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Abstract. The aim of these notes is to provide a single reference
source for basic definitions and results concerning classes of semi-
groups (and, indeed, of semigroupoids) related to those we refer to
as left restriction or weakly left E-ample.

We give the ‘York’ perspective on these classes of semigroups.

We present a comprehensive account of the relations R∗ and R̃E

and show how many classes of interest to us, including that of left
restriction semigroups, arise as natural generalisations of inverse
semigroups. Little of this material is new, but some parts of it lie
in the realms of folklore, hence one reason for this article. We give
a list of original sources, but with no claim to comprehensiveness
more references will be added.

The author is grateful to the many colleagues who have provided
references and background, in particular, to Boris Schein.

1. Introduction

Left restriction semigroups appear in the literature under a plethora
of names. They are first seen in the work of Schweizer and Sklar
[20, 21, 22, 23] on function systems. The latter are one instance of
algebras that arise from attempts to find axiomatisations of algebras
embedded in the semigroup of partial functions PT X on a set X en-
riched with additional operations. Function systems were revisited by
Schein in [18], correcting a misconception of [23]. A survey of this
material, in the setting of relation algebras, was given by Schein in
the first ever Semigroup Forum article [19] and revisited in the more
recent article [15] of Jackson and Stokes. A more recent (and not read-
ily available) survey appears in Chapter 2 of the PhD thesis of Chris
Hollings [13], where left restriction semigroups are referred to as being
weakly left E-ample. Left restriction semigroups (under another name)
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appear for the first time as a class in their own right in the work of
Trokhimenko [24], where the earliest proof of their representation the-
orem (Theorem 5.2 below) is given. They appeared also as the type
SL2 γ-semigroups of Batbedat [2, 3] in the early 1980s. More recently,
they have arisen in the work of Jackson and Stokes [14] in the guise of
(left) twisted C-semigroups and in that of Manes [17] as guarded semi-
groups, motivated by consideration of closure operators and categories,
respectively. The work of Manes has a forerunner in the restriction cat-
egories of Cockett and Lack [4], who were influenced by considerations
of theoretical computer science.

The (former) York terminology ‘weakly left E-ample’ was first used
in [7], arrived at from the starting point of the left ample semigroups of
Fountain [5, 6] via the route of replacing considerations of the relation

R∗ on a semigroup S by those of R̃ (hence the ‘weakly’) and then by

those of R̃E (making reference to a specific set of idempotents E, which
may not be the whole of E(S)).

The aim of these notes is to give a careful account of the (very) basics
of left restriction semigroups, together with a number of related classes.
For example, whereas left restriction semigroups have a semilattice of
idempotents, some authors have considered analogous classes having a
left regular band of idempotents (see, for example [1]), so we wish to
extend our article to cover these wider classes. There are essentially

two approaches, one involving the relations R̃E and R∗, and the sec-
ond by using identities and quasi-identities. Further, results proved for
these semigroups are at times arrived at via the employment of corre-
sponding semigroupoids (see, for example, [11]), hence the inclusion of
semigroupoids in our discussions.

2. The relations R,R∗ and R̃E

Although the concepts outlined in this section are given in greater
generality than is normally required, we prefer to use the most general
setting, that is, the setting of semigroupoids. By doing so we provide
an easy reference point for future work.

Let S be a semigroupoid, which we think of as a set S together with
a second set O and functions d, r : S → O such that:

(i) ab is defined if and only if r(a) = d(b), and in this case, d(ab) =
d(a) and r(ab) = r(b);

(ii) for all a, b, c ∈ S such that r(a) = d(b) and r(b) = d(c), we have
that (ab)c = a(bc);

(iii) O = im d ∪ im r.
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For each α, β ∈ O we let

Mα,β = {a ∈ S : d(a) = α, r(a) = β},

so that

Mα = Mα,α

is (empty or) a semigroup, the local semigroup at α. For a set E of
idempotents of S (where e is an idempotent if and only if ee is defined
and e2 = e), and for α ∈ O, we put

Eα = E ∩ Mα.

We denote by E(S) the set of all idempotents of S.
An equality w = v of elements in a semigroupoid is interpreted as

meaning that both α and β are defined, and are the same element.
Green’s relations R and L and their associated preorders ≤R and

≤L are, of course, well understood for semigroups. Suppose now that
S is a semigroupoid. We define the relation ≤R on S by the rule that

a≤R b if and only if a = b or a = bu for some u ∈ S.

Notice that ≤R is a quasi-order, and if a≤R b, then d(a) = d(b). The
equivalence relation associated with ≤R is denoted by R. In a semi-
groupoid S, as in a semigroup, we have that a≤R e where e is idempo-
tent, if and only if ea = a. It follows that if e, f ∈ S are idempotent,
then

eR f in S ⇔ ef = f and fe = e
⇔ e, f ∈ Md(e) and eR f in Md(e).

The relations ≤L and L are defined in a dual manner to ≤R and R.
Next, we consider the relations ≤R∗ and R∗ on S. We say that for

a, b ∈ S, a≤R∗ b if and only if

xb = yb ⇒ xa = ya and xb = b ⇒ xa = a.

for all x, y ∈ S. Clearly ≤R∗ is a quasi-order on S.

Lemma 2.1. In any semigroupoid S, we have that

a≤R b ⇒ a≤R∗ b.

Proof. Suppose that a, b ∈ S and a≤R b. If a = b then clearly a≤R∗ b.
On the other hand, if a = bu and xb = yb, then as bu is defined we have
that xbu = ybu and so xa = ya. Also, if xb = b then again xa = a.
Thus a≤R∗ b.

�
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It is worth remarking that if xb is defined for any x, b ∈ S, then
xb = xb so that if a≤R∗ b, then xa = ya, and d(a) = d(b). Further, if
a ∈ S and a ∈ E(S), then it is easy to see that a≤R∗ e if and only if
ea = a. Thus for e, f ∈ S,

e≤R∗ f if and only if e≤R f.

The equivalence relation associated with ≤R∗ is denoted by R∗. In
view of Lemma 2.1 we have that

aR b implies that aR∗ b

for any a, b ∈ S. Further,

eR f if and only if eR∗ f

for all e, f ∈ E(S). The relations ≤L∗ and L∗ are defined dually.
Let ρ be a relation on a semigroupoid S; we say that ρ is left com-

patible if a ρ b implies that ca is defined if and only if cb is defined, and
in this case, ca ρ cb. Right compatibility is defined dually.

Lemma 2.2. The relations ≤R,R and R∗ are left compatible and the
relations ≤L,L and L∗ are right compatible. For ≤R∗ we have that if
a≤R∗ b, then if cb is defined, ca is defined and ca≤R∗ cb, and dually
for ≤L∗.

The relations that will form our main focus are further extensions
of the above Green’s relations and their generalisations. We stress
however, that these relations have been proved (by, for example, the
number of contexts in which they arise), to be extremely natural.

Let E be a set of idempotents of a semigroupoid S. Where E is a
subsemigroupoid (necessarily a disjoint union of bands), we refer to E
as a subband of S; where ef = fe (whenever one (equivlalently, both)
sides are defined) for all e, f ∈ E then we say that E is a subsemilattice
of S. Note that we do not insist that E = E(S). However, when this
is the case, we may drop mention of the specific set E in our notation
and terminology.

For any a ∈ S, the set of left identities for a in E is denoted by Ea,
that is,

Ea = {e ∈ E : ea = a}.

Of course, if e ∈Ea, then d(e) = r(e) = d(a). The relation ≤R̃E
is then

defined on S by the rule that

a≤R̃E
b if and only if Eb ⊆ Ea.

That is, a≤R̃E
b if and only if for all e ∈ E,

eb = b implies that ea = a.
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Clearly, ≤
R̃E

is a quasi-order; the equivalence relation associated with

≤
R̃E

is denoted by R̃E .

Lemma 2.3. For any a ∈ S, if Ea 6= ∅, then it is a subset of Ed(a)

that is closed under multiplication. Further, Ea is a filter in E under
the ≤R-order. Consequently, if e, f ∈ Ed(a) and eR f , then e ∈Ea if
and only if f ∈Ea.

Proof. The first statement is clear. Suppose now that e ∈Ea and e≤R f
where f ∈ E. It follows that fe = e and f ∈ Md(a). Then

a = ea = (fe)a = f(ea) = fa

so that f ∈Ea as required.
�

Lemma 2.4. For any e ∈ E,

Ee = {f ∈ E : e≤R f},

i.e. the principal filter generated by e.

Proof. For any f ∈ E,

f ∈ Ee ⇔ fe = e ⇔ e≤R f.

�

The following is immediate from Lemma 2.4.

Corollary 2.5. For any a ∈ S, a R̃E e for some e ∈ E if and only if

Ea is the principal filter generated by e.

Lemma 2.6. For any a, b ∈ S,

a≤R∗ b implies that a≤
R̃E

b.

Further, if e ∈ E, then

a≤R e if and only if a≤R∗ e if and only if a≤R̃E
e

and these conditions are equivalent to ea = a.

Proof. Suppose that a≤R∗ b and eb = b for some e ∈ E. By definition
of ≤R∗ we have that ea = a. Hence Eb ⊆Ea so that a≤R̃E

b as required.
We know that a≤R e if and only if ea = a if and only if a≤R∗ e.

Suppose now that a≤
R̃E

e; then as ee = e we certainly have that
ea = a so that the remainder of the lemma holds.

�
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Corollary 2.7. For any e, f ∈ E we have that

e≤R f ⇔ e≤R∗ f ⇔ e≤
R̃E

f ⇔ fe = e,

so that consequently,

eR f ⇔ eR∗ f ⇔ e R̃E f ⇔ fe = e and ef = f.

We will primarily be concerned with semigroups and semigroupoids

in which every R∗-class contains an idempotent, or in which every R̃E-
class contains an idempotent of E. With this in mind we give the
following useful characterisations.

Lemma 2.8. For any a ∈ S and e ∈ E(S), we have that aR∗ e if and
only if ea = a,

xa = ya implies that xe = ye

and

xa = a implies that xe = a.

Proof. We know from Lemma 2.6 that a≤R∗ e if and only if ea = a.
The result is now clear. �

Similarly, we have:

Lemma 2.9. For any a ∈ S and e ∈ E, a R̃E e if and only if ea = a
and for all f ∈ E, if fa = a then fe = e.

We will later specialise to the case where E is a subsemilattice, or
more generally a left regular subband. Here, a left regular subband is
a subband in which efe = ef whenever d(e) = d(f), or, equivalently,
Eα is empty or is a left regular band, for any α ∈ O.

Corollary 2.10. Let E be a left regular subband of S. Then for any

a ∈ S, a is R̃E-related to at most one idempotent of E.

Proof. If a R̃E e R̃E f , where e, f ∈ E, then as noted in Corollary 2.7,
we have that ef = f and fe = e. In particular, d(e) = d(f), so that
as Ed(e) is a left regular band, e = f . �

3. Generalised left restriction semigroupoids

Let E be a subset of idempotents of a semigroupoid S. We say that
S is left E-abundant if every R∗-class contains an idempotent of E and

weakly left E-abundant if every R̃E-class contains an idempotent of E.
Although these concepts do have wider uses, we largely focus in these
notes on the case where E is a subband and the idempotent in the

R∗-class or R̃E-class of a is unique.
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Many of the classes we consider are defined by identities or quasi-
identities. By an identity for a semigroupoid (possibly with additional
unary and nullary operations) we mean an expression t(x1, . . . , xn) =
s(x1, . . . , xn), where t(x1, . . . , xn) and s(x1, . . . , xn) are terms in a finite
set x1, . . . , xn of variables. By saying that such an identity holds or is
satisfied in a semigroupoid S we mean that for any a1, . . . , an ∈ S,
t(a1, . . . , an) is defined if and only if s(a1, . . . , an) is defined, and where
defined, they are equal.

By a quasi-identity we mean an expression

t1 = s1 ∧ . . . ∧ tm = sm → s = t

where ti, si, t, s are terms in variables x1, . . . , xn; this quasi-identity
holds if for any a1, . . . , an ∈ S, we have for each i that if ti(a1, . . . , an)
and si(a1, . . . , an) are defined and equal for all i ∈ {1, . . . , m}, then
s(a1, . . . , an) and t(a1, . . . , an) are defined, and are equal.

Lemma 3.1. Let S be weakly left E-abundant, where E is a subband,

such that every R̃E-class contains a unique idempotent of E. Denote

the unique idempotent of E in the R̃E-class of a by a+. Then E is a
left regular subband, and the following identities hold:

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+x+ = x+y+,

x+x+ = x+, x+(xy)+ = (xy)+.

Proof. If e, f ∈ E and eR f , then e R̃E f by Corollary 2.7, so that
e = f by the uniqueness claim. Then E is a disjoint union of left
regular bands, as required.

The only identity that needs comment is the final. Let a, b ∈ S,
Observe that (ab)+ is defined if and only if ab is defined and as d(a) =
d(ab), we have that a+(ab)+ is defined if and only if ab is defined.
Moreover, if ab is defined, then so is a+ab and a+ab = ab, so that
a+(ab)+ = (ab)+. Hence x+(xy)+ = (xy)+ holds. �

Remark 3.2. Let S be weakly left E-abundant, where E is a subset of
idempotents of S, such that every R̃E-class contains a unique idempo-

tent of E. Denote the unique idempotent of E in the R̃E-class of a by
a+. The clearly for all a, b ∈ S,

a R̃E b if and only if a+ = b+.

We also observe from Lemma 3.1 that if S satisfies the conditions of
that Lemma, then for any a, b ∈ S, such that ab is defined, we have
that (ab)+ ≤R a+.
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A semigroupoid S together with an additional unary operation + is
generalised left restriction if it satisfies the following identities:

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+x+ = x+y+,

x+x+ = x+, x+(xy)+ = (xy)+.

Proposition 3.3. Let S be a generalised left restriction semigroupoid.
Put

E = {a+ : a ∈ S}.

Then E is a subband, S is weakly left E-abundant such that for any

a ∈ S, the R̃E-class of a contains a unique idempotent a+.
Conversely, if S is weakly left E-abundant where E is a subband, such

that for any a ∈ S, the R̃E-class of a contains a unique idempotent a+

of E, then S is a generalised left restriction semigroupoid with respect
to the additional unary operation +.

Proof. In view of Lemma 3.1, we need only show the direct part.
From (x+y+)+ = x+y+ and x+x+ = x+, we obtain that E is a

subband, and from x+y+x+ = x+y+, that it is left regular. For any
a ∈ S we have that a+a = a. On the other hand, if b+a = a, then as
a+a is defined, we have that b+a+ is defined and

b+a+ = b+(b+a)+ = (b+)+(b+a)+ = (b+a)+ = a+,

so that a R̃E a+. Since E is left regular, Corollary 2.10 says that a+ is

the unique idempotent of E that is R̃E-related to a. �

We wish to specialise the above to left E-abundant semigroupoids.
First, an observation.

Lemma 3.4. Let S be a semigroupoid with subset E of idempotents.
Then the following conditions are equivalent:

(i) S is left E-abundant;
(ii) S is weakly left E-abundant and ≤R∗ = ≤R̃E

;

(iii) S is weakly left E-abundant and R∗ = R̃E.

Proof. Clearly (ii) implies (iii) and if (iii) holds, then as every R∗ =

R̃E-class contains an idempotent of E, we certainly have that every
R∗-class contains an idempotent of E, so that S is left E-abundant.

It remains to prove that (i) implies (ii). To this end, suppose that

S is left E-abundant. Since R∗ ⊆ R̃E from Lemma 2.6, certainly S is
weakly left E-abundant. Let a, b ∈ S with a≤

R̃E
b. Then aR∗ e, bR∗ f

for some e, f ∈ E. We have

e R̃E a≤
R̃E

b R̃E f
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so that e≤
R̃E

f and by Corollary 2.7 we have that e≤R∗ f and so
a≤R∗ b. It follows that ≤R∗ = ≤

R̃E
.

�

Proposition 3.5. Let S be a generalised left restriction semigroupoid
such that in addition the quasi-identity

xz = yz → xz+ = yz+

holds. Put

E = {a+ : a ∈ S}.

Then E is a subband and S is left E-abundant such that for any a ∈ S,
the R∗-class of a contains a unique idempotent a+ of E.

Conversely, if S is left E-abundant where E is a subband, such that
for any a ∈ S, the R∗-class of a contains a unique idempotent of
E, denoted a+, then S is a generalised left restriction semigroupoid
with respect to the additional unary operation + and satisfies the quasi-
identity

xa = ya → xa+ = ya+.

Proof. Suppose first that S is a generalised left restriction semigroupoid
such that the quasi-identity

xz = yz → xz+ = yz+

holds. From Proposition 3.3 we have that E is a subband and S is

weakly left E-abundant such that for any a ∈ S, the R̃E-class of a con-
tains a unique idempotent a+. If xa = a, then xa = a+a so that from
the given quasi-identity, xa+ = a+a+ = a+. It follows that aR∗ a+ so

that S is left E-abundant. From Lemma 3.4 we have that R∗ = R̃E so
that the R∗-class of a contains a unique idempotent a+ of E.

Suppose conversely that S is left E-abundant where E is a subband,
such that for any a ∈ S, the R∗-class of a contains a unique idem-

potent a+ of E. Again from Lemma 3.4, we have that R∗ = R̃E and

S is weakly left E-abundant such that the R̃E-class of a contains a
unique idempotent a+ of E. From Proposition 3.3, S is generalised
left restriction and as aR∗ a+ for any a ∈ S, the given quasi-identity
holds. �

It is worth specifically detailing the specialisation of the above to
semigroups; we see our first varieties and quasi-varieties arising.

Let S be a set equipped with a binary and a unary operation: with
some slackness of notation we say that S is a (2, 1)-algebra; we denote
the binary operation by juxtaposition and the unary by +. Then S
is a generalised left restriction semigroup if S is a semigroup under
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the binary operation, and a generalised left restriction semigroup(oid),
that is, if S satisfies the identities:

(xy)z = x(yz), x+x = x, (x+)+ = x+, (x+y+)+ = x+y+,

x+y+x+ = x+y+, x+x+ = x+, x+(xy)+ = (xy)+.

Note that the class of generalised left restriction semigroups forms a
variety of algebras.

Corollary 3.6. Let S be a generalised left restriction semigroup. Put

E = {a+ : a ∈ S}.

Then E is a subband, and S is weakly left E-abundant such that for

any a ∈ S, the R̃E-class of a contains a unique idempotent a+.
Conversely, if S is a weakly left E-abundant semigroup where E is a

subband, such that for any a ∈ S, the R̃E-class of a contains a unique
idempotent a+ of E, then S is a generalised left restriction semigroup
with respect to the additional unary operation +.

We adapt the above the the case where R∗ = R̃E.

Corollary 3.7. Let S be a generalised left restriction semigroup such
that in addition the quasi-identity

xa = ya → xa+ = ya+

holds. Put
E = {a+ : a ∈ S}.

Then E is a subband and S is left E-abundant such that for any a ∈ S,
the R∗-class of a contains a unique idempotent a+ of E.

Conversely, if S is left E-abundant where E is a subband, such that
for any a ∈ S, the R∗-class of a contains a unique idempotent of E, de-
noted a+, then S is a generalised left restriction semigroup with respect
to the additional unary operation + and satisfies the quasi-identity

xa = ya → xa+ = ya+.

Note that the semigroups appearing in Corollary 3.7 form a quasi-
variety of algebras of type (2, 1).

For completeness, a little further terminology. Let E be a subsemi-
lattice in a semigroupoid S. We say that S is left E-adequate if S is left
E-abundant, that is, every R∗-class contains an element of E (which

by Corollaries 2.7 and 2.10 is unique). If every R̃E-class contains a
(necessarily unique) idempotent of E then we say that S is weakly left
E-adequate or left E-semiadequate. Propositions 3.3 and 3.5 may be
adapted as follows.
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Corollary 3.8. Let S be a semigroupoid equipped with an additional
unary operation +. Suppose that S satisfies the identities

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+.

Put
E = {a+ : a ∈ S}.

Then E is a subsemilattice and S is weakly left E-adequate, such that

for any a ∈ S, a R̃E a+.
Conversely, if S is weakly left E-adequate where E is a subsemi-

lattice, such that for any a ∈ S, a R̃E a+ ∈ E, then S satisfies the
identities

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+.

In particular, S is generalised left restriction.

Proof. Suppose first that S is a semigroupoid satisfying the given iden-
tities. Let a, b ∈ S. Then if a+b+ exists, we have that

a+a+ = a+, b+b+ = b+ and a+b+ = b+a+.

Hence d(a+) = r(a+) = d(b+) = r(b+). It follows that a+b+a+ exists,
and a+b+a+ = a+a+b+ = a+b+. Hence S is generalised left restriction.
From Proposition 3.3 we have that E is a subband, S is weakly left E-
abundant and a R̃E a+ for all a ∈ S. Clearly then E is a subsemilattice
and S is weakly left E-adequate.

Conversely, suppose that S is weakly left E-adequate where E is a

subsemilattice, such that for any a ∈ S, a R̃E a+ ∈ E. Note that from

Corollary 2.10, a+ is the unique idempotent in the R̃E-class of a. Thus
by Proposition 3.3, we have that S is generalised left restriction. In
addition, as E is a semilattice, S satisfies x+y+ = y+x+. �

Corollary 3.9. Let S be a semigroupoid equipped with an additional
unary operation +. Suppose that S satisfies the identities

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+

and the quasi-identity

xz = yz → xz+ = yz+.

Put

E = {a+ : a ∈ S}.
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Then E is a subsemilattice and S is left E-adequate, such that for any
a ∈ S, aR∗ a+.

Conversely, if S is left E-adequate where E is a subsemilattice, such
that for any a ∈ S, aR∗ a+ ∈ E, then S satisfies

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+,

xa = ya → xa+ = ya+.

In particular, S is generalised left restriction.

Again we specialise to the case for semigroups, obtaining now a va-
riety and a quasi-variety of algebras of type (2, 1).

Corollary 3.10. Let S be an algebra of type (2, 1). Suppose that S
satisfies the identities

(xy)z = x(yz), x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+.

Put
E = {a+ : a ∈ S}.

Then E is a subsemilattice and S is weakly left E-adequate, such that

for any a ∈ S, a R̃E a+.
Conversely, if S is a semigroup under the binary operation, and

weakly left E-adequate where E is a subsemilattice, such that for any

a ∈ S, a R̃E a+, then S satisfies the identities

(xy)z = x(yz), x+x = x, (x+)+ = x+, (x+y+)+ = x+y+,

x+y+ = y+x+, x+x+ = x+, x+(xy)+ = (xy)+.

In particular, S is generalised left restriction.

Corollary 3.11. Let S be an algebra of type (2, 1). Suppose that S
satisfies the identities

(xy)z = x(yz), x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+

and the quasi-identity

xz = yz → xz+ = yz+.

Put
E = {a+ : a ∈ S}.

Then E is a subsemilattice and S is left E-adequate, such that for any
a ∈ S, aR∗ a+.
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Conversely, if S is a semigroup under the binary operation, and
left E-adequate where E is a subsemilattice, such that for any a ∈ S,
aR∗ a+ ∈ E, then S satisfies the identities

(xy)z = x(yz), x+x = x, (x+)+ = x+, (x+y+)+ = x+y+,

x+y+ = y+x+, x+x+ = x+, x+(xy)+ = (xy)+

and the quasi-identity

xz = yz → xz+ = yz+.

In particular, S is generalised left restriction.

let S be a generalised left restriction semigroupoid, and let E = {a+ :
a ∈ S}. We say that E is the distinguished subset of idempotents of
S. We remark that without special signatures, we cannot in general
pick out a particular E. We can, however, specialise the results in this
section to the case where E = E(S) (or, E = E(S)), by adding the
quasi-identity

x2 = x → x = x+.

Thus, the class of generalised left restriction semigroups S such that
e+ = e for all e ∈ E(S) is a quasi-variety. Whereas varieties of algebras
are closed under subalgebra, direct product and morphic image, quasi-
varieties are in general only closed under subalgebra and direct product.

The right context for considering all of the classes of semigroups in
this section is, we feel, as quasi-varieties (or varieties) of algebras of
type (2, 1).

For example, let S be a generalised left restriction semigroup with
distinguished subset of idempotents E. Let T be a subsemigroup of S
that is closed under +, that is, T is a subalgebra of S. Then T is also
generalised left restriction, with distinguished subset of idempotents
F = {a+ : a ∈ T} = E ∩ T . Now, for any a, b ∈ T we have that

a R̃F b in T ⇔ a+ = b+ ⇔ a R̃E b in S.

When considering direct products, let {Si : i ∈ I} be a non-empty
set such that each Si is a generalised left restriction with distinguished
subset of idempotents Ei. Consider the (2, 1)-algebra P , where P is
the product

P = Πi∈ISi.

For any (ai) ∈ P we have that (ai)
+ = (a+

i ). As quasi-varieties are
closed under product, P is generalised left restriction, with distin-
guished set of idempotents

E = {(ai)
+ : ai ∈ Si} = {(a+

i ) : ai ∈ Si}.
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Moreover, for (ai), (bi) ∈ P ,

(ai) R̃E (bi) ⇔ (ai)
+ = (bi)

+

⇔ (a+
i ) = (b+

i )
⇔ a+

i = b+
i for all i ∈ I

⇔ ai R̃Ei
bi for all i ∈ I.

Finally, suppose that S and T are generalised left restriction semi-
groups with distinguished subsets E and F of idempotents, respec-

tively, and φ : S → T is a (2, 1)-morphism. Let a, b ∈ S with a R̃E b.
Then a+ = b+ so that

(aφ)+ = a+φ = b+φ = (bφ)+,

so that aφ R̃F bφ in T .

4. The semilattice, congruence and ample conditions

Let S be a generalised left restriction (g.l.r.) semigroupoid with
distinguished subset of idempotents E. We say that S satisfies the
semilattice condition (e) if E is a subsemilattice. As in Corollaries 3.8
and 3.10 we know that the class of g.l.r. semigroupoids with (e) is
defined (within the class of all semigroupoids with an additional unary
operation) by the identities

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+.

We now introduce two further conditions that will be crucial. First,
although we know that R∗ is always a left congruence, it is not true

that R̃E must be. We say that a g.l.r. semigroupoid satisfies the left

congruence condition (cl) if R̃E is a left congruence.

Lemma 4.1. Let S be a g.l.r. semigroupoid. Then S has the left
congruence condition if and only if it satisfies the identity

(xy)+ = (xy+)+.

Proof. Suppose first that S has the left congruence condition. For any
a, b ∈ S, certainly ab is defined if and only if ab+ is defined, so that
(ab)+ is defined if and only if (ab+)+ is defined. Now, if ab is defined,

then as R̃E is a left congruence and b R̃E b+, we have that ab R̃E ab+

and so (ab)+ = (ab+)+.

Conversely, if S satisfies the given identity and c R̃E d, then c+ = d+.
Since d(c) = d(c+) = d(d+) = d(d), we have that uc is defined if and
only if ud is defined. If uc is defined, then

(uc)+ = (uc+)+ = (ud+)+ = (ud)+,
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so that uc R̃E ud and R̃E is a left congruence. �

A semigroupoid S and, in particular, a semigroup, is said to be left
E-Ehresmann if it is g.l.r. with (e) and (cl). Equivalently, it possesses

a subsemilattice of idempotents E such that every R̃E-class contains

a (unique) idempotent a+ of E, and R̃E is a left congruence (see, for
example, [16]). We remark that left E-Ehresmann semigroups form a
variety of algebras of type (2, 1). If we consider left Ehresmann semi-
groups, that is, left E(S)-Ehresmann semigroups, then this class forms
a quasi-variety of algebras, since we must include the quasi-identity
x2 = x → x = x+ in the set of defining conditions.

The third important property that a g.l.r. semigroupoid may possess
is the ample or type A condition. Let S be a g.l.r. semigroupoid: then
S satisfies the left ample condition (al) if it satisfies the identity

xy+ = (xy+)+x.

Notice first that if S is an inverse semigroup, so that a+ = aa−1 for all
a ∈ S, then

(ab+)+a = ab+b+a−1a = aa−1ab+ = ab+,

using the fact that idempotents commute.
A g.l.r. semigroupoid is said to be weakly left quasi-ample or wlqa if

it has (al) and E = E(S) (see [1]). If S is wlqa and has (e) and (cl),
then it is weakly left ample or wla [8]. Note that if S such that S is

weakly left E(S)-abundant, and the R̃-class of any a ∈ S contains a
unique idempotent a+ and (al) holds, then as in [1] we note that

(ef)(ef) = (ef)+eef = (ef)+(ef) = ef,

so that E(S) is perforce a subband.
However, the most interesting case is of a g.l.r. semigroupoid with

(e), (cl) and (al): such a semigroupoid is left restriction. Note that the
class of left restriction semigroups forms a variety of algebras of type
(2, 1). In this case, the defining set of identities simplifies considerably.
We first make a simple observation.

Lemma 4.2. Let S be a g.l.r. semigroupoid. Then S satisfies (AL)
and (CL) if and only if it satisfies

xy+ = (xy)+x.

Proof. Suppose first that S has (cl) and (al):

(xy+)+ = (xy)+ and xy+ = (xy+)+x.

Then certainly
xy+ = (xy+)+x = (xy)+x.



16 VICTORIA GOULD

Conversely, suppose that S satisfies xy+ = (xy)+x. Then

(xy+)+ = ((xy)+x)+ ≤R ((xy)+)+ = (xy)+.

On the other hand,

(xy)+ = (xy+y)+ ≤R (xy+)+.

It follows that (xy+)+ R (xy)+ so that (xy+)+ = (xy)+. Clearly then

xy+ = (xy)+x = (xy+)+x.

�

Proposition 4.3. Let S be a semigroupoid equipped with an additional
unary operation +. Then S is left restriction if and only if S satisfies:

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

Proof. We have that S is left restriction if and only if it satisfies

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+ = y+x+,

x+x+ = x+, x+(xy)+ = (xy)+,

together with (cl) and (al)

(xy+)+ = (xy)+ and xy+ = (xy+)x.

Suppose that S is left restriction. For any a, b ∈ S we have that
(a+b)+ is defined if and only if (a+b+)+ is defined, and in this case

(a+b)+ = (a+b+)+ = a+b+,

the first equality from (cl). Thus (x+y)+ = x+y+ holds. By Lemma 4.2,
xy+ = (xy)+x also holds.

Conversely, suppose that S satisfies

x+x = x, x+y+ = y+x+, (x+y)+ = x+y+, xy+ = (xy)+x.

We show that S is g.l.r., so that the result follows from Lemma 4.2.
Notice first that for any a ∈ S, as a+a = a we have that

d(a+) = r(a+) = d(a).

Let a ∈ S. Then a+a+ is defined and

a+a+ = (a+a)+ = a+,

so that x+x+ = x+ holds. Further,

a+ = (a+)+a+ = a+(a+)+ = (a+a+)+ = (a+)+,

so that (x+)+ = x+ holds.
Clearly for a, b ∈ S, ab is defined if and only if (ab)+ is defined if and

only if a+(ab)+ is defined, and if they are,

a+(ab)+ = (a+ab)+ = (ab)+,
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so that x+(xy)+ = (xy)+ holds.
If a+b+ is defined, then

a+b+ = a+(b+)+ = (a+b+)+

so that x+y+ = (x+y+)+ holds. Hence S is g.l.r. with (e). �

The class of left restriction semigroups therefore forms a variety of
type (2, 1), which may be defined via only four identities (we have
taken our four from [4]. Other names for left restriction semigroups
are left twisted C-semigroups [14] and weakly left E-ample semigroups
[12]. If a semigroupoid S is weakly left E(S)-ample then we say that S
is weakly left ample. The class of weakly left ample semigroups forms
a quasi-variety of algebras of type (2, 1).

Recall that a semigroupoid S is left E-adequate if E is a subsemi-
lattice and every R∗-class contains a, necessarily unique, idempotent
of E; we denote the idempotent in the R∗-class of a by a+. The for-
mer convention is that the unique idempotent of E in the R∗-class of
a ∈ S is denoted by a†. A left E-adequate semigroupoid is said to be
left E-ample if it satisfies condition (al); notice from Lemma 2.2 that
R∗ is always left compatible, so we need not mention (cl) explicitly.
However, mention of E is also spurious, since in such a semigroupoid,
if e is idempotent, then

ee+ = (ee)+e = e+e = e.

Certainly
ee = e+e

and since eR∗ e+ we have

ee+ = e+e+

and hence e = e+. Thus for a left E-ample semigroupoid we simply
say that it is left ample.

We remark here that inverse semigroups are certainly left ample; for
any regular semigroup, R = R∗ and the idempotent in the R∗-class
of a is aa−1; we have already noted that (al) holds. Thus IX , the
symmetric inverse semigroup on a (non-empty) set X is left ample. In
this case, for any α we have

α+ = αα−1 = Idom α
.

We denote by EX the set of idempotents of IX , so that

EX = {IY : Y ⊆ X}.

Immediately from the fact that left ample semigroups form a quasiva-
riety we have:
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Corollary 4.4. Let S be a (2, 1)-subalgebra of IX. Then S is left
ample.

We will see later that all left ample semigroups may be obtained as
(2, 1)-subalgebras of IX .

Similarly, we show in Section 6 that the partial transformation semi-
group PT X is known to be left restriction, where

α+ = Idom α
.

Corollary 4.5. Let S be a (2, 1)-subalgebra of PT X. Then S is left
restriction.

Again, we will see that all left restriction semigroups may be obtained
as (2, 1)-subalgebras of PT X .

5. The right and two-sided cases

We have thus far presented classes of semigroupoids and semigroups

defined using relations R∗ and R̃E , or, via an additional unary opera-
tion. We could equally well have presented classes defined dually, using

L∗ and L̃E. Indeed, if one takes the point of view (the opposite of ours),
that maps should be composed from right to left, Section 6 would re-
veal this would be the natural route to take. The classes are named
by switching ‘left’ with ‘right’ and the unary operation employed is
denoted by ∗. Thus, for example, a semigroupoid is right restriction if
and only if it possesses a unary operation ∗ such that the identities

xx∗ = x, x∗y∗ = y∗x∗, (xy∗)∗ = x∗y∗, x∗y = y(xy)∗.

Equivalently, a semigroupoid S is right restriction if it possesses a sub-

semilattice E of idempotents such that every a ∈ S is L̃E-related to an
idempotent a+ of E, and (cr) and (ar) hold, where (cr) and (ar) are
the duals of (cl) and (al).

Let S be a semigroupoid equipped with two unary operations + and
∗. Let ‘left good’ be a class defined previously, using +. We say that S
is ‘good’ if it is both left good and right good and satisfies

(x+)∗ = x+ and (x∗)+ = x∗.

Equivalently S lies in classes defined dually using R̃E and L̃E for the
same set E.

For example, a semigroupoid S equipped with two unary operations
+ and ∗ is generalised restriction if it satisfies

x+x = x, (x+)+ = x+, (x+y+)+ = x+y+, x+y+x+ = x+y+,

x+x+ = x+, x+(xy)+ = (xy)+
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and their left-right duals

xx∗ = x, (x∗)∗ = x∗, (x∗y∗)∗ = x∗y∗, x∗y∗x∗ = y∗x∗,

x∗x∗ = x∗, (xy)∗y∗ = (xy)∗

and
(x+)∗ = x+ and (x∗)+ = x∗.

Of course, this set of identities may be simplified; we note that

E = {x+ : x ∈ S} = {x∗ : x ∈ S}

is forced to be a subsemilattice. Equivalently, S is generalised restric-

tion if it possesses a subsemilattice E such that every R̃E-class and

every L̃E-class contains a (unique) element of E.

6. The Representation theorems

We now begin to indicate why left restriction semigroups are such a
natural concept.

Proposition 6.1. For any set X, PT X is weakly left EX-ample, where

EX = {IY : Y ⊆ X}.

Equivalently, PT X is left restriction, where

α+ = Idom α
.

Proof. Certainly EX is a subsemilattice of PT X . Let α ∈ PT X . Then

Idom α
α = α.

Suppose that IY α = α. Then for any x ∈ dom α, x ∈ dom IY = Y , so

dom α ⊆ Y and Idom α
≤ IY . By Lemma 2.9, α R̃EX

Idom α
.

Notice now that for any α, β ∈ PT X ,

α R̃EX
β ⇔ dom α = dom β.

Now if α R̃EX
β and γ ∈ PT X , then

dom γα = (im γ ∩ dom α)γ−1 = (im γ ∩ dom β)γ−1 = dom γβ,

so that γα R̃EX
γβ and R̃EX

is a left congruence and (cl) holds.
Finally, let α ∈ PT X and Y ⊆ X. Then

dom (αIY )+α = (im (αIY )+ ∩ dom α)((αIY )+)−1

= dom αIY ∩ dom α
= dom αIY

and for x ∈ dom αIY ,

xαIY = xα = x(αIY )+α.

Therefore αIY = (αIY )+α and (cl) holds. �
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Thus, any (2, 1)-subalgebra of PT X is left restriction. We now prove
the converse.

Theorem 6.2. Let S be a left restriction semigroup. Define

φ : S → PT S

by

sφ = ρs

where

dom ρs = Ss+, xρs = xs for all x ∈ dom ρs.

Then (i) im ρs = Ss;
(ii) φ is a (2, 1)-embedding;
(iii) s+φ = ISs+;
(iv) S is left ample if and only if im φ ⊆ IS.

Proof. (i) im ρs = (Ss+)ρs = Ss+s = Ss.
(iii) s+φ = ρs+ and dom ρs+ = S(s+)+ = Ss+ and for xs+ ∈ dom

ρs+, we have

(xs+)ρs+ = xs+s+ = xs+,

so that ρs+ = ISs+ and (iii) holds.
(ii) We have

s+φ = ISs+ = Idom ρs
= (ρs)

+ = (sφ)+

so that φ is a +-morphism.
If sφ = tφ, then Ss+ = St+ so that s+ L t+ and as E commutes,

s+ = t+. Further, ρs = ρt gives

s+ρs = t+ρt

so that s+s = t+t and s = t. Thus φ is one-one.
We must show that φ is a semigroup morphism. Let s, t ∈ S. If we

can show that dom ρst =dom ρsdom ρt, then it is clear that (st)φ =
sφtφ.

Let x ∈ dom ρsρt. Then x ∈ dom ρs and xρs = xs ∈ dom ρt. Thus
x ∈ Ss+ and xs ∈ St+. Using the ample condition we have

x(st)+ = (x(st)+)+x = (xst)+x = (xst+)+x =

= (xs)+x = (xs+)+x = x+x = x

so that x ∈ S(st)+ = dom ρst.
Conversely, let x ∈ dom ρst. Then x(st)+ = x so that xs+ =

x(st)+s+ = x(st)+ = x and x ∈ dom ρs. Now xρs = xs = x(st)+s =
x(st+)+s = xst+ ∈ dom ρt so that x ∈ dom ρsρt. This gives that dom
ρsρt = dom ρst and φ is a semigroup morphism.
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(iv) Suppose that im φ ⊆ IS. Then im φ is a (2, 1)-subalgebra of IS,
so that S is left ample as in Corollary 4.4.

Conversely, suppose that S is left ample. Consider s ∈ S and sφ =
ρs. Let x, y ∈ dom ρs and suppose that xρs = yρs. Then xs = ys but

by Lemma 3.4, R∗ = R̃E, so that xs+ = ys+ and x = y. Thus ρs is
one-one and im φ ⊆ IS. �

Putting together Corollaries 4.4, 4.5 and Theorem 6.2 we have the
following:

Corollary 6.3. Left restriction semigroups are precisely the (2, 1)-
subalgebras of some PT X. Left ample semigroups are precisely the
(2, 1)-subalgebras of some IX .

7. The natural partial order on a left restriction

semigroup

Let S be a left restriction semigroup with distinguished semilattice
E. Then the relation ≤ on S defined by the rule that for any a, b ∈ S,

a ≤ b if and only if a = eb

for some e ∈ E, is a partial order on S, compatible with multiplication,
which restricts to the usual partial order on E.

We begin by noting that if a ≤ b with a = eb for some e ∈ E, then
ea = a so that ea+ = a+. Hence

a+b = a+eb = a+a = a.

Thus

a ≤ b if and only if a = a+b.

It is clear that ≤ is reflexive, transitive, right compatible and restricts
to the usual order on E. To see that it is anti-symmetric, note that
if a ≤ b and b ≤ a, then we have from the above that a = a+b and
b = b+a. From the first equation we have that b+a = b+a+b = a+b+b =
a+b = a, so that from the second we deduce a = b. To see that ≤ is
left compatible we employ condition (al).

If S is a (2, 1)-subalgebra of PT X , then it is easy to see that for
α, β ∈ S,

α ≤ β if and only if α ⊆ β;

thus demonstrating the importance of ≤.
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8. The least congruence identifying E

Let S be a semigroup with subset E of idempotents. We denote by
σE the least semigroup congruence ρ such that e ρ f for all e, f ∈ E.
Thus a σE b if and only if a = b or there exist a sequence

a = c1e1d1, c1f1d1 = c2e2d2, . . . , cnfndn = b,

where c1, d1, . . . , cn, dn ∈ S1 and (e1, f1), . . . , (en, fn) ∈ E × E.
Before stating the next lemma we remark that if E is a left regular

band in a semigroup S, and if ea = fb for some e, f ∈ E and a, b ∈ S,
then

efa = efea = effb = efb

so that ga = gb where g = ef .

Lemma 8.1. Let S be g.l.r. with (al). Then a σE b if and only if
ea = eb for some e ∈ E.

Proof. Clearly if ea = eb where e ∈ E then

a = a+a σE ea = eb σE b+b = b.

Conversely, suppose that a σE b; if a = b then a+a = a+b. On the other
hand, suppose there exists a sequence

a = c1e1d1, c1f1d1 = c2e2d2, . . . , cnfndn = b,

where c1, d1, . . . , cn, dn ∈ S1 and (e1, f1), . . . , (en, fn) ∈ E × E. Then

a = (c1e1)
+c1d1, (c1f1)

+c1d1 = (c2e2)
+c2d2, . . . , (cnfn)+cndn = b,

so that
a = u1c1d1, v1c1d1 = u2c2d2, . . . , vncndn = b,

for some u1, v1, . . . , un, vn ∈ E. By the comment preceding the Lemma,

a = g0c1d1, g1c1d1 = g1c2d2, . . . , gncndn = b,

for some g0, . . . , gn ∈ E. Now

g0g1a = g0g1g0c1d1 = g0g1c1d1 = g0g1c2d2,

so that ka = kc2d2 where k = g0g1 ∈ E. Suppose that ℓa = ℓcidi where
i < n. Then

giℓa = giℓcidi = giℓgicidi = giℓgici+1di+1 = giℓci+1di+1.

By induction we obtain that

ha = hcndn

for some h ∈ E, so that

gnha = gnhcndn = gnhgncndn = gnhb,

as required. �
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We remark that a g.l.r. semigroup S is properly a (2, 1)-algebra; we
have defined σE as a semigroup congruence. However, it is certainly
true that if a σE b, then a+ σE b+ (since all idempotents of E are iden-
tified by σE !), so that σE is a (2, 1)-congruence. Hence S/σE is g.l.r..
Note that the distinguished semilattice of S/σE is trivial. We refer to
a g.l.r. semigroupoid S with Eα trivial for all α ∈ O as reduced. Hence
S/σE is always reduced. Now, if τ is any (2, 1)-congruence such that
S/τ is reduced, then as

a+τ = (aτ)+ = (bτ)+ = b+τ

for any a, b ∈ S, we have that e τ f for all e, f ∈ E and so σE ⊆ τ .
We follow standard terminology by referring to a congruence ρ on

a semigroup S as a Π congruence, where Π is a property defined for
semigroups, if S/ρ has property Π.

Lemma 8.2. [1] Let S be a g.l.r. semigroup with (al). The relation
σE is a monoid congruence on S. If E = E(S), then putting σ = σE

we have that S/σ is unipotent and consequently σ is the least unipotent
monoid congruence on S.

Proof. Certainly all idempotents of E lie in the same σE-class and the
class containing E is a left identity for S/σE ; using (al) it is clear that
this class is also a right identity, so that S/σE is a monoid.

Suppose now that E = E(S) and a σ is idempotent in S/σ. Hence
a σ a2 so that ea = ea2 for some e ∈ E(S). Consider the element eae.
Using (al) we have

(eae)2 = e(ae)ae = e((ae)+a)ae

and so

(eae)2 = e(ae)+ea2e = e(ae)+eae = e(ae)+ae = eae.

Thus eae ∈ E(S) and

(eae)(eae) = e(ae)+a

so by the comment preceding Lemma 8.1, a σ eae and S/σ is unipotent,
as required. �

It is well known that if S is an inverse monoid and E = E(S), then
σ is in fact the least group congruence on S.

Lemma 8.3. [5] (i) Let S be a g.l.r. semigroup with (al) for which

E = E(S) and such that R∗ = R̃. Then S/σ is a right cancellative
monoid and σ is the least right cancellative monoid congruence on S.

(ii) Let S be a left ample semigroup. Then S/σ is a right cancellative
monoid and σ is the least right cancellative congruence on S.
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Proof. (i) In view of Lemma 8.2, we know that σ is a congruence and
S/σ is unipotent. If ab σ cb for some a, b, c ∈ S, then eab = ecb for
some e ∈ E(S), so that as bR∗ b+ we have eab+ = ecb+. Since S/σ is a
unipotent monoid it follows that a σ c and S/σ is right cancellative as
required. If τ is any right cancellative monoid congruence on S, then
as a right cancellative monoid is unipotent, we must have that e τ f for
all e, f ∈ E(S) so that σ ⊆ τ .

(ii) Suppose that τ is a right cancellative congruence on S. Then if
e, f ∈ E(S) we have that

(eτ)(fτ) = ((ef)τ)(fτ)

so that by right cancellation,

eτ = (ef)τ.

Dually, fτ = (fe)τ so that

e τ ef = fe τ f.

It follows that σE ⊆ τ . �
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