A tour of ideas behind restriction and related semigroups

York, Autumn 2011

Victoria Gould University of York

Outline

- What are restriction semigroups?
- Related semigroups? (some of which came first...)
- Proper restriction semigroups
- Proper covers
- Structure of proper restriction semigroups

Restriction semigroups: what are they?

Restriction semigroups may be obtained as/from:

- Varieties of algebras
- Representation by (partial) mappings
- Generalised Green's relations
- Inductive categories and inductive constellations

Restriction semigroups: varieties

Let $S = (S, \cdot, +)$ be a semigroup equipped with a unary operation + (that is, S is a unary semigroup).

Definition *S* is **left restriction** if the following identities hold:

$$x^+x = x$$
, $x^+y^+ = y^+x^+$, $(x^+y)^+ = x^+y^+$, $xy^+ = (xy)^+x$.

Restriction semigroups: varieties

$$x^+x = x$$
, $x^+y^+ = y^+x^+$, $(x^+y)^+ = x^+y^+$, $xy^+ = (xy)^+x$.

Let S be left restriction and put

$$E = \{a^+ : a \in S\}.$$

For any $a^+ \in E$,

$$a^+ = (a^+ a)^+ = a^+ a^+$$

so that we see E is a **semilattice**, i.e. commutative semigroup of idempotents.

E is the **distinguished semilattice** of *S*

Also with $a^{++} = (a^+)^+$,

$$a^+ = a^{++}a^+ = a^+a^{++} = (a^+a^+)^+ = a^{++}$$
.

Restriction semigroups: varieties

- Left restriction semigroups form a variety of unary semigroups.
- Dually, right restriction semigroups form a variety of unary semigroups, with unary operation denoted by *, satisfying the left/right duals of the axioms above.
- A bi-unary semigroup $S = (S, \cdot, \cdot^+, *)$ is **restriction** if and only if satisfies the identities for left and right restriction semigroups together with

$$(x^*)^+ = x^*$$
 and $(x^+)^* = x^+$.

Restriction semigroups: examples Monoids

Let M be a monoid and define $a^+=1=a^*$ for all $a\in M$. Then $M=(M,\cdot,^+,^*)$ is restriction.

We need to check the identities

$$x^+x = x$$
, $x^+y^+ = y^+x^+$, $(x^+y)^+ = x^+y^+$, $xy^+ = (xy)^+x$,

their duals and

$$(x^*)^+ = x^*$$
 and $(x^+)^* = x^+$.

Restriction semigroups: examples Monoids

Definition A (left) restriction semigroup is **reduced** if |E| = 1.

We have seen a monoid is a reduced (left) restriction semigroup (in a different signature).

Conversely, let S be a reduced left restriction semigroup. Then let $E=\{u\}$, so that $u=u^+=a^+$ for all $a\in S$. Since $a^+a=a$ for all $a\in S$, we have ua=a.

Also,

$$au = au^{+} = (au)^{+}a = a$$

so that u is an identity for S.

Restriction semigroups: examples Inverse semigroups \mathcal{R} and \mathcal{L}

• For any $a, b \in S$ we have

$$a \mathcal{R} b \Leftrightarrow aS^1 = bS^1$$

 $\Leftrightarrow \exists s, t \in S^1 \text{ with } a = bs \text{ and } b = at.$

• For any $a, b \in S$ we have

$$a \mathcal{L} b \Leftrightarrow S^1 a = S^1 b$$

 $\Leftrightarrow \exists s, t \in S^1 \text{ with } a = sb \text{ and } b = ta.$

- \mathcal{R} (\mathcal{L}) is a left (right) congruence
- \bullet \mathcal{R} and \mathcal{L} are the universal relation on any group
- ullet $\mathcal R$ and $\mathcal L$ are the trivial relation on any semilattice

Restriction semigroups: examples Inverse semigroups

Definition *S* is *regular* if for all $a \in S$ there exists $x \in S$ with a = axa.

Notice that if a = axa, then $ax, xa \in E(S)$ and

$$ax \mathcal{R} a \mathcal{L} xa.$$

Fact S is regular if and only if every \mathcal{R} -class (or \mathcal{L} -class) contains an idempotent.

Definition S is inverse if S is regular and E(S) is a semilattice.

Fact S is inverse if and only every element has a unique inverse, i.e. for all $a \in S$ there exists a unique a' in S such that

$$a = aa'a$$
 and $a' = a'aa'$.

Fact S is inverse if and only if every \mathcal{R} -class and every \mathcal{L} -class contains a unique idempotent.

Restriction semigroups: examples Inverse semigroups

Let S be an inverse semigroup. Recall that E(S) is a semilattice. Put

$$a^{+} = aa'$$
 and $a^{*} = a'a$.

Then $S = (S, \cdot, +, *)$ is restriction with distinguished semilattice E(S).

We need to check the identities

$$x^+x = x$$
, $x^+y^+ = y^+x^+$, $(x^+y)^+ = x^+y^+$, $xy^+ = (xy)^+x$,

their duals and

$$(x^*)^+ = x^*$$
 and $(x^+)^* = x^+$.

Let $a, b \in S$. Then

$$(a^+b)^+ = (aa'b)^+ = aa'b(aa'b)' = aa'bb'aa' = aa'bb' = a^+b^+.$$

Also

$$(ab)^+a = (ab)(ab)'a = ab(b'a')a = a(bb')(a'a) = a(a'a)(bb') = ab^+.$$

Restriction semigroups: representations

- ullet Every semigroup S embeds in a **full transformation semigroup** \mathcal{T}_X
- ullet Every group embeds in a **symmetric group** \mathcal{S}_X
- Every inverse semigroup S embeds (as an inverse semigroup) in the symmetric inverse semigroup \mathcal{I}_X
- $\mathcal{T}_X, \mathcal{S}_X$ and \mathcal{I}_X are all subsemigroups of the semigroup $\mathcal{P}\mathcal{T}_X$ of all partial mappings of X.
- Define + on \mathcal{PT}_X by

$$\alpha^+ = I_{\text{dom }\alpha}$$
.

Then \mathcal{PT}_X is left restriction with distinguished semilattice

$$E = \{I_Y : Y \subseteq X\}.$$

• S is left restriction if and only if it embeds in some \mathcal{PT}_X (Trokhimenko).

Restriction semigroups: free algebras

- Since (left) restriction semigroups form varieties, free algebras exist.
- The free (left) restriction semigroup $\mathcal{FR}(X)$ ($\mathcal{FLR}(X)$) on any set X embeds into the free inverse semigroup $\mathcal{FI}(X)$ on X (Fountain, Gomes, G).
- The determination of the structure of $\mathcal{FI}(X)$ by Munn, Schein and Scheiblich is a classical early result of Semigroup Theory.
- The structure of $\mathcal{FLR}(X)$ and $\mathcal{FR}(X)$ is particularly nice: they are both **proper**.

Restriction semigroups: the relations $\widetilde{\mathcal{R}}_{\textit{E}}$ and $\widetilde{\mathcal{L}}_{\textit{E}}$

Let $E \subseteq E(S)$

ullet The relation $\widetilde{\mathcal{R}}_E$ is defined by $a\widetilde{\mathcal{R}}_E\,b$ if and only if

$$ea = a \Leftrightarrow eb = b$$

for all $e \in E$.

- Note if $a\widetilde{\mathcal{R}}_E e \in E$, then as ee = e we have ea = a.
- \bullet For a left restriction semigroup with distinguished semilattice E,

$$a\widetilde{\mathcal{R}}_E b$$
 if and only if $a^+ = b^+$.

- The relation $\widetilde{\mathcal{L}}_E$ is defined dually.
- $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$ are equivalence relations.
- ullet If M is a monoid and $E=\{1\}$, then $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$ are universal.
- These relations were introduced by El-Qallali in his 1980 thesis (under Fountain) in case E = E(S), later generalised by Lawson.

The relations \mathcal{R}_E and \mathcal{L}_E - connection to \mathcal{R} and \mathcal{L}

Fact For any semigroup S and any E

$$\mathcal{R} \subseteq \widetilde{\mathcal{R}}_{E}$$
.

Proof Let $a\mathcal{R} b$. Then a = bs and b = at for some $s, t \in S^1$.

Hence

$$ea = a \Rightarrow eat = at \Rightarrow eb = b \Rightarrow ebs = bs \Rightarrow ea = a$$
.

Fact If S is regular and E = E(S), then $\widetilde{\mathcal{R}}_E = \mathcal{R}$.

Proof If $a\widetilde{\mathcal{R}}_{E(S)}$ b and a = axa, b = byb, then b = axb and a = bya.

Restriction semigroups: definition using $\widetilde{\mathcal{R}}_{E}$ and $\widetilde{\mathcal{L}}_{E}$

Fact A semigroup S is **left restriction** with **distinguished semilattice** E iff:

- E is a semilattice:
- every $\widetilde{\mathcal{R}}_E$ -class contains an idempotent of E; it is then easy to see that for every $a \in S$ the $\widetilde{\mathcal{R}}_E$ -class of a contains a unique element of E, which we call a^+ ;
- ullet the relation $\widetilde{\mathcal{R}}_{\it E}$ is a left congruence and
- the left ample condition (AL) holds:

for all
$$a \in S$$
 and $e \in E$, $ae = (ae)^+a$.

Similarly for (right) restriction semigroups.

A bit of history

Different schools arrived at (left) restriction semigroups via different directions from 1960s onwards:

- Schweizer, Sklar, Schein, Trokhimenko: **function systems** Let T be a subsemigroup of \mathcal{PT}_X or \mathcal{B}_X (semigroup of binary relations on X).
 - T may be equipped with additional operations such as $^+$, \cap , $(f,g)\mapsto f^+g$ etc.
 - Can such T be axiomatised by first order formulae? By identities?
- Lawson: Ehresmann semigroups
 Lawson found a correspondence between Ehresmann semigroups and certain categories equipped with two orderings. As a special case, restriction semigroups correspond to inductive categories.

A bit more history

- Jackson and Stokes: **closure operators**Introduced 'twisted *C*-semigroups', with an axiomatisation equivalent to the one given here.
- Manes, Cockett, Lack: **category theory, computer science** Gave the axioms above. Also interested in restriction *categories*.
- Fountain: generalisations of regular and inverse semigroups
- Jones: P-restriction semigroups obtained from regular *-semigroups

Summary to date

- We have seen how to define (left) restriction semigroups as
 - varieties
 - ullet by their representations as subalgebras of \mathcal{PT}_X
 - by using $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$.
- We have mentioned there is a connection between (left) restriction semigroups and ordered structures
- The approach using $\widetilde{\mathcal{R}}_E$ and $\widetilde{\mathcal{L}}_E$ is part of the **York** approach to studying semigroups via $\mathcal{R}^*, \mathcal{L}^*, \widetilde{\mathcal{R}}_E, \widetilde{\mathcal{L}}_E$ and properties of idempotents.
- We introduced ample, abundant, weakly *U*-abundant semigroups, congruence and ample conditions.

Inverse semigroups: groups and semilattices

There are three major approaches to structure of inverse semigroups:

- The Ehresmann-Schein-Nambooripad association of inductive groupoids to inverse semigroups.
- Munn's construction of a **fundamental** inverse semigroup T_E from any semilattice E; if S is inverse then $T_{E(S)}$ contains a morphic image S' of S such that $E(S) \cong E(S')$.
- McAlister's approach using **proper covers**: if S is inverse then it has a proper preimage \widehat{S} such that $E(\widehat{S}) \cong E(S)$ and such that the structure of \widehat{S} is known.

We are going to develop the McAlister approach for (left) restriction semigroups.

Proper restriction semigroups: definition

Let S be (left) restriction.

- Recall that S is **reduced** if |E| = 1.
- σ_E is the least congruence identifying all the idempotents of E.
- The (left) restriction semigroup S/σ_E is reduced.
- A left restriction semigroup S is **proper** if

$$(a^+ = b^+, a \sigma_E b) \Rightarrow a = b.$$

• A restriction semigroup *S* is **proper** if

$$\left(a^{+}=b^{+},\,a\,\sigma_{E}\,b\right)\Rightarrow a=b\,\, ext{and}\,\,\left(a^{*}=b^{*},\,a\,\sigma_{E}\,b\right)\Rightarrow a=b.$$

- Monoids and semilattices are both proper restriction.
- If S is proper left restriction, then $\theta: S \to E \times S/\sigma_E$ given by

$$s\theta = (s^+, s\sigma_E)$$

is an injection.

Proper restriction semigroups: semidirect products

Let M be a monoid and Y a set. Then M acts on the left of Y if there is a map

$$M \times Y \rightarrow Y$$
; $(m, y) \mapsto m \cdot y$,

such that

$$1 \cdot y = y$$
 and $(mn) \cdot y = m \cdot (n \cdot y)$.

Suppose now that Y is a semigroup. Then M acts by morphisms if, in addition,

$$m \cdot (yz) = (m \cdot y)(m \cdot z).$$

In this case, define a product on $Y \times M$ by

$$(y,m)(z,n)=(y(m\cdot z),mn).$$

This product is associative, yielding the **semidirect product** Y * M.

Proper restriction semigroups: semidirect products

Let M be a monoid and let Y be a semilattice.

- Y * M is proper left restriction with $(e, m)^+ = (e, 1)$.
- If M is a group, then Y * M is proper inverse.
- Suppose that Y has a greatest element 1_Y. We say that M acts
 doubly on Y if M acts by morphisms on the left and right of Y and
 the compatibility conditions hold, that is

$$(t \cdot e) \circ t = (1_Y \circ t)e$$
 and $t \cdot (e \circ t) = e(t \cdot 1_Y)$

for all $t \in M, e \in Y$.

In this case

$$Y *_m M = \{(e, t) : e \leq t \cdot 1_Y\} \subseteq Y * M$$

is a proper restriction monoid with identity $(1_Y, 1)$ such that

$$(e,t)^+ = (e,1)$$
 and $(e,t)^* = (e \circ t,1)$.

Proper restriction semigroups: W-products

Let M be a monoid acting by morphisms on the right of a semilattice Y such that

- $a \circ t = b \circ t \Rightarrow a = b$:
- $a \le b \circ t \Rightarrow a = c \circ t$ for some c.

Let

$$W = \{(t, a \circ t) : t \in M, a \in Y\} \subseteq M * Y.$$

Then W is a proper restriction subsemigroup of the (reverse) semidirect product M * Y where

$$(t, a \circ t)^+ = (1, a)$$
 and $(t, a \circ t)^* = (1, a \circ t)$.

(Construction due to Fountain, Gomes and Szendrei).

Proper covers

Let S be (left) restriction.

A **proper cover** of S is a proper (left) restriction semigroup \widehat{S} and an onto morphism $\theta : \widehat{S} \twoheadrightarrow S$ such that θ separates distinguished idempotents.

Theorem Every (left) restriction semigroup has a proper cover (Branco, Fountain, Gomes, G).

Theorem Let S be restriction. Then S has a proper cover that is embeddable into a W-semigroup (Szendrei).

Proper covers: sketch of existence

ullet Let S be a restriction monoid with distinguished semilattice E. Define

$$s \cdot e = (se)^+$$
 and $e \circ s = (es)^*$.

Then these are actions of S on E by morphisms, satisfying the compatibility conditions.

• Let $s \in S$ and $e, f \in E$. From the identities $(x^+y)^+ = x^+y^+$ and $xy^+ = (xy)^+x$,

$$s \cdot ef = (sef)^+ = ((se)^+ sf)^+ = (se)^+ (sf)^+ = (s \cdot e)(s \cdot f).$$

- Consequently, $E *_m S = \{(e, s) : e \leq s^+\} \subseteq E * S$ is proper restriction.
- Define $\theta: E *_m S \to S$ by $(e, s)\theta = es$. Then θ is a covering morphism.
- Make adaptations for semigroup/one-sided case.

Proper left restriction semigroups: structure

Let T be a monoid acting on the left of a semilattice $\mathcal X$ via morphisms. Suppose that $\mathcal X$ has subsemilattice $\mathcal Y$ with upper bound ε such that (a) for all $t \in T$ there exists $e \in \mathcal Y$ such that $e \le t \cdot \varepsilon$ (b) if $e \le t \cdot \varepsilon$ then for all $f \in \mathcal Y$, $e \wedge t \cdot f \in \mathcal Y$. Then $(T, \mathcal X, \mathcal Y)$ is a **strong left M-triple**.

For a strong left M-triple $(T, \mathcal{X}, \mathcal{Y})$ we put

$$\mathcal{M}(T,\mathcal{X},\mathcal{Y}) = \{(e,t) \in \mathcal{Y} \times T : e \leq t \cdot \varepsilon\} \subseteq \mathcal{X} * T.$$

Then $\mathcal{M}(T, \mathcal{X}, \mathcal{Y})$ is **proper left restriction** with $(e, s)^+ = (e, 1)$.

Proper left restriction semigroups: structure

Theorem A left restriction semigroup S is proper if and only if it is isomorphic to some $\mathcal{M}(T, \mathcal{X}, \mathcal{Y})$ (Branco, Gomes, G).

Important point In the above result, we can take

$$T = S/\sigma_E$$
 and $\mathcal{Y} = E$.

Proper restriction semigroups: structure

• If S is proper restriction, then as S is proper left restriction,

$$S \cong \mathcal{M}(T, \mathcal{X}, \mathcal{Y})$$

where $T = S/\sigma_E$ and $\mathcal{Y} = E$, and as S is proper right restriction, $S \cong \mathcal{M}'(\mathcal{Y}, \mathcal{X}', T)$,

where $\mathcal{M}'(\mathcal{Y}, \mathcal{X}', T)$ is constructed from T acting on the right of a semilattice \mathcal{X}' .

- Clearly the left and right actions of T must be connected in some way.
- Let $(T, \mathcal{X}, \mathcal{Y})$ and $(\mathcal{Y}, \mathcal{X}', T)$ be strong left (right) \mathcal{M} -triples such that

$$e \le t \cdot \varepsilon \Rightarrow t \cdot (e \circ t) = e \text{ and } e \le \varepsilon' \circ t \Rightarrow (t \cdot e) \circ t = e$$

then

$$\mathcal{M}(T, \mathcal{X}, \mathcal{X}', \mathcal{Y}) = \mathcal{M}(T, \mathcal{X}, \mathcal{Y}) \cong \mathcal{M}'(\mathcal{Y}, \mathcal{X}', T)$$

is proper restriction.

Structure of proper restriction semigroups: the bad news

Let S be a restriction semigroup.

S satisfies Condition (EP) if it satisfies (EP)^r and its dual (EP)^l. (EP)^r: for all $s, t, u \in S$, if $s \sigma_E tu$ then there exists $v \in S$ with $t^+s = tv$ and $u \sigma_E v$.

Theorem (Cornock, G) Let S be a proper restriction semigroup. Then S is isomorphic to some $\mathcal{M}(T, \mathcal{X}, \mathcal{X}', \mathcal{Y})$ if and only if S satisfies (EP).

Free restriction semigroups, and proper inverse semigroups have (EP).

Not all proper restriction semigroups have (EP).

Structure of proper restriction semigroups: the good news

Definition Let T be a monoid, acting partially on the left and right of a semilattice \mathcal{Y} , via \cdot and \circ respectively. Suppose that both actions preserve the partial order and the domains of each $t \in T$ are order ideals. Suppose in addition that for $e \in \mathcal{Y}$ and $t \in T$, the following and their duals hold:

- (a) if $\exists e \circ t$, then $\exists t \cdot (e \circ t)$ and $t \cdot (e \circ t) = e$;
- (b) for all $t \in \mathcal{T}$, there exists $e \in \mathcal{Y}$ such that $\exists e \circ t$.

Then (T, \mathcal{Y}) is a **strong M-pair**.

We put

$$\mathcal{M}(T, \mathcal{Y}) = \{(e, s) \in \mathcal{Y} \times T : \exists e \circ s\}$$

and define operations by

$$(e,s)(f,t) = (s \cdot (e \circ s \wedge f), st), (e,s)^+ = (e,1) \text{ and } (e,s)^* = (e \circ s,1).$$

A structure theorem for proper restriction semigroups: the result

Theorem (Cornock, G) If (T, \mathcal{Y}) is a strong M-pair, then

$$\mathcal{M}(T, \mathcal{Y}) \cong \mathcal{M}'(\mathcal{Y}, T),$$

where $\mathcal{M}'(\mathcal{Y}, T)$ is constructed dually to $\mathcal{M}(T, \mathcal{Y})$.

Theorem (Cornock, G) A semigroup is proper restriction if and only if it is isomorphic to some $\mathcal{M}(T, \mathcal{Y})$.

Corollary (Petrich and Reilly) A semigroup is proper inverse if and only if it is isomorphic to $\mathcal{M}(G, \mathcal{Y})$ for a group G.

- M. Branco, G. Gomes and V. Gould, 'Extensions and covers for semigroups whose idempotents form a left regular band' *Semigroup Forum* **81** (2010), 51-70.
- J. R. Cockett and S. Lack, Restriction categories I: categories of partial maps, *Theoretical Computer Science*, **270** (2002), 223-259.
- C. Cornock, Restriction semigroups: structure, varieties and presentations, D.Phil. Thesis, University of York, 2011.
- C. Cornock and V. Gould, Proper restriction semigroups, submitted.
- A. El Qallali, Structure theory for abundant and related semigroups, D.Phil. Thesis, University of York, 1980.
- J. Fountain, 'A class of right *PP* monoids', *Quart. J. Math. Oxford* (2) **28** (1977), 285-300.
- J. Fountain, 'Adequate semigroups', *Proc. Edinb. Math. Soc.* (2) **22** (1979), 113-125.

- J. Fountain, G. M. S. Gomes and V.A.R. Gould, 'The free ample monoid' *I.J.A.C.* **19** (2009), 527-554.
- G. M. S. Gomes and V. Gould, 'Proper weakly left ample semigroups' *I.J.A.C.* **9** (1999), 721–739.
- M. Jackson and T. Stokes, 'An invitation to *C*-semigroups', Semigroup Forum **62** (2001), 279-310.
- P. Jones, 'A common framework for restriction semigroups and regular *-semigroups, J.P.A.A. (2011) online first.
- M.V. Lawson, 'The Structure of Type A Semigroups', *Quart. J. Math. Oxford*, **37 (2)** (1986), 279–298.
- M.V. Lawson, 'Semigroups and ordered categories I. The reduced case', *J. Algebra* **141** (1991), 422-462.
- E. Manes, 'Guarded and banded semigroups', *Semigroup Forum* **72** (2006), 94-120.

- M. Petrich and N. R. Reilly, 'A Representation of E-unitary Inverse Semigroups', *Quart. J. Math. Oxford* **30** (1979), 339–350.
- B. M. Schein, 'Relation algebras and function semigroups', *Semigroup Forum* **1** (1970), 1–62.
- B. Schweizer and A. Sklar, 'The algebra of functions', *Math. Ann.* **139** (1960), 366-382.
 - B. Schweizer and A. Sklar, 'The algebra of functions II', *Math. Ann.* **143** (1961), 440-447.
- B. Schweizer and A. Sklar, 'The algebra of functions III', *Math. Ann.* **161** (1965), 171-196.
- B. Schweizer and A. Sklar, 'Function systems', *Math. Ann.* **172** (1967),1-16.
- V. S. Trokhimenko, 'Menger's function systems', *Izv. Vysš. Učebn. Zaved. Matematika* **11**(138) (1973), 71-78 (Russian).