

Department of Electronics

Audio Lab

Csound for iOS API
A Beginner’s Guide 1.1

17/2/2013

Timothy Neate, Nicholas Arner & Abigail Richardson

Csound for iOS API: A Beginner’s Guide

ii

Abstract

This tutorial aims to help iOS developers with the implementation of the Mobile Csound
Platform for iOS. Developers who are looking to incorporate audio into their apps, but do not
want to deal with the complexities of Core Audio, will find this particularly useful.

It provides some background information on the API and outlines how to integrate Csound and
iOS, and allow them to communicate. The provided example project is then described - outlining
the key features of the API. Some common problems that users are likely to encounter are then
discussed to troubleshoot potential issues

Csound for iOS API: A Beginner’s Guide

iii

Acknowledgements

We would like to thank our supervisor, Dr. Andy Hunt, for his support and guidance while
working through the Csound for iOS API, as well as working on this tutorial.

We would also like to thank Dr. Victor Lazzarini and Steven Yi, the authors of the Csound for
iOS API. We would especially like to thank Steven for his extremely helpful responses to our
questions regarding the API.

Csound for iOS API: A Beginner’s Guide

iv

Table of Contents

Abstract .. ii	

Acknowledgements... iii	

Table of Contents ... iv	

1.	
 Introduction ... 1	

1.1.	
 The	
 Csound	
 for	
 iOS	
 API ... 2	

1.2.	
 Document	
 Structure ... 2	

2	
 Example Walkthrough .. 3	

2.1	
 Running	
 the	
 Example	
 Project... 3	

2.2	
 Oscillator	
 Example	
 Walkthrough ... 4	

2.2.1	
 iOS	
 Example	
 Outline... 4	

2.2.2.	
 	
 Csound	
 Example	
 Outline ... 4	

2.2.3.	
 	
 The	
 iOS	
 File.. 4	

2.2.3.1.	
 	
 The	
 .h	
 File ... 5	

2.2.3.2.	
 	
 The	
 .m	
 File .. 6	

Csound for iOS API: A Beginner’s Guide

v

2.2.4	
 	
 The	
 Csound	
 File .. 11	

2.2.4.1	
 	
 The	
 Options ... 11	

2.2.4.2	
 The	
 Instrument ... 12	

2.2.4.3	
 The	
 Score .. 13	

3	
 Using the Mobile Csound API in an Xcode Project.............. 14	

3.1	
 Setting	
 up	
 an	
 Xcode	
 Project	
 with	
 the	
 Mobile	
 Csound	
 API ... 14	

3.1.2	
 Creating	
 an	
 Xcode	
 Project.. 14	

3.1.3	
 Adding	
 the	
 Mobile	
 Csound	
 API	
 to	
 an	
 Xcode	
 Project .. 15	

3.1.4	
 Compiling	
 Sources.. 16	

3.1.5	
 Including	
 the	
 Necessary	
 Frameworks .. 17	

3.1.6	
 The	
 .csd	
 File.. 18	

3.2	
 Setting	
 up	
 the	
 View	
 Controller... 19	

3.2.1	
 Importing ... 19	

3.2.2	
 Conforming	
 to	
 Protocols .. 20	

3.2.3	
 Overview	
 of	
 Protocols.. 21	

3.3	
 Looking	
 at	
 the	
 Csound	
 ‘.csd’	
 File.. 22	

3.3.1	
 	
 Downloading	
 Csound	
 and	
 CsoundQt .. 22	

3.3.2	
 The	
 .csd	
 File.. 24	

Csound for iOS API: A Beginner’s Guide

vi

3.3.3	
 Instruments.. 25	

3.3.4	
 	
 Score ... 26	

4	
 Common Problems.. 28	

4.1	
 	
 UIknob.h	
 is	
 Not	
 Found ... 28	

4.2	
 	
 Feedback	
 from	
 Microphone... 28	

4.3	
 	
 Crackling	
 Audio .. 28	

4.4	
 Crackling	
 from	
 amplitude	
 slider... 29	

5	
 Csound Library Methods .. 30	

5.1	
 Csound	
 Basics...Error!	
 Bookmark	
 not	
 defined.	

5.2	
 UI	
 and	
 Hardware	
 Methods... 31	

5.3	
 Communicating	
 between	
 Xcode	
 and	
 Csound .. 32	

5.4	
 Retreive	
 Csound-­‐iOS	
 Information .. 33	

6	
 Conclusions ... 34	

6.1	
 Additional	
 Resources ... 34	

About the Authors... 34	

Csound for iOS API: A Beginner’s Guide Chapter 1: Introduction

1

1. Introduction
The traditional way of working with audio on both Apple computers and mobile devices is
through the use of Core Audio. Core Audio is a low-level API which Apple provides to
developers for writing applications utilizing digital audio. The downside of Core Audio being
low-level is that it is often considered to be rather cryptic and difficult to implement, making
audio one of the more difficult aspects of writing an iOS app.

In an apparent response to the difficulties of implementing Core Audio, there have been a
number of tools released to make audio development on the iOS platform easier to work with.
One of these is libpd, an open-source library released in 2010. libpd allows developers to run
Pure Data on both iOS and Android mobile devices. Pure Data is a visual programming language
whose primary application is sound processing.

The recent release of the Mobile Csound Platform provides an alternative to the use of PD for
mobile audio applications. Csound is a synthesis program which utilizes a toolkit of over 1200
signal processing modules, called opcodes. The release of the Mobile Csound Platform now
allows Csound to run on mobile devices, providing new opportunities in audio programming for
developers. Developers unfamiliar with Pure Data’s visual language paradigm may be more
comfortable with Csound’s ‘C’-programming based environment.

For those who are unfamiliar with Csound, or want to learn more, the FLOSS manuals are an
excellent resource, and can be found here:

http://flossmanuals.net/csound/

For more advanced topics in Csound programming, the Csound Book (Boulanger ed., 2000) will
provide an in-depth coverage.

In order to make use of the material in this tutorial, the reader is assumed to have basic
knowledge of Objective-C and iOS development. Apple’s Xcode 4.6.1 IDE (integrated
development environment) will be used for the provided example project.

Csound for iOS API: A Beginner’s Guide Chapter 1: Introduction

2

Although the Mobile Csound API is provided with an excellent example project, it was felt that
this tutorial will be a helpful supplement in setting up a basic Csound for iOS project for the first
time, by including screenshots from the project set-up, and a section on common errors the user
may encounter when working with the API.

The example project provided by the authors of the API includes a number of files illustrating
various aspects of the API, including audio input/output, recording, interaction with GUI
widgets, and multi-touch. More information on the example project can be found in the API
manual, which is included in the example projects folder.

1.1. The Csound for iOS API

The Mobile Csound Platform allows programmers to embed the Csound audio engine inside of
their iOS project. The API provides methods for sending static program information from iOS to
the instance of Csound, as well as sending dynamic value changes based on user interaction with
standard UI interface elements, including multi-touch interaction.

1.2. Document Structure

This document begins, in Section 2, by describing the example provided by the authors. Section
2 is divided into two further sections: Section 2.1 which describes the functionality of the
example application and Section 2.2 which details line by line through the example code how
this application works. Section 3 provides a step by step guide to setting up an Xcode project for
use with the Mobile Csound API. This section describes how to download the API and include it
into the project (Section 3.1) as well as the necessary components of the view controller (Section
3.2) and Csound file (Section 3.3). Section 4 outlines some common problems, which have been
found through the creation of this tutorial, and their solutions. Section 5 is a reference of the
methods which are available for use in the Mobile Csound API. This section briefly details the
functionality of these methods and their method calls. Section 6 provides the authors’
conclusions about this tutorial.

NOTE: This tutorial uses Csound 5, and has not been tested with Csound6.

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

3

2 Example Walkthrough

This section discusses why the example was made, and what can be learned from it; giving an
overview of its functionality, then going into a more detailed description of its code. A copy of
the example project can be found at the following link.

https://sourceforge.net/projects/csoundiosguide/
2.1 Running the Example Project

Run the provided Xcode project, CsoundTutorial.xcodeproj, and the example app should launch
(either on a simulator or a hardware device). A screenshot of the app is shown in Figure 2.1
below. The app consists of two sliders, each controlling a parameter of a Csound oscillator. The
top slider controls the amplitude, and the bottom slider controls the frequency.

Figure 2.1-App running on iPad simulator

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

4

2.2 Oscillator Example Walkthrough

This example outlines how to use the methods in the Csound-iOS API to send values from iOS
into Csound. This example was made purposefully simple, with the intent of making its
functionality as obvious as possible to the reader. This section begins by giving an overview of
both the iOS and Csound implementation, and then describes how this achieved by breaking
down the example code. The code to create this oscillator example was done in the
ViewController.h and the ViewController.m files, which are discussed below in sections 2.2.3.1
and 2.2.3.2. The project is split into Objective-C code, Storyboards for the user interface
elements, and a Csound file for the audio engine.

2.2.1 iOS Example Outline

 In the Xcode project user interface sliders are used to allow a user to control the Csound audio
engine through iOS. Communication begins with iOS requesting some memory within Csound;
setting a pointer to this location. It updates this pointer with values from the user interface
sliders. Csound references the same memory location by naming it with a string, this named
communication link is called a channel. When sending this information, iOS uses methods
within the iOS-Csound API to setup this channel name, and update it dependant on the control
rate.

2.2.2. Csound Example Outline

In this example, Csound is not aware of iOS. All it knows is that there is a piece of memory
assigned for it, and it must retrieve information from here dependent on its control rate. Csound
uses the chnget opcode to do this. chnget searches for some channel with a specific name and
retrieves values from it.

2.2.3. The iOS File

This example is implemented across two main files:

The .h file is used to include all the necessary classes, declare properties, and allow for user
interaction by connecting the interface to the implementation.
The .m file is used to implement communication between the interface methods declared in the
.h file, and the Csound file. These will now be discussed in more depth, with code examples.

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

5

2.2.3.1. The .h File

The imports (discussed in detail in section 3.2.1) are declared:

Apart from the standard UIKit.h (which gives access to iOS interface widgets) these ensure that
the code written can access the information in the other files in the Csound API.
Next comes the class definition:

Every iOS class definition begins with the @interface keyword, followed by the name of the
class. So our class is called ViewController, and the colon indicates that our class inherits all the
functionality of the UIViewController.

Following this are two Protocol definitions, which are listed between the triangular brackets <
>. In Objective-C a Protocol is a list of required functionality (i.e., methods) that a class needs
to implement. In this case there are two Protocols that are defined by the Csound API, that we
want our class to conform to: CsoundObjCompletionListener and CsoundValueCacheable. This
will allow us to send data between iOS and Csound, and so is essential for what we are about to
do. The required functions that we have to implement are described in the section following this
one (2.2.3.2).

The Csound object needs to be declared as a property in the .h file, which is what this next line of
code does:

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

6

The next section of code allows for the interface objects (sliders) to communicate with the .m
file:

Just to the left of each of these IBAction methods, you should see a little circle. If the storyboard
is open (MainStoryboard.storyboard) you will see the appropriate slider being highlighted if you
hover over one of the little circles.

2.2.3.2. The .m File

The .m file imports the .h file so that it can access the information within it, and the information
that it accesses.

At the beginning of the implementation of the ViewController, the csound variable which was
declared in the .h file is instantiated with @synthesize thus:

Note that the Csound object must be released later in the dealloc method as shown below:

For each parameter you have in iOS that you wish to send to Csound, you need to do the things
outlined in this tutorial. In our simple example we have an iOS slider for Frequency, and one for
Amplitude, both of which are values we want to send to Csound.

Some global variables are then declared, as shown in Table 2.1, a holder for each iOS
parameter’s current value, and a pointer for each which is going to point to a memory location
within Csound.

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

7

Variable Description
float myFrequency;

This value comes from the frequency slider in
the interface. It is a float, as the value to send
from iOS to Csound needs to be a floating
point number. Its range is 0 – 500.

float myAmplitude;

This value comes from the amplitude slider in
the interface. Its range is 0 – 1 because of the
way the gain is controlled in the .csd file.

float* freqChannelPtr;

float* ampChannelPtr;

These variables are used in conjunction with
the method getInputChannelPtr (described
towards the end of this section) to send
frequency and amplitude values to Csound.

Table 2.1-Variables for the .m File

The next significant part of the .m file is the viewDidAppear method. When the view loads, and
appears in iOS, this iOS SDK method is called. In the example, the following code is used to
locate the Csound file:

This code searches the main bundle for a file called aSimpleOscillator of the type csd (which you
will be able to see in Xcode’s left-hand File List, under the folder Supporting Files). It then
assigns it to an NSString named tempFile. The name of the string tempFile is then printed out to
confirm which file is running.
	
 	

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

8

The methods shown in Table 2.2 are then called:

Method Call Description
self.csound =
[[CsoundObj alloc] init];

This instantiates the csound object, which will
be our main contact between iOS and Csound.
It allocates and initialises some memory to
make an instance of the CsoundObj class.

[self.csound
addCompletionListener:self]; Sets our code (self – i.e. ViewController) to

be a listener for the Csound object.
[self.csound
addValueCacheable:self]; Sets our code (self) to be able to send real-

time values to the Csound object.
[self.csound
startCsound:tempFile]; The Csound object uses the method

startCsound to run the file at the string
tempFile. Remember how tempFile was set
up to point to the Csound csd file (in our case
aSimpleOscillator.csd). So, in other words,
this line launches Csound with the csd file
you have provided.

Table 2.2-Csound API Methods

The methods that allow the value of the slider to be assigned to a variable are then implemented.
This is done with both frequency, and amplitude. As shown below for the amplitude slider:

This method is called by iOS every time the slider is moved (because it is denoted as an
IBAction, i.e. an Interface Builder Action call). The code shows that the ampSlider variable is of
type UISlider, and because of that the current (new) value of the slider is held in
ampSlider.value. This is allocated to the variable myAmplitude. Similar code exists for the
frequency slider.

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

9

The protocol methods are then implemented. The previous section showed how we set up our
class (ViewController) to conform to two Protocols that the Csound API provides:
CsoundObjCompletionListener and CsoundValueCacheable.

Take a look at the place where these Protocols are defined, because a Protocol definition lists
clearly what methods are required to be implemented to use their functionality.

For CsoundValueCacheable you need to look in the file CsoundValueCacheable.h (in the folder
valueCacheable). In that file it’s possible to see the protocol definition, as shown below, and its
four required methods.

Every method needs at least an empty function shell. Some methods, such as
updateValuesFromCsound are left empty, because – for the tutorial example – there is no need to
get values from Csound. Other protocol methods have functionality added. These are discussed
below.
	

The setup method is used to prepare the updateValuesToCsound method for communication with
Csound:

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

10

	

The first line of the method body creates a string; freqString, to name the communication
channel that Csound will be sending values to. The next line uses the getInputChannelPtr
method to create the channel pointer for Csound to transfer information to. Effectively, iOS has
sent a message to Csound, asking it to open a communication channel with the name “freqVal”.
The Csound object allocates memory that iOS can write to, and returns a pointer to that memory
address. From this point onwards iOS could send data values to this address, and Csound can
retrieve that data by quoting the channel name “freqVal”. This is described in more detail in the
next section (2.2.4).

The next two lines of the code do the same thing, for amplitude parameter. This process creates
two named channels for Csound to communicate through.

The protocol method updateValuesToCsound uses variables in the .m file and assigns them to the
newly allocated memory address used for communication. This ensures that when Csound looks
at this specific memory location, it will find the most up to date value of the variable. This is
shown below:

The first line assigns the variable myFrequency (the value coming from the iOS slider for
Frequency) to the channel freqChannelPtr which, as discussed earlier, is of type float*. The
second line does a similar thing, but for amplitude.

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

11

For the other Protocol CsoundObjCompletionListener it is possible to look for the file
CsoundObj.h (which is found in Xcode’s left-hand file list, in the folder called classes). In there
is definition of the protocol.

In this example there is nothing special that needs to be done when Csound starts running, or
when it completes, so the two methods (csoundObjDidStart: and csoundObjComplete:) are left
as empty function shells. In the example, the protocol is left included, along with the empty
methods, in case you wish to use them in your App.

2.2.4 The Csound File

This Csound file contains all the code to allow iOS to control its values and output a sinusoid at
some frequency and amplitude taken from the on-screen sliders. There are three main sections:
The Options, the Instruments, and the Score. These are all discussed in more detail in section 4.
Each of these constituent parts of the .csd file will now be broken down to determine how iOS
and Csound work together.

2.2.4.1 The Options

There’s only one feature in the options section of the .csd that needs to be considered here; the
flags. Each flag and its properties are summarised in Table 2.3.

Flag Description

-o dac Enables audio output to default device

-+rtmidi=null

Disables real-time MIDI Control

-d Suppress all displays

Table 2.3-Csound Flags

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

12

2.2.4.2 The Instrument

The first lines of code in the instrument set up some important values for the .csd to use when
processing audio. These are described in Table 2.4, and are discussed in more detail in the
Reference section of the Csound Manual

Line Description
sr = 44100

This sets the sample rate of Csound to 44100 Hz. It is imperative that the
sample rate of the Csound file corresponds with the sample rate of the sound
card the code is running on.

ksmps = 64 This defines the control rate. In the example this will determine the speed that
the variables in Csound are read. ksmps is actually the number of audio
samples that are processed before another control update occurs. The actual
control rate equates to sample rate / ksmps (i.e. 44100 / 64 = 689.0625 Hz).

nchnls = 2 This is the number of audio channels. 2 = standard stereo.

0dbfs = 1

This is used to ensure that audio samples are within the apropriate range,
between zero and one. Anything greater than one will induce clipping to the
waveform.

Table 2.4-Csound .csd Options

The instrument then takes values from Csound using the chnget opcode:

	

	

Here, the chnget command uses the “freqVal” and “ampVal” channels previously created in iOS
to assign a new control variable. The variables kfreq and kamp are control-rate variables because
they begin with the letter ‘k’. They will be updated 689.0625 times per second. This may be
faster or slower than iOS updates the agreed memory addresses, but it doesn’t matter. Csound
will just take the value that is there when it accesses the address via the named channel.

Csound for iOS API: A Beginner’s Guide Chapter 2: Example Walkthrough

13

These control-rate variables are used to control the amplitude and frequency fields of the opcode
oscil; the Csound opcode for generating sinusoidal waves. This is then output in stereo using the
next line.

The third parameter of the oscil opcode in this case is 1. This means ‘use f-table 1’. Section 3.3
explains f-tables in more depth.

2.2.4.3 The Score

The score is used to store the f-tables the instrument is using to generate sounds, and it allows for
the playing of an instrument. This instrument is then played, as shown below:

This line plays instrument 1 from 0 seconds, to 10000 seconds. This means that the instrument
continues to play until it is stopped, or a great amount of time passes.

It is possible to send score events from iOS using the method sendScore. This is discussed in
more depth in section. 6.1

	
 	

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

14

3 Using the Mobile Csound API in an Xcode Project

Section 3 provides an overview of how to set up your Xcode project to utilize the Mobile Csound
API, as well as how to download the API and include it into your project.

3.1 Setting up an Xcode Project with the Mobile Csound API

This section describes the steps required to set up an Xcode project for use with the Mobile
Csound API. Explanations include where to find the Mobile Csound API, how to include it into
an Xcode project and what settings are needed.

3.1.2 Creating an Xcode Project

This section briefly describes the settings which are needed to set up an Xcode project for use
with the Mobile Csound API. Choose the appropriate template to suit the needs of the project
being created. When choosing the options for the project, it is important that Use Automatic
Reference Counting is not checked (Figure. 3.1). It is also unnecessary to include unit tests.

Figure 3.1-Project Set Up

Note: When including this API into a pre-existing project, it is possible to turn off ARC on
specific files by entering the compiler sources, and changing the compiler flag to: ‘-fno-objc-
arc’

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

15

3.1.3 Adding the Mobile Csound API to an Xcode Project

Once an Xcode project has been created, the API needs to be added to the Xcode project. To add
the Mobile Csound API to the project, right click on the Xcode project and select Add files to
<myProject>. This will bring up a navigation window to search for the files to be added to the
project. Navigate to the Csound-iOS folder, which is located as shown in Figure 3.2 below.

Figure 3.2-Navigating to the API Folder

	

Select the whole folder as shown and click add. Once this has been done, Xcode will provide an
options box as shown in Figure 3.3. Check Copy items into destination group’s folder (if
needed).

Figure 3.3-Adding the API Folder

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

16

The options in Figure 3.3 are selected so that the files which are necessary to run the project are
copied into the project folder. This is done to make sure that there are no problems when the
project folder is moved to another location - ensuring all the file-paths for the project files remain
the same.

Once this addition from this section has been made, the project structure displayed in Xcode
should look similar to that in Figure 3.4.

Figure 3.4 - The Main Bundle for the Project

3.1.4 Compiling Sources

A list of compile sources is found by clicking on the blue project file in Xcode, navigating to the
Build Phases tab and opening Compile Sources. Check that the required sources for the project
are present in the Compile Sources in Xcode. All the files displayed in Figure 3.5 should be
present, but not necessarily in the same order as shown.

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

17

Figure 3.5-View of ‘Compile Sources’ Window

3.1.5 Including the Necessary Frameworks

There are some additional frameworks which are required to allow the project to run. These
frameworks are:

 AudioToolbox.framework
 CoreGraphics.framework
 CoreMotion.framework
 CoreMIDI.framework

To add these frameworks to the project, navigate to the ‘Link Binary With Libraries’ section of
Xcode. This is found by clicking on the blue project folder and navigating to the ‘Build Phases’
tab, followed by opening ‘Link Binary With Libraries’. To add a framework, click on the plus
sign and search for the framework required. Once all the necessary frameworks are added, the
‘Link Binary With Libraries’ should look similar to Figure 3.6 below.

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

18

Figure 3.6-Adding Necessary Frameworks

3.1.6 The .csd File

The project is now set up for use with the Mobile Csound API. The final file which will be
required by the project is a .csd file which will describe the Csound instruments to be used by the
application. A description of what the .csd file is and how to include one into the project is
found in Section 3.3. This file will additionally need to be referenced appropriately in the Xcode
project. A description of where and how this reference is made is available in Section 2.2.3.2.

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

19

3.2 Setting up the View Controller

This section describes how the ViewController.h and the ViewController.m should be set up to
ensure that they are able to use the API. It will discuss what imports are needed; conforming to
the protocols defined by the API; giving a brief overview. This section can be viewed in
conjunction with the example project provided.

3.2.1 Importing

So that the code is able to access other code in the API, it is important to include the following
imports, along with imports for any additional files required. The three imports shown in Table
3.1 are used in the header file of the view controller to access the necessary files to get Csound-
iOS working:
	
 	

Import Description
#import “CsoundObj.h” This is used so that the code is able to access all

the key methods of the API.
#import
“CsoundValueCacheable.h” This must be used to access the methods

‘updateValuesFromCsound’ and
‘updateValuesToCsound’. These methods are used
to communicate between Csound and iOS.

	

Table 3.1-Header File Imports

In our example you can see these at the top of ViewController.h

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

20

3.2.2 Conforming to Protocols

It is imperative that the view controller conforms to the protocols outlined the CsoundObj.h file;
the file in the API that allows for communication between iOS and Csound. This must then be
declared in the ViewController.h file:

The API authors chose to use protocols so that there is a defined set of methods that must be
used in the code. This ensures that a consistent design is adhered to. They are defined in the
CsoundValueCacheable.h file thus:

Each of these must then be implemented in the ViewController.m file. If it is unnecessary to
implement one of these methods, it still must appear but the method body can be left blank, thus:

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

21

3.2.3 Overview of Protocols

When writing the code which allows us to send values from iOS to Csound, it is important that
the code conforms to the following protocol methods (Table 3.2):

Protocol methods Action
-(void)setup:(CsoundObj*)CsoundObj Set up the necessary channels and

pointers to communicate with
Csound.

-(void)updateValuesToCsound Update the values being sent from
iOS to Csound.

-(void)updateValuesFromCsound Collect any values from Csound.
-(void)cleanup Reset any values used in

communication and de-allocate any
memory used.

-(void)csoundObjDidStart:(CsoundObj*)csoundObj This method is called when a Csound
object is created. This allows
developers to notify the user that
Csound is running on iOS.

-(void)csoundObjComplete:(CsoundObj*)csoundObj Much like the way the
‘csoundObjDidStart’method works,
this allows developers to notify the
user that Csound has stopped running
in iOS.

Table 3.2-Protocol methods which must be implemented in your ViewController.

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

22

3.3 Looking at the Csound ‘.csd’ File

The following section provides an overview of the Csound editing environment, the structure of
the .csd file, and how to include the .csd file into your Xcode project.

3.3.1 Downloading Csound

A Csound front-end editor, CsoundQt, can be used for editing the .csd file in the provided
example project. It is advised to use CsoundQt with iOS because it is an ideal environment for
developing and testing the Csound audio engine – error reports for debugging, the ability to run
the Csound audio code on its own, and listen to its results. However, using CsoundQt is not
essential to use Csound as an audio engine as Csound is a standalone language. CsoundQt is
included in the Csound package download.

In order to use Csound in iOS, the latest version of Csound (Version 5.19) will need to be
installed.

Csound 5.19 can be downloaded from the following link:

http://sourceforge.net/projects/Csound/files/Csound5/Csound5.19/	

In order for Xcode to see the .csd file, it must be imported it into the Xcode project. This is done
by right-clicking on the ‘Supporting Files’ folder in the project, and clicking on ‘Add files to
(project name)’ (Figure 3.7).

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

23

Figure 3.7-Adding the .csd to iOS Project

It is possible to edit the .csd file while also working in Xcode. This is done by right-clicking on
the .csd file in Xcode, and clicking on ‘Open With External Editor’ (Figure 3.8).	
 	

Figure 3.8-Opening the .csd file with an external editor

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

24

However, it is important to remember to save any changes to the .csd file before the Xcode
project is recompiled.

3.3.2 The .csd File

When setting up a Csound project, it is important that various audio and performance settings
configured correctly in the header section of the .csd file. These settings are described in Table
3.3, and are discussed in more detail in the Csound Manual.

Setting Description
sr Sample rate
kr Control rate

ksmps Number of samples in control period
(sr/kr)

nchnls Number of channels of audio output
0dbfs Sets value of 0 decibels using full scale

amplitude

Table 3.3-Csound .csd Settings

It is important that the sample rate for the Csound project be set to the same sample rate as the
hardware it will be run on. For this project, make sure the sample rate set to 44100, as depicted in
Figure 3.9. This is done by opening the Audio MIDI Setup, which is easily found on all Mac
computers by searching in Spotlight.

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

25

Figure 3.9-Configuring Audio Hardware Settings

3.3.3 Instruments

As mentioned previously, Csound instruments are defined in the orchestra section of the .csd file.
The example project provided by the authors uses a simple oscillator that has two parameters:
amplitude and frequency, both of which are controlled by UI sliders.

Figure 3.10 on the following page shows a block diagram of the synthesizer we are using in the
example project.

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

26

Figure 3.10-Block Diagram for .csd Instrument

3.3.4 Score

The score is the section of the .csd file which provides instruments with control instruction, for
example pitch, volume, and duration. However, as the goal here is for users to be able to interact
with the Csound audio engine in real-time, developers will most likely opt instead to send score
information to Csound that is generated by UI elements in the Xcode project. Details of the
instrument and score can be found in the comments of the aSimpleOscillator.csd file

Csound uses GEN (f-table generator) routines for a variety of functions. This project uses
GEN10, which create composite waveforms by adding partials. At the start of the score section,
a GEN routine is specified by function statements (also known as f-statements). The parameters
are shown below in Table 3.4:

2XW

)UHTXHQF\ $PSOLWXGH

3RVFLO

Csound for iOS API: A Beginner’s Guide Chapter 3: Using the Mobile Csound API in an
Xcode Project

27

	

Parameter Description
f1 Unique f-table identification number
0 f-statement initialization time expressed in

score beats
16384 f-table size
10 GEN routine called to create the f-table
1 strength of ascending partials

Table 3.4-Csound .csd F-Table Parameters

In a Csound score, the first three parameter fields (also known as p-fields) are reserved for the
instrument number, the start time, and duration amount. P-fields 4 and 5 are conventionally
reserved for amplitude and frequency, however, P-fields beyond 3 can be programmed as
desired.

The p-fields used in the example project are shown in Table 3.5.

p-field 1 2 3 4 5

Parameter Instrument Number Start Duration Amplitude Frequency

Table 3.5-Csound .csd P-field Parameters

In this project, the first three p-fields are used: the instrument number (i1), the start time (time =
0 seconds), and the duration (time = 1000 seconds). Amplitude and frequency are controlled by
UI sliders in iOS.

Csound for iOS API: A Beginner’s Guide Chapter 4: Common Problems

28

4 Common Problems

This section is designed to document some common problems faced during the creation of this
tutorial. It is hoped that by outlining these common errors, readers can debug some common
errors they are likely to come across when creating applications using this API. It discusses each
error, describes the cause and outlines a possible solution.

4.1 UIKnob.h is Not Found

This is a problem related to the API. The older versions of the API import a file in the examples
that sketches a UIKnob in Core Graphics. This is not a part of the API, and should not be
included in the project.

The file in question is a part of the examples library provided with the SDK. It is used in the file
‘AudioIn test’ and is used to sketch a radial knob on the screen. It gives a good insight into how
the user can generate an interface to interact with the API.

Solution: Comment the line out, or download the latest version of the API.

4.2 Feedback from Microphone

This is generally caused by the sample rate of a .csd file being wrong.

Solution: Ensure that the system’s sample rate is the same as in the .csd file. Going to the audio
and MIDI set-up and checking the current output can find the computer’s sample rate. See
section 3.3.2 for more information.

4.3 Crackling Audio

There are numerous possible issues here, but the main cause of this happening is a CPU
overload.

Csound for iOS API: A Beginner’s Guide Chapter 4: Common Problems

29

Solution: The best way to debug this problem is to look through the code and ensure that there
are no memory intensive processes, especially in code that is getting used a lot. Problem areas
include fast iterations (loops), and code where Csound is calling a variable. Functions such as
updateValuesToCsound and updateValuesFromCsound are examples of frequently called
functions.

An example: an NSLog in the updateValuesToCsound method can cause a problem. Say, the
ksmps in the .csd is set to 64. This means that the Csound is calling for iOS to run the method
updateValuesToCsound every 64 samples. Assuming the sample rate is 44.1k this means that this
CPU intensive NSLog is being called ~689 times a second; very computationally expensive.

4.4 Crackling from amplitude slider

When manipulating the amplitude slider in iOS, a small amount of clicking is noticeable. This is
due to the fact that there is no envelope-smoothing function applied to the amplitude changes.
While this would be an improvement on the current implementation, however; it was felt that the
current implementation would be more conducive to learning for the novice Csound user. This
would be implemented by using a port opcode.

Csound for iOS API: A Beginner’s Guide Chapter 5: Csound Library Methods

30

5 Csound Library Methods
This section will present and briefly describe the methods which are available in the M

Name Method Call Description
-(void)
startCsound:
(NSString*)csdFilePath;

Provides the location of the
.csd file which is to be
used with the Csound
object.

startCsound -(void)startCsound:
(NSString *)csdFilePath
recordToURL:(NSURL *)outputURL;

Provides the location of the
.csd file which is to be
used with the Csound
object and specifies a URL
to which it will record.

startCsoundToDisk -(void)startCsoundToDisk:
(NSString*)csdFilePath
outputFile:
(NSString*)outputFile;

Provides the location of the
.csd file which is to be
used with the Csound
object and specifies a file
to which it will record.
This does not occur in
realtime, but as fast as
possible to the disk. This
method is useful for batch
rendering.

stopCsound -(void)stopCsound; This uses the Csound
object’s method
‘stopCsound’ to stop the
instance of CsoundObj that
it is called on.

muteCsound -(void)muteCsound; Mutes all instances of
Csound

unmuteCsound -(void)unmuteCsound; Unmutes all instances of
Csound

recordToURL -(void)recordToURL:
(NSURL *)outputURL;

Begins recording to a
specified URL. This can be
defined at a later point in
the code, even after
Csound has been started.

stopRecording -(void)stopRecording; Stops recording to URL

Table 5.1-Basic API Methods

Csound for iOS API: A Beginner’s Guide Chapter 5: Csound Library Methods

31

5.2 UI and Hardware Methods

Name Method Call Description
addSwitch (id<CsoundValueCacheable>)

addSwitch:
(UISwitch*)uiSwitch
forChannelName:
(NSString*)channelName;

Adds a switch to the Csound object.
The method requires a switch
which already exists as part of the
user interface and a name for the
channel which will provide
information about this switch to the
.csd file. For more information
about channels of information
between Xcode and Csound see
section 5.

addSlider (id<CsoundValueCacheable>)
addSlider:
(UISlider*)uiSlider
forChannelName:(NSString*)
channelName;

Adds a slider to the Csound Object.
The method requires a slider and a
channel name.

addButton (id<CsoundValueCacheable>)
addButton:
(UIButton*)uiButton
forChannelName:(NSString*)
channelName;

Adds a button to the Csound
Object. The method requires a
button and a channel name.

enableAccelerometer (id<CsoundValueCacheable>)
enableAccelerometer;

Enables the accelerometer for use
with the Csound object.

enableGyroscope (id<CsoundValueCacheable>)
enableGyroscope;

Enables the gyroscope for use with
the Csound object.

enableAttitude (id<CsoundValueCacheable>)
enableAttitude;

Enables attitude to allow device
motion to be usable with the
Csound object.

Table 5.2-UI and Hardware Methods

Csound for iOS API: A Beginner’s Guide Chapter 5: Csound Library Methods

32

5.3 Communicating between Xcode and Csound

Name Method Call Description
addValueCacheable -(void)addValueCacheable:

(id<CsoundValueCacheable>)
valueCacheable;

Adds to a list of watched objects
so that they can update every
cycle of ksmps.

removeValueCacheable -(void)removeValueCaheable:
(id<CsoundValueCacheable>)
valueCacheable;

Removes a cacheable value from
the Csound Object.

sendScore -(void)sendScore:(NSString*)score;

Eg:
[self.csound sendScore:[NSString st
ringWithFormat:@"i1 0 10 0.5 %d",
myPitch,]];

(sends a score to instrument 1 that begins at 0
seconds, stops at 10 seconds, with amplitude
0.5 and a pitch of the objective-C variable
‘myPitch’).

Sends a score as a string to the
.csd file. See section 4 for
formatting a Csound score line.

addCompletionListener -(void)addCompletionListener:
(id<CsoundObjCompletionListener>)
listener;

Adds a listener for the Csound
Object which waits for an action
to be performed that the Csound
object needs to react to.

	
 	

Table 5.3-API Communication Methods

	

	

Csound for iOS API: A Beginner’s Guide Chapter 5: Csound Library Methods

33

5.4 Retrieve Csound-iOS Information

Name Method Call Description

getCsound -(CSOUND*)getCsound; Returns the C structure
that that the CsoundObj
uses. This allows
developers to use the
Csound C API in
conjunction with the
Objective-C CsoundObj
API.

getInputChannelPtr (float*)getInputChannelPtr:
(NSString*)channelName;

Returns the float of an
input channel pointer.

getOutputChannelPtr (float*)getOutputChannelPtr:
(NSString*)channelName;

Returns the float of an
output channel pointer.

getOutSamples -(NSData*)getOutSamples; Gets audio samples from
Csound.

getNumChannels -(int)getNumChannels; Returns the number of
channels in operation.

getKsmps -(int)getKsmps; Returns ksmps as defined
in the .csd file.

setMessageCallback -(void)setMessageCallback:
(SEL)method
withListener:(id)listener;

Sets up a method to be the
callback method and a
listener id.

performMessageCallback (void)
performMessageCallback:
(NSValue *)infoObj;

Performs the message
callback.

	

Table 5.4-Retrieve Csound-iOS Information Methods

Csound for iOS API: A Beginner’s Guide Chapter 6: Conclusions

34

6 Conclusions

This tutorial provided an overview of the Csound-iOS API, outlining its benefits, and describing
its functionality by means of an example project. It provided the basic tools for using the API,
equipping iOS developers to explore the potential of this API in their own time.

APIs such as this one, as well as others including libpd and The Amazing Audio Engine provide
developers with the ability to integrate interactive audio into their apps, without having to deal
with the low-level complexities of Core Audio.

6.1 Additional Resources

Upon completion of this tutorial, the authors suggest that the reader look at the original Csound
for iOS example project, written by Steven Yi and Victor Lazzarini.

This is available for download from:

http://sourceforge.net/projects/csound/files/csound5/iOS/

About the Authors

The authors are Masters students at the University of York Audio Lab. Each one is working on a
separate interactive audio app for the iPad, and has each been incorporating the Mobile Csound
API for that purpose. They came together to write this tutorial to make other developers aware of
the Mobile Csound API, and how to utilize it.

The motivation behind this tutorial was to create a step by step guide to using the Mobile Csound
API. When the authors originally started to develop with the API, they found it difficult to
emulate the results of the examples that were provided with the API download. As a result, the
authors created a simple example using the API, and wanted others to learn from our methods
and mistakes. The authors hope that this tutorial provides clarity in the use of the Mobile Csound
API.

