann semigroup.

Definition A unary semigroup $(S, \cdot, +)$ is **left Ehresmann** if it satisfies the identities Σ_{ℓ} :

$$a^+a^+ = a^+, a^+b^+ = b^+a^+, (a^+b^+)^+ = a^+b^+, a^+a = a, (ab^+)^+ = (ab)^+.$$

Let

$$E = \{a^+ : a \in S\}.$$

Then E is a **semilattice**, the semilattice of **projections** of S.

Example 1 Inverse semigroups are left Ehresmann under $a^+ = aa'$.

Example 2 Any monoid is left Ehresmann with $a^+ = 1$ for all $a \in M$. It is a **reduced** left Ehresmann semigroup.

Definition A biunary semigroup $(S, \cdot, ,^+,)$ is **Ehresmann** if it satisfies the identities Σ_{ℓ} , the dual identities Σ_r and

$$(a^*)^+ = a^*, \, (a^+)^* = a^+.$$

If S is Ehresmann then

$$E = \{a^* : a \in S\} = \{a^+ : a \in S\}.$$

Example 1 Inverse semigroups are Ehresmann under $a^+ = aa'$ and $a^* = a'a$.

Example 2 Any monoid is Ehresmann with $a^+ = 1 = a^*$ for all $a \in M$. Such an Ehresmann semigroup is called **reduced**.

Definition A biunary semigroup $(S, \cdot, ,^+,)$ is **Ehresmann** if it satisfies the identities Σ_{ℓ} , the dual identities Σ_r and

$$(a^*)^+ = a^*, (a^+)^* = a^+.$$

If S is Ehresmann then

$$E = \{a^* : a \in S\} = \{a^+ : a \in S\}.$$

Example 1 Inverse semigroups are Ehresmann under $a^+ = aa'$ and $a^* = a'a$.

Example 2 Any monoid is Ehresmann with $a^+ = 1 = a^*$ for all $a \in M$. Such an Ehresmann semigroup is called **reduced**.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

- The name 'Ehresmann' was coined by Lawson, 1991; he first established the connection between Ehresmann semigroups and the bi-ordered categories of C. Ehresmann.
- Inverse semigroups are Ehresmann and inverse semigroups are important!!
- As Ehresmann semigroups are varieties, they are closed under H,S,P; free algebras exist.
- Any biunary subsemigroup of an inverse semigroup is Ehresmann.
- Type A semigroups (later called ample) are Ehresmann; restriction semigroups are Ehresmann.
- Ehresmann semigroups are the variety generated by the quasi-variety of adequate semigroups.
- Above in one-sided case and monoid case.

• \mathcal{PT}_X is Ehresmann where $\alpha^+(\alpha^*)$ is the identity map in the domain (range) of α ; in fact, \mathcal{PT}_X is **left restriction** Trokhimenko, 1973.

• \mathcal{B}_X is Ehresmann under

 $\rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}.$

- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.
- Let Y be a semilattice. Then the free idempotent generated semigroup IG(Y) is adequate, hence Ehresmann. G, Yang, 2013.

- \mathcal{PT}_X is Ehresmann where $\alpha^+(\alpha^*)$ is the identity map in the domain (range) of α ; in fact, \mathcal{PT}_X is **left restriction** Trokhimenko, 1973.
- \mathcal{B}_X is Ehresmann under

$$\rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.
- Let Y be a semilattice. Then the free idempotent generated semigroup IG(Y) is adequate, hence Ehresmann. G, Yang, 2013.

- \mathcal{PT}_X is Ehresmann where $\alpha^+(\alpha^*)$ is the identity map in the domain (range) of α ; in fact, \mathcal{PT}_X is **left restriction** Trokhimenko, 1973.
- \mathcal{B}_X is Ehresmann under

$$\rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}.$$

- Any semidirect product $Y \rtimes M$, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.
- Let Y be a semilattice. Then the free idempotent generated semigroup IG(Y) is adequate, hence Ehresmann. G, Yang, 2013.

- \mathcal{PT}_X is Ehresmann where $\alpha^+(\alpha^*)$ is the identity map in the domain (range) of α ; in fact, \mathcal{PT}_X is **left restriction** Trokhimenko, 1973.
- \mathcal{B}_X is Ehresmann under

$$\rho^+ = \{(a, a) : a \in \text{dom } \rho\} \text{ and } \rho^* = \{(a, a) : a \in \text{im } \rho\}.$$

- Any semidirect product Y ⋊ M, where Y is a semilattice and M a monoid is left restriction, hence left Ehresmann.
- Let Y be a semilattice. Then the **free idempotent generated semigroup** IG(Y) is adequate, hence Ehresmann. G, Yang, 2013.

 Ehresmann semigroups: The bigger picture: Classes of biunary semigroups with semilattices of idempotents

(日) (四) (문) (문) (문)

1. Left Ehresmann semigroups: The bigger picture: Classes of unary semigroups with semilattices of idempotents

→ □ ▶ → 4 目 ▶ → 目 ▶ → 9 0 0

2. The classical background Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if

 $(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;$

this definition is left/right dual.

- Free inverse semigroups are proper.
- If S is proper, $S o E(S) imes S/\sigma$ given by

 $s \mapsto (s^+, s\sigma)$

is clearly a SET embedding.

The McAlister Theorems, 1974 Let *S* be an inverse semigroup. (i) *S* is proper if and only if *S* is isomorphic to a *P*-semigroup;

(ii) S has a **proper cover**. That is, there exists a proper inverse semigroup \widehat{S} and an idempotent separating morphism $\widehat{S} \rightarrow S$.

2. The classical background Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if

$$(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;$$

this definition is left/right dual.

- Free inverse semigroups are proper.
- If S is proper, $S
 ightarrow E(S) imes S/\sigma$ given by

 $s\mapsto (s^+,s\sigma)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is clearly a SET embedding.

The McAlister Theorems, 1974 Let *S* be an inverse semigroup. (i) *S* is proper if and only if *S* is isomorphic to a *P*-semigroup; (ii) *S* has a **proper cover**. That is, there exists a proper inverse semigr \widehat{S} and an idempotent separating morphism $\widehat{S} \twoheadrightarrow S$.
2. The classical background Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if

$$(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;$$

this definition is left/right dual.

- Free inverse semigroups are proper.
- If S is proper, $S
 ightarrow E(S) imes S/\sigma$ given by

 $s \mapsto (s^+, s\sigma)$

is clearly a SET embedding.

The McAlister Theorems, 1974 Let S be an inverse semigroup. (i) S is proper if and only if S is isomorphic to a *P*-semigroup;

(ii) S has a **proper cover**. That is, there exists a proper inverse semigroup \widehat{S} and an idempotent separating morphism $\widehat{S} \to S$.

2. The classical background Proper inverse semigroups

Let S be an inverse semigroup.

- $\sigma = \langle E(S) \times E(S) \rangle$ is the least group congruence on S.
- S is proper if

$$(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b;$$

this definition is left/right dual.

- Free inverse semigroups are proper.
- If S is proper, $S
 ightarrow E(S) imes S/\sigma$ given by

 $s \mapsto (s^+, s\sigma)$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

is clearly a SET embedding.

The McAlister Theorems, 1974 Let *S* be an inverse semigroup. (i) *S* is proper if and only if *S* is isomorphic to a *P*-semigroup; (ii) *S* has a **proper cover**. That is, there exists a proper inverse semigroup \widehat{S} and an idempotent separating morphism $\widehat{S} \rightarrow S$.

2. The classical background Proper inverse semigroups and generalisations

- Let S be Ehresmann; put $\sigma = \langle E \times E \rangle$.
- S/σ is reduced.
- A restriction semigroup *S* is **proper** if the following condition and its dual holds:

 $(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b.$

- The free restriction semigroup is proper.
- Results for proper restriction semigroups involving semidirect products, analogous to those in the inverse case hold where **group** is replaced by **monoid** Branco, Cornock, El Qallali, Fountain, Gomes, G, Lawson, Szendrei; more recently, Kudryavtseva, Jones.
- The above has analogues in the one-sided case and ample case.

2. The classical background Proper inverse semigroups and generalisations

- Let S be Ehresmann; put $\sigma = \langle E \times E \rangle$.
- S/σ is reduced.
- A restriction semigroup *S* is **proper** if the following condition and its dual holds:

 $(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b.$

- The free restriction semigroup is proper.
- Results for proper restriction semigroups involving semidirect products, analogous to those in the inverse case hold where **group** is replaced by **monoid** Branco, Cornock, El Qallali, Fountain, Gomes, G, Lawson, Szendrei; more recently, Kudryavtseva, Jones.
- The above has analogues in the one-sided case and ample case.

2. The classical background Proper inverse semigroups and generalisations

- Let S be Ehresmann; put $\sigma = \langle E \times E \rangle$.
- S/σ is reduced.
- A restriction semigroup S is **proper** if the following condition and its dual holds:

 $(a^+ = b^+ \text{ and } a \sigma b) \text{ implies } a = b.$

- The free restriction semigroup is proper.
- Results for proper restriction semigroups involving semidirect products, analogous to those in the inverse case hold where **group** is replaced by **monoid** Branco, Cornock, El Qallali, Fountain, Gomes, G, Lawson, Szendrei; more recently, Kudryavtseva, Jones.
- The above has analogues in the one-sided case and ample case.

2. The classical background What makes such results involving semidirect products work?

Let M be a left Ehresmann monoid.

- Suppose that M = (X)_(2,1,0). Put T = (X)_(2,0) so that T is the monoid generated by X.
- **2** $M = \langle T \cup E \rangle_{(2)}$ so that any $s \in M$ can be written as

$$s = t_0 e_1 t_1 \dots e_n t_n,$$

for some $t_0, \ldots, t_n \in T$ and $e_1, \ldots, e_n \in E$.

- If the ample identities hold, e.g. in the inverse case or restriction case, then $s = ft_0 t_1 \dots t_n$ for some $f \in E$, so that M = ET.
- The above is what is behind results connecting (left) restriction/ample/inverse monoids to semidirect products Y × T of a semilattice Y and a monoid T.

2. The classical background What makes such results involving semidirect products work?

Let M be a left Ehresmann monoid.

- Suppose that M = (X)_(2,1,0). Put T = (X)_(2,0) so that T is the monoid generated by X.
- **2** $M = \langle T \cup E \rangle_{(2)}$ so that any $s \in M$ can be written as

$$s = t_0 e_1 t_1 \dots e_n t_n,$$

for some $t_0, \ldots, t_n \in T$ and $e_1, \ldots, e_n \in E$.

- If the ample identities hold, e.g. in the inverse case or restriction case, then s = ft₀t1...tn for some f ∈ E, so that M = ET.
- The above is what is behind results connecting (left) restriction/ample/inverse monoids to semidirect products Y × T of a semilattice Y and a monoid T.

Let M be left Ehresmann and let T be a submonoid. Then T acts on E by order-preserving maps via

$$t \cdot e = (te)^+.$$

If M is inverse/left ample/left restriction, then this action is by *morphisms* of the semilattice E.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

3. Some candidates for propriety: What are we looking for?

The old notion of 'proper' is no good - it leads inexorably to a semidirect product construction, which is no longer appropriate.

Want condition P for left Ehresmann monoids such that:
 (i) left Ehresmann monoids satisfying P have their structure described by monoids acting on semilattices;
 (ii) if M is left Ehresmann then there exists a left Ehresmann M
 satisfying P and a projection-separating morphism

$$\widehat{M} \twoheadrightarrow M,$$

(日) (國) (필) (필) (필) 표

i.e. *M* is a **cover** of *M*;
(*iii*) free left Ehresmann monoids satisfy **P**.
(*iv*) **P** plays a role in defining categories and varieties of left Ehresmann monoids.

The old notion of 'proper' is no good - it leads inexorably to a semidirect product construction, which is no longer appropriate.

Want condition P for left Ehresmann monoids such that:
 (i) left Ehresmann monoids satisfying P have their structure described by monoids acting on semilattices;
 (ii) if M is left Ehresmann then there exists a left Ehresmann M
 satisfying P and a projection-separating morphism

$$\widehat{M} \twoheadrightarrow M$$
,

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

i.e. \widehat{M} is a **cover** of M;

(iii) free left Ehresmann monoids satisfy P.

(iv) **P** plays a role in defining categories and varieties of left Ehresmann monoids.

 Some candidates for propriety: Generators and *T*-normal form Branco, Gomes, G

Let M be a left Ehresmann monoid.

Suppose that $M = \langle E \cup T \rangle_{(2)}$ where T is a submonoid of M.

Any $x \in M$ can be written as

$$x = t_0 e_1 t_1 \dots e_n t_n,$$

where $n \ge 0, e_1, ..., e_n \in E, t_1, ..., t_{n-1} \in T \setminus \{1\}, t_0, t_n \in T$ and for $1 \le i \le n$

$$e_i < (t_i e_{i+1} \ldots t_n)^+.$$

Such an expression is in *T*-normal form and may be effectively calculated.

M has **uniqueness of** T**-normal forms** if every $x \in M$ has a unique such expression.

 Some candidates for propriety: Generators and *T*-normal form Branco, Gomes, G

Let M be a left Ehresmann monoid.

Suppose that $M = \langle E \cup T \rangle_{(2)}$ where T is a submonoid of M.

Any $x \in M$ can be written as

$$x = t_0 e_1 t_1 \dots e_n t_n,$$

where $n \ge 0, e_1, ..., e_n \in E, t_1, ..., t_{n-1} \in T \setminus \{1\}, t_0, t_n \in T$ and for $1 \le i \le n$

$$e_i < (t_i e_{i+1} \ldots t_n)^+.$$

Such an expression is in *T*-normal form and may be effectively calculated.

M has **uniqueness of** *T***-normal forms** if every $x \in M$ has a unique such expression.

 $u \sigma v \Rightarrow u = v;$

M is said to be **very** *T***-proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be *T*-proper if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+$$
 and $ue \sigma ve$, then $ue = ve$.

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

 $u \sigma v \Rightarrow u = v;$

M is said to be **very** *T*-**proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be *T*-proper if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+$$
 and $ue \sigma ve$, then $ue = ve$.

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.

 $u \sigma v \Rightarrow u = v;$

M is said to be **very** *T*-**proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be *T*-proper if for all $u, v \in T, e, f \in E$

 $(ue)^+ = (ve)^+$ and $ue \sigma ve$, then ue = ve.

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.

 $u \sigma v \Rightarrow u = v;$

M is said to be **very** *T*-**proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be *T*-proper if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+$$
 and $ue \sigma ve$, then $ue = ve$.

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.

 $u \sigma v \Rightarrow u = v;$

M is said to be **very** *T*-**proper** if for all $u, v \in T$,

$$u \sigma v \Rightarrow u^+ v = v^+ u;$$

M is said to be *T*-proper if for all $u, v \in T, e, f \in E$

$$(ue)^+ = (ve)^+$$
 and $ue \sigma ve$, then $ue = ve$.

Note If M is left restriction, then M is (very) M-proper if and only if it is proper.

Proposition Let $M = \langle T \cup E \rangle_{(2)}$ be a left Ehresmann monoid. Then we have the following implications

M has uniqueness of T-normal forms $\Rightarrow M$ is strongly T-proper $\Rightarrow M$ is very T-proper $\Rightarrow M$ is T-proper.

A typical calculation if $u^+v = v^+u$ and $(ue)^+ = (ve)^+$ then

$$ue = (ue)^{+}ue = (ve)^{+}(ue) = (ve)^{+}u^{+}(ue) = u^{+}(ve)^{+}(ue)$$
$$= (u^{+}ve)^{+}(ue) = (v^{+}ue)^{+}(ve) = \dots = ve.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Proposition Let $M = \langle T \cup E \rangle_{(2)}$ be a left Ehresmann monoid. Then we have the following implications

M has uniqueness of T-normal forms $\Rightarrow M$ is strongly T-proper $\Rightarrow M$ is very T-proper $\Rightarrow M$ is T-proper.

A typical calculation if $u^+v = v^+u$ and $(ue)^+ = (ve)^+$ then

$$ue = (ue)^+ ue = (ve)^+ (ue) = (ve)^+ u^+ (ue) = u^+ (ve)^+ (ue)$$

= $(u^+ ve)^+ (ue) = (v^+ ue)^+ (ve) = \dots = ve.$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

3. Some candidates for propriety: Strongly *T*-proper

Theorem Branco, Gomes, G & Jones Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a T submonoid of M. Then M has a strongly T-proper cover. 3. Some candidates for propriety: Strongly *T*-proper

Theorem Branco, Gomes, G & Jones Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a T submonoid of M. Then M has a strongly T-proper cover. **Theorem** Branco, Gomes, G Let T be a monoid acting on the left of a semilattice E with identity, via order-preserving maps. Then there is a left Ehresmann monoid $\mathcal{P}_{\ell}(T, E)$ such that:

- $\mathcal{P}_{\ell}(T, E) = \langle T \cup E \rangle_{(2)};$
- $\mathcal{P}_{\ell}(T, E)$ has uniqueness of *T*-normal forms;
- $\mathcal{P}_{\ell}(T, E)/\sigma \cong T;$
- the free left Ehresmann monoid on X is of the form $\mathcal{P}_{\ell}(X^*, E)$.

Theorem Branco, Gomes, G Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a submonoid of M. Then $\mathcal{P}_{\ell}(T, E)$ is a cover for M.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem Branco, Gomes, G Let T be a monoid acting on the left of a semilattice E with identity, via order-preserving maps. Then there is a left Ehresmann monoid $\mathcal{P}_{\ell}(T, E)$ such that:

- $\mathcal{P}_{\ell}(T, E) = \langle T \cup E \rangle_{(2)};$
- $\mathcal{P}_{\ell}(T, E)$ has uniqueness of *T*-normal forms;
- $\mathcal{P}_{\ell}(T, E)/\sigma \cong T;$
- the free left Ehresmann monoid on X is of the form $\mathcal{P}_{\ell}(X^*, E)$.

Theorem Branco, Gomes, G Let $M = \langle T \cup E \rangle_{(2)}$ be left Ehresmann, where T is a submonoid of M. Then $\mathcal{P}_{\ell}(T, E)$ is a cover for M.

4. *S*-labelled trees: G, Hartmann and Wang A category of left Ehresmann monoids

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

4. *S*-labelled trees: G, Hartmann and Wang A category of left Ehresmann monoids

Let $X \neq \emptyset$ and let $\mathcal{C}(X)$ be the category such that

(i) **objects** are triples (M, X, μ) where M is left Ehresmann and $\mu : X \to M$ is a map such that $M = \langle X \mu \rangle_{(2,1,0)}$;

(ii) an **arrow** θ : $(M, X, \mu) \rightarrow (N, X, \tau)$ is a morphism $\theta : M \rightarrow N$ such that $\tau = \mu \theta$.

Then C(X) is the category of X-generated left Ehresmann monoids.

Let $X \neq \emptyset$, let S be a monoid let $\tau : X \to S$ such that $S = \langle X \tau \rangle$.

Let $\mathcal{C}(X, \tau, S)$ be the full subcategory of $\mathcal{C}(X)$ such that an object (M, X, μ) of $\mathcal{C}(X)$ lies in the subcategory if there is a morphism $\kappa : M \to S$ such that Ker $\kappa = \sigma$ and $\mu \kappa = \tau$, and M is strongly T-proper, where T is the monoid $\langle X \mu \rangle$:

Let F(X) be the free left Ehresmann monoid on X, with $\iota : X \to F(X)$. S is a monoid, $\tau : X \to S$ such that $S = \langle X \tau \rangle$.

Theorem The category $C(X, \tau, S)$ has initial object

 $(F(X)/\rho, X, \iota \rho^{\natural})$

where

$$\rho = \langle (u\iota, v\iota) : u, v \in X^*, u\tau = v\tau \rangle.$$

Theorem The left Ehresmann monoid $F(X)/\rho$ is isomorphic to $\mathcal{P}_{\ell}(E, S)$ and hence has uniqueness of *S*-normal forms.

4. S-labelled trees:Free left Ehresmann monoid F(X) Kambites 2011

X-labelled trees with root 'start' vertex and an 'end' vertex

Take equivalence classes under \sim , where $\Gamma\sim\Delta$ if Γ,Δ have a common retract

(日) (四) (문) (문) (문)

4. S-labelled trees:Free left Ehresmann monoid F(X) Kambites 2011

X-labelled trees with root 'start' vertex and an 'end' vertex

Take equivalence classes under \sim , where $\Gamma \sim \Delta$ if Γ, Δ have a common retract

<ロト (四) (三) (三) (三) (三)

4. *S*-labelled trees: G, Hartmann and Wang

Relabel edges by elements of *S*: here $a = x\tau$, $b = y\tau$, $c = z\tau$ Delete vertices of degree 2

(日) (四) (문) (문)

æ

4. S-labelled trees

Relabel edges by elements of SDelete vertices of degree 2

(日) (四) (문) (문)

æ

If pq = sk, for some k, 'fold' the branch labelled s to the path labelled pq:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

If pq = sk, for some k, 'fold' the branch labelled s to the path labelled pq

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

pq = sk; 'fold' the branch labelled s to the path labelled pq $kr = u\ell = vw$; fold the branches labelled u and v to the path labelled kr

pq = sk; 'fold' the branch labelled s to the path labelled pq $kr = u\ell = vw$; fold the branches labelled u and v to the path labelled kr

pq = sk; 'fold' the branch labelled s to the path labelled pq $kr = u\ell = vw$; fold the branches labelled u and v to the path labelled kr
4. *S*-labelled trees Foldings:

pq = sk; 'fold' the branch labelled s to the path labelled pq $kr = u\ell = vw$; fold the branches labelled u and v to the path labelled kr

4. *S*-labelled trees Foldings:

pq = sk; 'fold' the branch labelled s to the path labelled pq $kr = u\ell = vw$; fold the branches labelled u and v to the path labelled kr

4. *S*-labelled trees Foldings:

pq = sk; 'fold' the branch labelled s to the path labelled pq $kr = u\ell = vw$; fold the branches labelled u and v to the path labelled kr **Theorem G**, Hartmann, Wang Let Σ , Δ be idempotent X-trees and let Σ_S , Δ_S be the corresponding S-trees. Then $\Sigma_S = \Delta_S$ in $F(X)/\rho$ if and only if Σ_S folds to Δ_S and vice versa.

Consequently as $F(X)/\rho$ has uniqueness of *S*-normal forms, and we have an effective procedure to obtain such, the word problem in $F(X)/\rho$ is solvable (modulo solving systems of equations in *S*).

◆□> ◆□> ◆三> ◆三> 三三 のへで

- The word problem in the corresponding very T-proper case.
- 2 Are the subalgebras of $\mathcal{P}_{\ell}(T, E)$ exactly those satisfying some properness condition?
- Is there an analogue of the McAlister *P*-theorem?
- Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.

(日) (四) (문) (문) (문)

The word problem in the corresponding very T-proper case.

- ② Are the subalgebras of $\mathcal{P}_{\ell}(T, E)$ exactly those satisfying some properness condition?
- Is there an analogue of the McAlister *P*-theorem?
- Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.

(日) (문) (문) (문) (문)

- The word problem in the corresponding very T-proper case.
- Are the subalgebras of $\mathcal{P}_{\ell}(T, E)$ exactly those satisfying some properness condition?
- Is there an analogue of the McAlister *P*-theorem?
- Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.

- The word problem in the corresponding very T-proper case.
- Are the subalgebras of $\mathcal{P}_{\ell}(T, E)$ exactly those satisfying some properness condition?
- Is there an analogue of the McAlister *P*-theorem?
- Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.

(日) (四) (편) (편) (편)

- Solution The word problem in the corresponding very *T*-proper case.
- Are the subalgebras of $\mathcal{P}_{\ell}(T, E)$ exactly those satisfying some properness condition?
- Is there an analogue of the McAlister *P*-theorem?
- Closure properties of classes of left Ehresmann monoids having covers over given varieties of monoids.

◆□> ◆□> ◆三> ◆三> 三三 のへで