Monoids Acting by Isometric Embeddings

Robert Gray¹ & Mark Kambites²

York Semigroup 16 March 2011

¹University of St Andrews (supported by an EPSRC Postdoctoral Fellowship) and Universidade de Lisboa (supported by FCT and FEDER).

²University of Manchester. Supported by an RCUK Academic Fellowship.

Question

How much geometry is there in a finitely generated monoid?

Outline

- Geometric group theory
- Geometric semigroup theory and semimetric spaces
- Monoids acting on semimetric spaces
- Groups acting on semimetric spaces

Geometric Group Theory (Take 1)

Idea

Diagrams are very useful when reasoning with discrete groups

Examples

- Cayley graphs
- Schreier graphs
- van Kampen diagrams
- Automata
- . . .

Geometric Group Theory (Take 2)

Idea

Groups have a natural metric structure, an understanding of which is vital to understanding their algebraic structure.

Fundamental Observation (Švarc, Milnor)

A discrete group acting in a suitably controlled way on a metric space **resembles** that space.

Conclusion

Discrete groups can be studied through their actions on metric spaces.

Groups as metric spaces

Let G be a group generated by a **symmetric** subset A.

Definition

The **distance** d(g, h) from $g \in G$ to $h \in G$ is the shortest length of a sequence $a_1, \ldots a_n \in A$ such that

$$ga_1a_2\ldots a_n=h.$$

Properties

- Distance is symmetric because A is symmetric.
- Distance is everywhere defined because G has no right ideals.

Theorem (The Švarc-Milnor Lemma)

Let G be a group acting properly and cocompactly by isometries on a proper geodesic metric space X. Then G is finitely generated and **quasi-isometric** to X.

Definition

Metric spaces are X and Y are **quasi-isometric** if there is a function $f: X \to Y$ and a constant λ such that

(i) for all $x, y \in X$,

$$rac{1}{\lambda} d_X(x,y) - \lambda \leq d_Y(f(x),f(y)) \leq \lambda d_X(x,y) + \lambda$$

(ii) every point in Y is within distance λ of a point in f(X).

Proposition

The quasi-isometry class of a finitely generated group is independent of the chosen finite generating set.

Gray & Kambites

Definition

Metric spaces are X and Y are **quasi-isometric** if there is a function $f: X \to Y$ and a constant λ such that

(i) for all $x, y \in X$,

$$rac{1}{\lambda} d_X(x,y) - \lambda \leq d_Y(f(x),f(y)) \leq \lambda d_X(x,y) + \lambda$$

(ii) every point in Y is within distance λ of a point in f(X).

Proposition

Quasi-isometry is an equivalence relation on metric spaces.

Idea

The quasi-isometry class of a space captures the information which remains when the space is viewed "from far away".

Geometric Semigroup Theory (Take 1)

Idea

Diagrams are very useful when reasoning with semigroups.

Examples

- Cayley graphs
- Schützenberger graphs (later)
- van Kampen diagrams (Remmers)
- Munn trees
- Eggbox diagrams
- Automata
- . . .

Geometric Semigroup Theory (Take 2)

Question

Do semigroups have a natural "metric" structure?

Observations

Distance in a semigroup can be defined as for a group but it is

- not symmetric (no symmetric generating sets);
- not everywhere defined (right ideals).

Geometric Semigroup Theory (Take 3)

Definition

A semimetric space is a set X equipped with a function

$$d: X \times X \to \{r \in \mathbb{R} \mid r \ge 0\} \cup \{\infty\}$$

such that for all $x, y, z \in X$:

•
$$d(x,y) = 0 \iff x = y;$$

•
$$d(x,z) \leq d(x,y) + d(y,z)$$
.

Notation

$$\mathbb{R}^{\infty} = \{r \in \mathbb{R} \mid r \geq 0\} \cup \{\infty\}$$
 (with the obvious order, $+$ and \times).

Examples of Semimetric Spaces

Example (The Directed Line (Take 1)) Define $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{\infty}$ by

$$d(x,y) = egin{cases} y-x & ext{if } x \leq y \ \infty & ext{otherwise.} \end{cases}$$

Example (The Directed Line (Take 2))

Define $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}^{\infty}$ by

$$d(x,y) = egin{cases} |y-x| & ext{if } x = y ext{ or } x < \lceil y \rceil \ \infty & ext{otherwise.} \end{cases}$$

(The restriction to [0, 1] is the **directed unit interval**.)

Examples of Semimetric Spaces

Example (Directed Graphs)

Let X be a directed graph. Define the distance from vertex x to vertex y to be the minimal length of a directed path from x to y.

(This can be made into a **geodesic** semimetric space, by gluing in a copy of the directed unit interval for each edge.)

Quasi-isometries of Semimetric Spaces

Definition

A function $f: X \to Y$ between semimetric spaces is called a **quasi-isometry** if there is a constant $\lambda < \infty$ such that

$$rac{1}{\lambda} d_X(x_1,x_2) - \lambda \leq d_Y(f(x_1),f(x_2)) \leq \lambda d_X(x_1,x_2) + \lambda$$

and for every point $y \in Y$ there is a point $x \in X$ such that

$$d(f(x), y) \leq \lambda$$
 and $d(y, f(x)) \leq \lambda$.

Proposition

Quasi-isometry is an equivalence relation on semimetric spaces.

Quasi-isometries of Semigroups

Proposition

Let A and B be finite generating sets for a semigroup S. Then the corresponding semimetric spaces are quasi-isometric.

Definition

Two finitely generated semigroups are **quasi-isometric** if they are quasi-isometric with respect to any/all finite generating sets.

Fact

Many important properties of groups are quasi-isometry invariant.

Question

What about properties of semigroups?

Groups as Semimetric Spaces

Fact

Metric spaces are also semimetric.

Question

Are groups metric?

Answer

No! Not with respect to monoid generating sets

Quasimetric Spaces

Definition

A semimetric space X is called **strongly connected** if $d(x, y) \neq \infty$ for all $x, y \in X$.

Definition

A semimetric space X is **quasimetric** if it is strongly connected and there is a constant $\lambda < \infty$ such that

$$d(x,y) \leq \lambda d(y,x) + \lambda$$

for all $x, y \in X$.

Proposition

A space X is quasi-metric \iff it is quasi-isometric to a metric space.

Fact

A group G with a monoid generating set is a quasimetric space.

Gray & Kambites

Monoids Acting by Isometric Embeddings

MANCHESTER

16 / 32

Balls in Semimetric Spaces

Definition

Let X be a semimetric space, $x \in X$ and $\epsilon \in \mathbb{R}^{\infty}$.

• The **out-ball** of radius ϵ around x is

$$\overrightarrow{\mathcal{B}}_{\epsilon}(x) = \{y \in X \mid d(x,y) \leq \epsilon\}.$$

• The **in-ball** of radius ϵ around x is

$$\overleftarrow{\mathcal{B}}_{\epsilon}(x) = \{y \in X \mid d(y,x) \leq \epsilon\}.$$

• The strong-ball of radius ϵ around x is

$$\mathcal{B}_{\epsilon}(x) = \overrightarrow{\mathcal{B}}_{\epsilon}(x) \cap \overleftarrow{\mathcal{B}}_{\epsilon}(x).$$

Actions on Semimetric Spaces

Let M be a monoid acting by isometric embeddings on a semimetric space X.

Definition

The action is called **cobounded** if there exists a strong ball $B = \mathcal{B}_{\epsilon}(x)$ of finite radius such that

$$X = \bigcup_{g \in G} gB.$$

Definition

The action is called **outward proper** if for every out-ball $B = \overrightarrow{\mathcal{B}}_{\epsilon}(x)$ of finite radius the set

$$\{g \in G \mid B \cap gB \neq \emptyset\}$$

is finite.

Actions and Ideals

Definition

A point x_0 in a semimetric space X is called a **basepoint** if for every $x \in X$ we have $d(x_0, x) < \infty$.

M a monoid acting by isometric embeddings on a semimetric space X.

Definition

The action is called **idealistic** at a basepoint $x_0 \in X$ if

$$d(mx_0, nx_0) < \infty \implies nM \subseteq mM.$$

for all $m, n \in M$.

Remark

If M is a group then the action is idealistic exactly if X has a basepoint.

Remark

If M acts idealistically on a strongly connected space then M is a group.

Gray & Kambites

Monoids Acting by Isometric Embeddings

MANCHESTER

19 / 32

Theorem (Švarc-Milnor Lemma for Isometric Embeddings)

Let M be a monoid acting outward properly, coboundedly and idealistically by isometric embeddings on a geodesic semimetric space X.

Then M is finitely generated and quasi-isometric to X.

Theorem (Švarc-Milnor for Groups Acting on Semimetric Spaces)

Let G be a group acting outward properly and coboundedly by isometries on a geodesic semimetric space X with basepoint.

Then G is finitely generated and quasi-isometric to X.

In particular, X is quasi-metric.

Proposition

Let M be a finitely generated cancellative monoid. Then M acts coboundedly, outward properly and idealistically on its Cayley graph.

Corollary

A cancellative monoid is finitely generated if and only if it acts coboundedly, outward properly and idealistically on a geodesic semimetric space.

Theorem

Let M be a left unitary submonoid of a finitely generated cancellative monoid N.

Suppose there is a finite set P of right units such that MP = N. ("finite index?!")

Then M is finitely generated and quasi-isometric to N.

Corollary

Let F be a finitely generated free monoid of rank k, and G a finite group of order n.

Then F * G is quasi-isometric to a free monoid of rank kn.

Ideals and Green's Relations

We define a pre-order $\leq_{\mathcal{R}}$ on a monoid M by ...

• $x \leq_{\mathcal{R}} y \iff xM \subseteq yM;$

From this we obtain an equivalence relation

• $x\mathcal{R}y \iff xM = yM \iff x \leq_{\mathcal{R}} y \text{ and } y \leq_{\mathcal{R}} x$

Similarly ...

• $x \leq_{\mathcal{L}} y \iff Mx \subseteq My$, $x\mathcal{L}y \iff Mx = My$

• $x \leq_{\mathcal{J}} y \iff M x M \subseteq M y M$, $x \mathcal{J} y \iff M x M = M y$

We also define equivalence relations ...

• $xHy \iff xRy$ and xLy;

• $x\mathcal{D}y \iff x\mathcal{R}z$ and $z\mathcal{L}y$ for some $z \in M$;

These relations encapsulate the (left, right and two-sided) ideal structure of M and are fundamental to its structure.

Schützenberger Groups

Let H be an \mathcal{H} -class of a semigroup S.

Definition

The **Schützenberger group** of H is the group of all permutations of H which arise as restrictions of the left translation action of elements of S.

Fact

The Schützenberger group acts naturally on the \mathcal{R} -class containing H.

Fact

All Schützenberger groups in the same D-class are isomorphic.

Fact

In a regular \mathcal{D} -class, they are isomorphic to the maximal subgroups.

Let S be a semigroup generated by a finite subset A.

Let R be an \mathcal{R} -class of S.

Definition

The **Schützenberger graph** of *R* is the directed graph with vertex set *R*, and an edge from $s \in R$ to $t \in R$ if there exists $x \in A$ such that sx = t.

(A maximal strongly connected component of the Cayley graph.)

Fact

The Schützenberger groups of \mathcal{H} -classes in \mathcal{R} act naturally by isometries on the Schützenberger graph of R.

Theorem

Let G be a Schützenberger group of a finitely generated semigroup S, acting on the associated Schützenberger graph. The action is

- outward proper and by isometries;
- cobounded \iff the \mathcal{R} -class contains finitely many \mathcal{H} -classes.

Corollary

An *R*-class with finitely many *H*-classes has Schützenberger groups quasi-isometric to its Schützenberger graph.

Corollary/Remark

Such Schützenberger graphs are quasi-metric. (So the previous corollary can also be obtained by symmetrizing.)

Finite Presentations (1)

Theorem

For finitely generated monoids with finitely many left and right ideals, finitely presentability is a quasi-isometry invariant.

Proof.

- If *M* and *N* are quasi-isometric, their Schützenberger **graphs** are quasi-isometric.
- So by the theorem, their Schützenberger groups are quasi-isometric.
- Finite presentability is a quasi-isometry invariant of groups.
- A finitely generated monoid with finitely many left and right ideals is finitely presented if and only if its Schützenberger groups are all finitely presented (Ruskuc).

Finite Presentations (2)

Theorem

For finitely generated monoids with finitely many left and right ideals, finitely presentability is a quasi-isometry invariant.

Question

Is finite presentability a quasi-isometry invariant of **arbitrary** *finitely generated monoids?*

Question

Is finite presentability an **isometry** *invariant of arbitrary finitely generated monoids?*

Growth

Definition

Let M be a monoid generated by a finite subset X. The **growth function** of M is the function

$$\mathbb{N} \to \mathbb{N}, \ n \mapsto |\{m \in M \mid d(1,m) \le n\}|.$$

The **growth type** of M is the asymptotic growth class of the growth function.

Theorem

Growth type is a quasi-isometry invariant of monoids.

MANCHESTER 29 /

Ends of Monoids

Definition (Jackson and Kilibarda)

The **number of ends** of a monoid is the greatest number of infinite connected components which can be obtained by removing finitely many vertices from its Cayley graph.

Theorem

Number of ends is a quasi-isometry invariant of monoids.

Corollary (originally due to Jackson and Kilibarda)

The number of ends of a monoid is invariant under change of generators.

Question

What semigroup-theoretic constructions preserve quasi-isometry type?

Proposition (well-known)

Let G be a group and N a finite normal subgroup. Then G is quasi-isometric to G/N.

Proposition

Let S be a semigroup and σ a congruence with classes of bounded diameter. Then S is quasi-isometric to S/σ .

The Future

Question

What properties of monoids/semigroups are quasi-isometry invariant?

Question

What properties of monoids/semigroups are isometry invariant?

Question

Can we replace isometric embeddings with contractions?

Question

Can we replace (directed) geometry with (directed) topology?

Question

Can we study relations, as well as generators?