Quick Review over the Last Lecture 1

Shockley model:

\[E \]

\[(\text{Conduction}) \text{ band} \]

\[(\text{Valence}) \text{ band} \]

\[\text{(Band gap)} \]

\[\text{(conduction electron)} \]

\[\text{(positive hole)} \]

Shockley model:

\[E^F = \left(E_C - E_V \right) / 2 \]

\[n_p = \text{const.} \]

\[n_p = \text{const.} \]

Semiconductors:

\[E_C \quad E_F \quad E_A \quad E_V (0) \]

\[E_C \quad E_F \quad E_D \quad E_V (0) \]

\[\text{• } E_F = \ldots \]

\[\text{• } n_p = \ldots \]

\[\text{• } n_p = \ldots \]

\[\text{• } -\text{type} : \]

\[\text{• } -\text{type} : \]

\[\text{• } n_p = \ldots \]
Quick Review over the Last Lecture 2

Temperature dependence of an extrinsic semiconductor:

\[E_{FM} - E_{FS} - E_D - E_C \]

\(T \)

Metal - semiconductor junction:

pn junction:

\[J \propto \exp \left(\frac{qV}{k_B T} \right) \]

Contents of Introductory Nanotechnology

First half of the course:
Basic condensed matter physics

1. Why solids are solid?
2. What is the most common atom on the earth?
3. How does an electron travel in a material?
4. How does lattices vibrate thermally?
5. What is a semi-conductor?
6. How does an electron tunnel through a barrier?
7. Why does a magnet attract / retract?
8. What happens at interfaces?

Second half of the course:
Introduction to nanotechnology (nano-fabrication / application)
How Does an Electron Tunnel through a Barrier?

- De Broglie wave
- Schrödinger equation
- 1D quantum well
- Quantum tunneling
- Reflectance / transmittance
- Optical absorption
- Direct / indirect band gap

Electron Interference

Davisson-Germer experiment in 1927:

Electrons are introduced to a screen through two slits.

Electron as a particle should not interfere.
≠ Photon (light) as a wave

→ Electron interference observed!
→ Wave-particle duality

* http://www.wikipedia.org/
Scrödinger's Cat
Thought experiment proposed by E. Schrödinger in 1935

The observer cannot know
• if a radioactive atom has decayed.
• if the vial has been broken and the hydrocyanic acid has been released.
• if the cat killed.
→ The cat is both dead and alive according to quantum law:
 superposition of states

The superposition is lost:
• only when the observer opens the box and learn the condition of the cat.
• then, the cat becomes dead or alive.
→ quantum indeterminacy

* http://www.wikipedia.org/

De Broglie Wave

Wave packet:
contains number of waves, of which amplitude describes probability of the presence of a particle.

\[\lambda = \frac{h}{m_0 v} \]

where \(\lambda \) : wave length, \(h \) : Planck constant and \(m_0 \) : mass of the particle.

→ de Broglie hypothesis
(1924 PhD thesis → 1929 Nobel prize)

According to the mass-energy equivalence:

\[E = m_0 c^2 = m_0 c \cdot c = p \cdot \lambda v \]

where \(p \) : momentum and \(v \) : frequency.
By using \(E = h \nu \),

\[\lambda = \frac{h}{p} = \frac{h}{m_0 v} \]

* http://www.wikipedia.org/
Schrödinger Equation

In order to express the de Broglie wave, Schrödinger equation is introduced in 1926:

\[
\frac{\hbar^2}{2m} \nabla^2 \psi + (E - V)\psi = 0
\]

\[
\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
\]

\(E \) : energy eigenvalue and \(\psi \) : wave function

Wave function represents probability of the presence of a particle \(|\psi|^2 = \psi^* \psi \)

\(\psi^* \) : complex conjugate (e.g., \(z = x + iy \) and \(z^* = x - iy \))

Propagation of the probability (flow of wave packet):

\[
j = \frac{\hbar}{2mi} (\psi^* \nabla \psi - \psi \nabla \psi^*)
\]

Operation = observation :

de Broglie wave

\[
-\frac{\hbar^2}{2m} \nabla^2 \psi = (E - V)\psi
\]

1D Quantum Well Potential

A de Broglie wave (particle with mass \(m_0 \)) confined in a square well:

\[
\begin{align*}
\frac{\hbar^2}{2m_0} \frac{d^2 \psi_1}{dx^2} + (E - V_0)\psi_1 &= 0 & (x < -a) \\
\frac{\hbar^2}{2m_0} \frac{d^2 \psi_2}{dx^2} + E\psi_2 &= 0 & (-a < x < a) \\
\frac{\hbar^2}{2m_0} \frac{d^2 \psi_3}{dx^2} + (E - V_0)\psi_3 &= 0 & (a < x)
\end{align*}
\]

General answers for the corresponding regions are:

\[
\begin{align*}
\psi_1 &= Ce^{\beta x} + C_1e^{-\beta x} & (x < -a) \\
\psi_2 &= A \sin \alpha x + B \cos \alpha x & (-a < x < a) \\
\psi_3 &= De^{\beta x} + D_1e^{-\beta x} & (a < x)
\end{align*}
\]

\[
\begin{align*}
\alpha &= \sqrt{\frac{2m_0E}{\hbar}} \\
\beta &= \sqrt{\frac{2m_0(V_0 - E)}{\hbar}}
\end{align*}
\]

Since the particle is confined in the well, \(\psi_1, \psi_3 \to 0 \) \((x \to \pm \infty)\)

For \(E < V_0 \), \(C_1 = 0, D_1 = 0 \)
1D Quantum Well Potential (Cont'd)

Boundary conditions:

At \(x = -a \), to satisfy

\[
\psi_1 = \psi_2,
\]

\[
A \sin \alpha a + B \cos \alpha a = C e^{-\beta a}
\]

\[
\psi_1' = \psi_2',
\]

\[
\alpha A \cos \alpha a + \alpha B \sin \alpha a = \beta C e^{-\beta a}
\]

At \(x = a \), to satisfy

\[
\psi_2 = \psi_3,
\]

\[
A \sin \alpha a + B \cos \alpha a = D e^{\beta a}
\]

\[
\psi_2' = \psi_3',
\]

\[
\alpha A \cos \alpha a - \alpha B \sin \alpha a = -\beta D e^{\beta a}
\]

\[
\begin{align*}
2A \sin \alpha a &= (D - C)e^{\beta a} \\
2\alpha A \cos \alpha a &= -\beta(D - C)e^{\beta a} \\
2B \cos \alpha a &= (C + D)e^{\beta a} \\
2\alpha B \sin \alpha a &= \beta(C + D)e^{\beta a}
\end{align*}
\]

For \(A \neq 0, D - C \neq 0 \) : \(\alpha \cot \alpha a = -\beta \)

For \(B \neq 0, D + C \neq 0 \) : \(\alpha \tan \alpha a = \beta \)

For both \(A \neq 0 \) and \(B \neq 0 \) : \(\tan^2 \alpha a = -1 \rightarrow \alpha \) : imaginary number

Therefore, either \(A \neq 0 \) or \(B \neq 0 \).

1D Quantum Well Potential (Cont'd)

(i) For \(A = 0 \) and \(B \neq 0 \), \(C = D \) and hence,

\[
\xi \tan \xi = \eta \quad (\alpha a = \xi, \beta a = \eta) \quad (1)
\]

(ii) For \(A \neq 0 \) and \(B = 0 \), \(C = -D \) and hence,

\[
\xi \cot \xi = -\eta \quad (2)
\]

Here,

\[
\alpha = \sqrt{\frac{2m_0E}{\hbar}}, \quad \beta = \sqrt{\frac{2m_0(V_0 - E)}{\hbar}}
\]

\[
\therefore \alpha^2 + \beta^2 = \frac{2m_0V_0}{\hbar^2}
\]

\[
\therefore \xi^2 + \eta^2 = \frac{2m_0V_0a^2}{\hbar^2} \quad (3)
\]

Therefore, the answers for \(\xi \) and \(\eta \) are crossings of the Eqs. (1) / (2) and (3).

Energy eigenvalues are also obtained as

\[
E = \frac{\hbar^2}{2m_0a^2} \xi^2
\]

\[\rightarrow\text{Discrete states}\]
Quantum Tunneling

In classical theory,

Particle with smaller energy than the potential barrier
cannot pass through the barrier.

In quantum mechanics, such a particle have probability to tunnel.

For a particle with energy \(E < V_0 \) and mass \(m_0 \),

Schrödinger equations are

\[
\frac{\hbar^2}{2m_0} \frac{d^2 \psi}{dx^2} + E\psi = 0 \quad (x < 0, \; a < x)
\]

\[
\frac{\hbar^2}{2m_0} \frac{d^2 \psi}{dx^2} + (E - V_0)\psi = 0 \quad (0 < a < x)
\]

Substituting general answers \(k_1 = \sqrt{2m_0E/\hbar}, \; k_2 = \sqrt{2m_0(V_0 - E)/\hbar} \)

\[
\psi = \begin{cases}
A_1 \exp(ik_1x) + A_2 \exp(-ik_1x) & (x < 0) \\
B_1 \exp(k_2x) + B_2 \exp(-k_2x) & (0 < a < x) \\
C_1 \exp(ik_1x) + C_2 \exp(-ik_1x) & (a < x)
\end{cases}
\]

Quantum Tunneling (Cont’d)

Now, boundary conditions are

\[
\begin{align*}
A_1 + A_2 &= B_1 + B_2, \quad ik_1(A_1 - A_2) = k_2(B_1 - B_2) \\
B_1 \exp(k_2a) + B_2 \exp(-k_2a) &= C_1 \exp(ik_1a), \quad k_2[B_1 \exp(k_2a) - B_2 \exp(-k_2a)] = ik_1C_1 \exp(ik_1a) \\
C_1 &= \frac{4ik_1k_2 \exp(-ik_1a)}{(k_2 + ik_1)^2 \exp(-k_2a) - (k_2 - ik_1)^2 \exp(k_2a)} \\
C_2 &= \frac{(k_2 - ik_1)^2 \exp(-k_2a) - (k_2 + ik_1)^2 \exp(k_2a)}{A_1}\end{align*}
\]

Now, transmittance \(T \) and reflectance \(R \) are

\[
\begin{align*}
T &= \frac{C_1^2}{A_1^2} = \frac{4k_1^2k_2^2}{(k_1^2 + k_2^2)^2 \sinh^2(k_2a) + 4k_1^2k_2^2} = \frac{4E(V_0 - E)}{V_0^2 \sinh^2(a/2b) + 4E(V_0 - E)} \\
R &= \frac{A_2^2}{A_1} = \frac{4k_1^2k_2^2}{(k_1^2 + k_2^2)^2 \sinh^2(k_2a) + 4k_1^2k_2^2} = \frac{V_0 \sinh^2(a/2b)}{V_0^2 \sinh^2(a/2b) + 4E(V_0 - E)} \\
b &= \frac{\hbar}{2\sqrt{2m_0(V_0 - E)}} \quad \rightarrow T \neq 0 \text{ (tunneling occurs) }
\end{align*}
\]
Quantum Tunneling (Cont'd)

For $V_0 - E >> \frac{\hbar^2}{2m_0a^2}$

$\therefore \frac{\hbar}{a} = \sqrt{\frac{2m_0(V_0 - E)}{a/2b}} > 1$

$\therefore V_0^2 \sinh^2\left(\frac{a}{2b}\right) = V_0^2 \sin^2\left(\frac{a}{2b}\right) = \exp(\frac{2\sqrt{2m_0(V_0 - E)a}}{\hbar})$

$\therefore T = \frac{4E(V_0 - E)}{V_0^2} \exp\left(-\frac{2\sqrt{2m_0(V_0 - E)a}}{\hbar}\right) \rightarrow T$ exponentially decreases with increasing a and $(V_0 - E)$

For $V_0 < E$, as k_2 becomes an imaginary number, k_2 should be substituted with

$k'_2 = \frac{\sqrt{2m_0(E-V_0)}}{\hbar} \left(k_2 \rightarrow ik'_2\right)$

$T = \frac{4k'_2k_2}{\left(k_2^2 - k'_2^2\right) \sin^2(k'_2a) + 4k'_2k_2} \frac{4E(V_0 - E)}{V_0^2 \sin^2(k'_2a) + 4E(V_0 - E)} \rightarrow R \neq 0$

Reflectance and Transmittance

At an energy level E, the wave function is expressed as $\psi = \varphi(x) \exp(-iEt/\hbar)$

$|\psi|^2 = |\varphi(x)|^2$

$\therefore \frac{d|\psi|^2}{dt} = \frac{d|\varphi(x)|^2}{dt} = 0$

According to the equation of continuity : $\frac{\partial j}{\partial t} + \text{div } j = 0$ (div $j = \frac{\partial j_x}{\partial x} + \frac{\partial j_y}{\partial y} + \frac{\partial j_z}{\partial z}$)

For 1D, $\frac{d j}{dx} = 0 \therefore j = j_x = \text{const.}$

At the incident side, the incident wave ψ_i and the reflection wave ψ_r satisfy

$\psi = \psi_i + \psi_r \therefore j = j_i + j_r$

Here, $j = \frac{\hbar}{2m_0}(\psi^* \psi' - \psi \psi'^*)$, $j_i = \frac{\hbar}{2m_0}(\psi_i^* \psi_i' - \psi_i \psi_i'^*)$, $j_r = \frac{\hbar}{2m_0}(\psi_r^* \psi_r' - \psi_r \psi_r'^*)$

At the transmission side, only the transmission wave ψ_t exists, and thus $j = j_t$

$\therefore j_i + j_r = j_t \therefore j_i = j_t + j_r$

$\therefore 1 = \frac{j_i}{j_t} + \frac{j_r}{j_t} \therefore 1 = T + R$

$\rightarrow T : \text{transmittance and } R : \text{reflectance}$

$(j_t / j_i) (j_r / j_i)$
Transistor and Esaki Diode

First bipolar transistor (transfer resistor) was invented by J. Bardeen, W. Shockley and W. Brattain in 1947:

Tunneling diode was invented by L. Esaki in 1958:

→ First observation of tunneling effect!

Absorption Coefficient

Absorption fraction A is defined as

$$A + R + T = 1$$

Here, $j_i = R j_i$, and therefore $(1 - R) j_i$ is injected.

Assuming j at x becomes $j - dj$ at $x + dx$,

$$-dj = \alpha j dx \quad (\alpha : \text{absorption coefficient})$$

With the boundary condition at $x = 0$, $j = (1 - R) j_i$

$$j = (1 - R) j_i \exp(-\alpha x)$$

With the boundary condition at $x = a$, $j = (1 - R) j_i e^{-\alpha a}$,

part of which is reflected; $R(1 - R) j_i e^{-\alpha a}$

and the rest is transmitted; $j_i = [1 - R - R (1 - R)] j_i e^{-\alpha a}$

$$j_i = (1 - R)^2 j_i \exp(-\alpha x)$$

$$\therefore T = \frac{J_t}{j_i} = (1 - R)^2 \exp(-\alpha x)$$

Optical Absorption

Conduction band

- Exciton level
- Conduction carrier
- Impurity level
- Band gap

Valence band

- Exciton level
- 2p
- 1s
- Impurity level
- Trap level

Fundamental absorption edge

Impurity absorption

Lattice vibration

Exciton absorption

Fundamental absorption

Conduction absorption

Absorption coefficient

Wavelength

\(\lambda_0 \) \to \(\lambda [\text{Å}] \)

Semiconductor Band Gap

Conduction band

- Absorption coefficient
- 0 [K]
- \(\hbar \omega \) [eV]
- Direct transition starts

Valence band

- Absorption coefficient
- 0 [K]
- \(\hbar \omega \) [eV]
- Indirect transition starts

* \(\hbar \omega_k = \varepsilon_k \)

Excited electrons will be recombine with holes with emitting photon.

\(\rightarrow \) Light emitting diode (LED)
Semiconductor Band Gap in Si, Ge and GaAs

Figure 19.8. Essential features of band structures of silicon, germanium, and gallium arsenide. All have band gaps on the order of 1 eV. The bottom of the conduction band for silicon and germanium does not lie at Γ, so these materials have an indirect gap. Gallium arsenide, by contrast, has a direct gap. These diagrams are extracted from Figures 23.15 and 23.16, which contain information on how they were obtained.

Photo Diode

Photovoltaic effect: