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What is this talk about? An old question for S-acts
What are S-acts?

Throughout, S is a monoid.

A (right) S-act is a set A together with a map

A× S → A, (a, s) 7→ as

such that for all a ∈ A, s, t ∈ S

a1 = a and (as)t = a(st).

Remark (i) For any s ∈ S , we have an operation ρs : A → A given by
aρs = as. The function ρ : S → TA given by

sρ = ρs

is a monoid morphism.

(ii) Conversely, if θ : S → TA is a morphism, define

as = a(sθ),

then check that A is then an S-act.
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Examples of S-acts

1 S is an S-act

2 Any right ideal of S is an S-act.

3 Let ρ be a right congruence on S . Let

S/ρ = {[a] : a ∈ S}

and define [a]s = [as]. Then S/ρ is an S-act. For any [a] ∈ S/ρ we
have

[a] = [1]a.



Elementary observations for S-acts

• An S-morphism from A to B is a map α : A → B with
(as)α = (aα)s for all a ∈ A, s ∈ S .

• S-acts and S-morphisms form a category - products are products,
coproducts are disjoint unions

• We have usual definitions of free, projective, injective, etc.
including variations on flat.

• Free S-acts are disjoint unions of copies of S .



Free S-acts

Let X be a set. By general nonsense, the free S-act FS(X ) on X exists.

Construction of FS(X ). Let

FS(X ) = X × S

and define
(x , s)t = (x , st).

Then it is easy to check that FS(X ) is an S-act. With x 7→ (x , 1), we have
FS(X ) is free on X .
Notice that

(x , s) = (x , 1)s ≡ xs.
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Congruences for S-acts

• A congruence ρ on A is an equivalence relation such that

a ρ b ⇒ as ρ bs

for all a, b ∈ A and s ∈ S .

• ρ is finitely generated if ρ is the smallest congruence containing a
finite set H ⊆ A× A.

• If ρ is a congruence on A then A/ρ is an S-act; all monogenic S-acts
are of the form S/ρ.

• For a ∈ A write aS for {as : s ∈ S}; then aS is an S-subact of A.

• If X = {x1, . . . , xn}, then

FS(n) = FS(X ) = (x1, 1)S ∪ . . . ∪ (xn, 1)S

and we often write

FS(n) = x1S ∪ . . . ∪ xnS .



Finite generation and finite presentation

A is finitely generated if

A = a1S ∪ . . . ∪ anS

for some ai ∈ A. and finitely presented if

A ∼= FS(n)/ρ

for some finitely generated free FS(n) and finitely generated congruence ρ.



Algebraically closed S-acts

Let A be an S-act. An equation over A has the form

xs = xt, xs = yt or xs = a

where x , y are variables, s, t ∈ S and a ∈ A.

A set of equations and inequations is consistent if it has a solution in
some S-act B ⊇ A.

Definition A is algebraically closed or absolutely pure if every finite
consistent set of equations over A has a solution in A.

Definition A is almost pure if every finite consistent set of equations in
one variable over A has a solution in A.
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Algebraic closure and injectivity

An S-act T is injective if for any S-acts A,B and S-morphisms

φ : A → B , ψ : A → T

with φ one-one, there exists an S-morphism θ : B → T such that

φθ = ψ.

Proposition (G, 19��) An S-act T is injective if and only if every
consistent system of equations over T has a solution in T .

Restrictions on the A,B give restricted notions of injectivity and these are
related to solutions of special consistent systems of equations.



The Baer criterion and injectivity

Theorem The following are equivalent for an S-act A:

1 every finite consistent system of equations over A of the form

xs1 = a1, . . . , xsn = an

has a solution in A;

2 for any finitely generated right ideal I of S and S-morphism
ψ : I → A, there exists an S-morphism θ : S → A such that

ιθ = ψ;

3 for any finitely generated right ideal I of S and S-morphism
ψ : I → A, there exists an a ∈ A such that sψ = as for all s ∈ I .

(The last criterion is the Baer criterion).
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Algebraic closure and injectivity

Recall and S-act C is absolutely pure if every finite consistent system of
equations over C , has a solution in C .

Proposition An S-act C is algebraically closed if and only if for any
S-acts A,B and S-morphisms

φ : A → B , ψ : A → T

with φ one-one, B finitely presented and A finitely generated, there exists
an S-morphism θ : B → C such that

φθ = ψ.



Absolute purity vs almost purity

Definition A monoid S is completely right pure if all S-acts are
absolutely pure.

Theorem (G) Suppose that all S-acts are almost pure. Then S is
completely right pure.



My question

Does there exist an almost pure S-act that is not absolutely pure?????



Completely (right) injective monoids

Definition A monoid S is completely right injective if all S-acts are
injective.

Theorem (Fountain, 1974) A monoid S is completely right injective if and
only if S has a left zero and S satisfies
(*) for any right ideal I of S and right congruence ρ on S , there is an
s ∈ I such that for all u, v ∈ S ,w ∈ I , sw ρw and if u ρ v then su ρ sv .

Theorem (Gould, 1991) A monoid S is completely right pure if and only if
S has a local zeros and S satisfies
(**) for any finitely generated right ideal I of S and finitely generated
right congruence ρ on S , there is an s ∈ I such that for all u, v ∈ S ,w ∈ I ,
sw ρw and if u ρ v then su ρ sv .


