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Introduction 
 

Data aequatione quotcunque fluentes quantitae involvente fluxiones invenire et vice versa. 

[It is useful to differentiate functions and to solve differential equations.] 

- Isaac Newton (Letter to Leibniz, 1676) 

 

This work is an attempt at a comprehensive analysis, from both a theoretical and a numerical point 

of view, of the general linear diffusion problem 
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There are several methods of solving evolution problems, e.g. Laplace transform methods, 

semigroup methods, variational methods (cf. Dautray & Lions (2000b)). In this work, we employ 

the Fourier series or diagonalization method, described by Gustafson (1980: p. xi) as one of “the 

usual trinities”. This method is extensively used in the engineering and applied science, and is often 

called the method of separation of variables (cf. Creese & Haralick (1978: Section 1D), Greenberg 

(1978: Section 21.1), Sirovich (1988: Section 7.2)). 

Regarding the numerical discretization in the space variable x, we use the spectral Galerkin 

method described by Canuto et al (1988), of which the Fourier series method turns out to be a good 

motivation. We then couple the spectral method with a standard (cf. Raviart & Thomas (1983: 

Section 7.5)) and non-standard (cf. Mickens (1994: Chapter 4)) finite difference discretization in the 

time variable t. 

The work is organised as follows: 

The Hilbert-Schmidt theory of self-adjoint compact linear operators in Hilbert spaces, presented 

in Chapter 1, is a strong motivation to the use of Fourier series and spectral methods. We apply 

this theory to the Sturm-Liouville problem, as well as to a related boundary value problem with 

periodic boundary conditions. 

In Chapter 2, we prove the existence and uniqueness of solutions to the general linear diffusion 

initial-boundary value problem, using a specific Galerkin method that is related to the Fourier series 

method. 

In view of the theoretical work done in Chapters 1 and 2, it is natural to use the semi-discrete 

spectral method of Fourier-Galerkin type described in Chapter 3. We study the convergence of this 

method, and present some error estimates. 
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We then depart temporarily from the general linear diffusion equation. Chapter 4 starts with 

some numerical approximations of initial value problems for ordinary differential equations, using 

the classical � -method. In addition, we study the concept of elementary stability, and with regard to 

this property, design an original powerful variant of the � -method: the non-standard � -method. 

In Chapter 5, we return to the general linear diffusion problem. For the semi-discrete 

approximation, we employ the semi-discrete spectral method developed in Chapter 3. Coupling it 

with the � -method discussed in Chapter 4, we obtain a spectral-� -method, for which we present a 

stability result as well as error estimates. Finally, we present a new method: the spectral-non-

standard � -method. 

 

We have not succeeded in answering all our problems. The answers we have found only 

serve to raise a whole set of new questions. In some ways, we feel we are as confused as 

ever, but we believe we are confused on a higher level and about more important things. 

(Posted outside the mathematics reading room, Tromsø University) 
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Chapter 1. Self-adjoint compact linear operators 
in Hilbert spaces 

 

Hilbert-Schmidt theory constitutes a solid foundation for and strong motivation to spectral methods. 

In Section 1.1, we present this theory, essentially following Zeidler (1995: pp. 229-237). In Section 

1.2, the Hilbert-Schmidt theory is applied to the Sturm-Liouville problem. A similar boundary value 

problem with periodic boundary conditions is also considered. 

 

1.1. Hilbert-Schmidt theory 
 

Throughout this section, we consider a complex or real Hilbert space { }0≠H  with inner product 

⋅⋅,  and norm ⋅ , and a linear operator HH →:T . 

We first investigate the properties of self-adjoint operators. 

 

Definition 1.1.1. Self-adjoint operator. The operator T is called self-adjoint (or symmetric) if 

 TyxyTx ,, =  for all x ∈ H and y ∈ H. (1.1) 

 

Remark 1.1.2. If the domain of the operator T is a proper subspace of H, then the concepts of self-

adjointness and symmetry for T are distinct (cf. Zeidler (1995: p. 264)). 

 

For a self-adjoint operator T, we have 

 Tx x,  is real for all x ∈ H. (1.2) 

Indeed, for any x ∈ H, 

 Tx x x Tx Tx x, , , .= =  (1.3) 

 

In view of the terminology that we will employ frequently, it is worth stating the following 

theorem, which is proved by Davis (1963: Theorem 8.9.1): 
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Theorem 1.1.3. Let { } N∈kkw  be a system of orthonormal vectors in H. The following statements are 

equivalent: 

(a) The space spanned by { } N∈kkw  is dense in H. 

(b) The system { } N∈kkw  is complete, i.e. if v ∈ H is such that 0, =kwv  for all k ∈ N, then v = 0. 

(c) The Fourier series �
∈Nk

kk wwv,  of any v ∈ H converges to v in H, i.e. 

 �
∈

=
Nk

kk wwvv , . (1.4) 

(d) The Parseval identity holds, i.e. for all v ∈ H, 

 �
∈

=
Nk

kwvv
22

, . (1.5) 

(e) The extended Parseval identity holds, i.e. for all v and w in H, 

 �
∈

=
Nk

kk wwwvwv ,,, . (1.6) 

 

Following Schwartz (1979: p. 29), we consider the next definition. 

 

Definition 1.1.4. Hilbert basis. Any orthonormal system { } N∈kkw  that satisfies one of the 

equivalent statements in Theorem 1.1.3 is called a Hilbert basis of H. 

 

The following existence result will be used. 

 

Theorem 1.1.5. Any separable Hilbert space { }0≠H  admits at least one Hilbert basis (cf. Kreyszig 

(1978: pp. 168 & 171), Schwartz (1979: p. 30)). 

 

The eigenvectors and eigenvalues of self-adjoint operators have some special properties, as depicted 

in the next result.  

 

Proposition 1.1.6. Suppose that T is self-adjoint. Then 

(a) All the eigenvalues of T are real. 

(b) Any two eigenvectors of T associated with different eigenvalues are orthogonal. 

(c) If { } N∈kkw  is a system of eigenvectors of T that form a Hilbert basis of H, then the 

corresponding system { } N∈λ kk  of eigenvalues contains all the eigenvalues of T. 
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Proof. (a) Consider any eigenvalue �  of T with associated eigenvector x. Then xTxxx ,, =λ , i.e. 

xx

xTx

,

,
=λ , which is real in view of (1.2). 

(b) Suppose that Tx = � x and Ty = � y for some eigenvalues λ µ≠ . Then 

 

( )

( )
0

,,
1

,,
1

,

=

−
µ−λ

=

µ−λ
µ−λ

=

TyxyTx

yxyxyx

 

due to the symmetry of T. Hence x and y are orthogonal. 

(c) If { } N∈kkw  is a Hilbert basis, then, by Theorem 1.1.3, any v ∈ H can be represented in the 

form (1.4). Suppose, by contradiction, that Tv = � v for some { } N∈λ∉λ kk  and 0≠v . Then, by (b), 

0, =kwv  for all k ∈ N. It follows that v = 0 because the system { } N∈kkw  is complete. This 

contradicts the assumption. Thus { } N∈λ∈λ kk . 

�  

 

The norm of a self-adjoint operator in a Hilbert space can also be expressed in a specific way. 

 

Proposition 1.1.7. If T is self-adjoint, then it is bounded and its norm is given by  

 xTxT
xx

,sup
1, =∈

=
H

. (1.7) 

Proof.  The claim on boundedness of T is known as the Hellinger-Toeplitz theorem (Kreyszig, 

1978: p. 525). Let ( )∞
=1kkx  be a sequence in H such that xxkk

=
∞→

lim  and yTxkk
=

∞→
lim  in H. For any  

z ∈ H, we have 

 

( )
( )
( )
( ). ofSymmetry ,

productinner  of Continuity,

 ofSymmetry ,lim

productinner  of Continuity,lim,

TzTx

Tzx

TTzx

zTxzy

k
k

k
k

=
=
=
=

∞→

∞→

 

Since z is arbitrary, we have y = Tx, which shows that the operator T is closed. The closed graph 

theorem (Kreyszig, 1978: p. 292) permits to conclude that T is bounded. 

By the Cauchy-Schwarz inequality and the boundedness of T,  

 TxTx
xx

≤
=∈

,sup
1,H

. (1.8) 
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For any z ∈ H and a �  > 0 (to be specified shortly), let Tzzv
λ

+λ=+
1

:  and Tzzv
λ

−λ=−
1

: . Then 

( )−+ −λ= TvTvzT
2

2  and ( )−+ +
λ

= vvz
2

1
, so that 
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Assume that 0≠Tz  (if Tz = 0, the result is trivial). If Tz=λ : , then 
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so that 

 xTxT
xx

,sup
1, =∈

≤
H

. (1.9) 

Combining (1.8) and (1.9), we obtain (1.7). 
�  

 

We now present some properties of the null space of a self-adjoint operator. 
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Lemma 1.1.8. Suppose that T is self-adjoint. Then 

(a) The null space N HT x Txbgm r:= ∈ = 0  of T and its orthogonal complement N Tbgc h⊥
 are closed 

subspaces of H. 

(b) The space N Tbgc h⊥
 is invariant with respect to T. 

(c) The restricted operator T
TNbgc h⊥  is injective. 

Proof. (a) The null space N T Tbg l qc h= −1 0  is a closed subspace of H because T is continuous and 

{ }0  is a closed set in H. 

Let yk kbg=

∞

1
 be a sequence in N Tbgc h⊥

 that converges to some y ∈ H. For any x T∈Nbg, we have, 

due to the continuity of the inner product, 

 .0,lim, ==
∞→

xyxy k
k

 (1.10) 

Thus y x, = 0  for all x ∈ H, so that y T∈
⊥

Nbgc h. Therefore N Tbgc h⊥
 is a closed subspace of H. 

(b) If x T∈
⊥

Nbgc h then, for all w T∈Nbg, due to the symmetry of T, we have 

 0,, == TwxwTx . (1.11) 

Hence Tx T∈
⊥

Nbgc h, and T T TN Nbgc he j bgc h⊥ ⊥
⊆ . 

(c) If Tx = 0 and x T∈
⊥

Nbgc h, then x T T∈ ∩
⊥

N Nbg bgc h, and x = 0. Hence T
TNbgc h⊥  is injective. 

�  

 

From now on, we will need a further assumption on T. 

 

Definition 1.1.9. Compact operator. The operator T is called compact if, for every bounded set 

HM ⊆ , T Mbg is relatively compact, i.e. T Mbg is compact in H. 

 

Remark 1.1.10. A compact linear operator is necessarily bounded. Indeed, suppose that T is 

compact. Consider the bounded set ( ) { }1:1,0 =∈= xx HS . By Definition 1.1.9, the set T S 0 1,b gc h is 

compact in H and thus bounded. Hence there exists a C > 0 such that Tx C≤  for all x ∈S 0 1,b g. If 

{ }0\H∈y  and y
y

x
1

:= , then x ∈S 0 1,b g. Therefore 
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 ,
1

CTxy
y

T ≤=���

�
���

�
 (1.12) 

which shows that yCTy ≤ .  

 

The following lemma will be instrumental in the proof of the main result, Theorem 1.1.14, below. 

 

Lemma 1.1.11. If T is nonzero, self-adjoint and compact, then there exists an eigenvalue �  and 

corresponding eigenvector x ∈ H such that  

 λ = T  and x = 1. (1.13) 

Proof. By Proposition 1.1.7 and the definition of supremum, there exists a sequence vk kbg=

∞

1
 with 

 vk = 1 for all k ∈ N, (1.14) 

such that 

 TvTv kk
k

=
∞→

,lim . (1.15) 

The sequence of real numbers (cf. (1.2)) Tv vk k k
,c h=

∞

1
 is then bounded. By the Bolzano-Weierstrass 

theorem, there exists a subsequence ′ =

∞
vk kbg1

 of vk kbg=

∞

1
 and a real number �  that 

 λ=′′
∞→ kk

k
vvT ,lim . (1.16) 

Given (1.15) and (1.16), we have λ = T . Thus λ≤′kvT  for all k ∈ N. Furthermore, we have  

 

( )
( )

,0

,2lim

,2limlim

22

2222

=

λ+′′λ−λ≤

′λ+′′λ−′=′λ−′

∞→

∞→∞→

kk
k

kkkk
k

kk
k

vvT

vvvTvTvvT

 

which shows that 

 ( ) 0lim =′λ−′
∞→ kk

k
vvT . (1.17) 

Since T is compact, it follows from (1.14) that there exists a subsequence ′′ =

∞
vk k
bg1

 of ′ =

∞
vk k
bg1

 such 

that Tvk k
′′ =

∞b g1
 is convergent. Due to (1.17) and to the fact that �  ≠ 0, the sequence ′′ =

∞
vk k
bg1

 also 

converges to some x ∈ H, which, in view of (1.14), satisfies x = 1. This implies that Tx = � x, and 

that (1.13) is satisfied. 
�  
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Corollary 1.1.12. Assume that H has infinite dimension. If T is nonzero, self-adjoint and compact, 

then there exist sequences of eigenvalues ( )∞
=λ 1kk  and corresponding eigenvectors { } N∈kkw  such that  

 
m

Tm V=λ +1  (1.18) 

 where  

 
( )( ){ }

��

�
�
�

=
∈==∈=

⊥

0 if

 if,,2,1for  0,
:

m

mmkwxTx k
m

H

NN
V

Κ
, (1.19) 

 mV  is invariant with respect to T, (1.20) 

 ΛΛ ≥λ≥≥λ≥λ≥λ +1321 m , (1.21) 

and 

 { } N∈kkw  is an orthonormal system in ( )( )⊥TN . (1.22) 

Proof. Two different cases will be considered.  

Case 1. The operator T is injective, i.e. 0 is not an eigenvalue of T 

We will prove (1.18)-(1.21) by induction. For m = 0, Lemma 1.1.11 guarantees existence of an 

eigenvalue 1λ  and associated eigenvector 1w  of T such that (1.18)-(1.21) are satisfied. 

Suppose, for m ∈ N fixed, that sequences of eigenvalues ( ) 1

1

+
=λ m

kk  and corresponding eigenvectors 

{ } 1

1

+
=

m

kkw  have been found such that (1.18)-(1.21) hold true. Since H has infinite dimension, it follows 

that { }01 ≠+mV . By the injectivity of T, 0
1

≠
+m

T V . Hence Lemma 1.1.11 applies to 
1+m

T V , and there 

exists an eigenvalue 2+λm  and eigenvector 2+mw  of T with  

 12 ++ ∈ mmw V , 12 =+mw  (1.23) 

and 

 

.1

2 1

+

+

λ=

≤

=λ
+

m

m

m

m

T

T

V

V

 

Therefore, by induction, the sequences ( )∞
=λ 1kk  and { } N∈kkw  satisfying (1.18)-(1.21) can be 

constructed. Moreover, (1.22) follows from (1.23). 

Case 2. The operator T is not injective, i.e. 0 is an eigenvalue of T  

According to Lemma 1.1.8, ( )( )⊥T
T

N
 satisfies the assumption of Case 1. Hence the results of Case 1 

can be applied to ( )( )⊥T
T

N
 to obtain (1.18)-(1.22). 

�  
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Proposition 1.1.13. Assume that H is separable and has infinite dimension, and T is nonzero, self-

adjoint and compact. Then 

(a) If the set of eigenvalues ( )∞
=λ 1kk  of T in Corollary 1.1.12 is countable, i.e. it has a one-to-one 

correspondence with N, then 0lim =λ
∞→ kk

. 

(b) The associated eigenvectors { } N∈kkw  of T in Corollary 1.1.12 may be chosen and augmented so 

that the new system, still denoted by { } N∈kkw , form a Hilbert basis of H. 

Proof. (a) Suppose, by contradiction, that there exists a constant C > 0 such that Ck ≥λ  for all  

k ∈ N. Then the sequence 
∞

=

���
�

���
�

λ
1

1

k

k
k

w  is bounded. Furthermore, by the compactness of T, the 

sequence ( )
∞

=

∞
= ���

�
		

�

���
�

		

�

λ
=

1

1

1

k

k
k

kk wTw  contains a convergent subsequence. This is impossible since, by 

(1.22), for m ≠ n, 

 ,2
222 =+=− nmnm wwww  (1.24) 

and therefore ( )∞
=1kkw  cannot even contain a Cauchy subsequence. Thus 0lim =λ

∞→ kk
. 

(b) For any ( )( )⊥∈ Tx N , and m ∈ N, let  

 �
=

−=
m

k
kkm wwxxv

1

,: . (1.25) 

Fix mx V∈  (cf. (1.19)). It follows from (1.18) and Remark 1.1.10 that 

 xxTTx mm 1+λ=≤ V . (1.26) 

Since mmv V∈ , we have, in view of (1.22) and (1.25), that 

 
=

−=
m

k
km wxxv

1

222
, . (1.27) 

Therefore xvm ≤ . Using (a) and (1.26), we then obtain 

 

( )

.0

lim

limlim

1

1

=

λ≤

λ≤

+∞→

+∞→∞→

m
m

mm
m

m
m

x

vTv

 

Fix any ( )( )⊥∈ Tx N . Then 
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.0

lim

,lim,lim
11

=

=

������ −=
������ λ−

→∞

=→∞=→∞

��
m

m

m

k
kk

m

m

k
kkk

m

Tv

TwwxTxwwxTx

 

It follows that �
∈

λ=
Nk

kkk wwxTx ,  for all ( )( )⊥∈ Tx N . 

The Bessel inequality 

 
2

1

2
, xwx

m

k
k ≤

�
=

 for m ∈ N (1.28) 

follows directly from (1.27). Therefore the Fourier series 	
∈Nk

kk wwx,  is convergent for all 

( )( )⊥∈ Tx N . Hence there exists some y ∈ H such that 

∈

=
Nk

kk wwxy , . Actually, ( )( )⊥∈ Ty N  

because  ( )( )⊥

=
∈

�
Twwx

m

k
kk N

1

,  and ( )( )⊥TN  is closed. Then Tx = Ty, and, by the injectivity of 

( )( )⊥T
T

N
, it follows that x = y. Therefore  

 �
∈

=
Nk

kk wwxx , . (1.29) 

In view of Theorem 1.1.3,  

 { } N∈kkw  is a Hilbert basis of  ( )( )⊥TN . (1.30) 

If, on the one hand, ( ) { }0=TN , then ( )( )⊥= TNH , and { } N∈kkw  is a Hilbert basis of H. Suppose 

now, on the other hand, that ( ) { }0≠TN . Theorem 1.1.5 guarantees the existence of a Hilbert basis 

{ } N∈kku  of ( )TN , with 0=kTu  for all k ∈ N. For each x ∈ H, there exists a unique decomposition 

 x = y + z with y T∈Nbg and z T∈
⊥

Nbgc h. (1.31) 

Using (1.30), it follows that 

 

.,,

,, 


∈∈

∈∈

+=

+=
+=

NN

NN

k
kk

k
kk

k
kk

k
kk

wwxuux

wwzuuy

zyx

 

Consequently { } { } NN ∈∈ ∪ kkkk wu  represents a Hilbert basis of H. �  
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A further property of the eigenvalues ( )∞
=λ 1kk  of T is that each nonzero eigenvalue has finite 

multiplicity. Indeed, in view of Proposition 1.1.13(b) and Proposition 1.1.6(c), any eigenvalue �  ≠ 0 

of T must be equal to some mλ . In view of Proposition 1.1.13(a), there exist integers M and N 

(M �  N) such that  

 NNmMM λ=λ==λ==λ=λ −+ 11 ΛΛ  (1.32) 

and mj λ≠λ  for j < M and j > N. If x ≠ 0 is any eigenvector associated with � , then, due to 

Proposition 1.1.6(b), 

 

.,

,
1

1

�

�

=

=

=

λ
λ

=

λ
=

N

Mk
kk

N

Mk
kkk

wwx

wwx

Txx

 

Hence { }N

Mkkw =  form a (Hamel) basis (cf. Kreyszig (1978: pp. 54-55)) for the space { }xTxx λ=∈ H , 

and thus 

 �  has multiplicity 1+− MN . (1.33) 

 

With the material collected so far, we are in a position to state the main result, or the Hilbert-

Schmidt theory for self-adjoint compact operators in Hilbert spaces. 

 

Theorem 1.1.14. Hilbert-Schmidt theory. Assume that H is separable. Suppose that T is self-

adjoint and compact. Then 

(a) All the eigenvalues of T are real. 

(b) The eigenvalues of T form a sequence ( )∞
=λ 1kk  such that ( )∞

=
λ

1kk  is decreasing. If the set of 

eigenvalues is countable, then 0lim =λ
∞→ kk

. 

(c) The multiplicity of each nonzero eigenvalue is finite. 

(d) With each eigenvalue kλ  can be associated an eigenvector kw  such that the collection { } N∈kkw  

is a Hilbert basis of H. 

(e) Each eigenvalue kλ  can be expressed in terms of the Rayleigh quotient, i.e. 

 λ1
0

=
∈
sup

,

,\x

Tx x

x xH l q
 and 

{ }
{ }

xx

xTx

kwwwx
x

k ,

,
sup

121 ,,,span
0\

−⊥
∈

=λ
Κ

H
. (1.34) 

(f) Any two eigenvectors of T corresponding to different eigenvalues are orthogonal. 
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Proof. We give the proof for a Hilbert space H with infinite dimension. The proof of the finite 

dimensional case entails an obvious simplification (see e.g. Lubuma (1994)). 

(a) This is a direct consequence of Proposition 1.1.6(a). 

(b) This is a direct consequence of (1.21) and Proposition 1.1.13(a). 

(c) See (1.33). 

(d) This is a direct consequence of Proposition 1.1.13(b). 

(e) After careful comparison of (1.7) and (1.19), (1.34) follows. 

(f) This is a direct consequence of Proposition 1.1.6(b). �
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1.2. Sturm-Liouville problem 
 

The Sturm-Liouville problem provides a direct application of Hilbert-Schmidt theory. It is also 

central to the application of spectral methods. In this section, we investigate some qualitative and 

quantitative properties of this problem. We will also determine the properties of the solutions to the 

associated eigenvalue problem. 

Given the real-valued functions  

 [ ]π∈ 2,01Cp , [ ]π∈ 2,00Cq  and ( )π∈ 2,02Lf , (1.35) 

we consider the ordinary differential equation 

 fqu
dx

du
p

dx

d =+
�

�
��

�
�

−  on ( )π2,0  (1.36) 

with general boundary conditions 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) �
��

���

	

=δ+χ+πβ+πα

=πδ+πχ+β+α

.00022

02200

2222

1111

dx

du
u

dx

du
u

dx

du
u

dx

du
u

 (1.37) 

The analysis of the boundary value problem (1.36)-(1.37) is done by e.g. Dieudonné (1980: Section 

XIV.8). In this study, we will focus on two particular cases of the boundary conditions (1.37), as 

described below.  

Firstly, we consider the boundary conditions 

 ( ) ( ) 000 11 =β+α
dx

du
u  (1.38) 

 ( ) ( ) 022 22 =πβ+πα
dx

du
u , (1.39) 

(i.e. 02211 =δ=χ=δ=χ  in (1.37)), which, together with (1.36), form a Sturm-Liouville problem. 

 

Definition 1.2.1. Regular Sturm-Liouville problem. (cf. Canuto et al (1988: p. 282)) The Sturm-

Liouville problem (1.36), (1.38)-(1.39) is called regular if 

 ( ) 0>xp  and ( ) 0≥xq  for all [ ]π∈ 2,0x  (1.40) 

and 

 011 >β+α  and 022 >β+α . (1.41) 

 

Remark 1.2.2. Dautray & Lions (2000a: Section 2.7) give a detailed discussion of the regular 

Sturm-Liouville problem (1.36), (1.38)-(1.39) with p = 1. 
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Remark 1.2.3. The problem (1.36), (1.38)-(1.39) together with (1.40), where ( ) 00 =p  or 

( ) 02 =πp , is a singular Sturm-Liouville problem. For such a problem, the boundary conditions 

(1.38)-(1.39) must be suitably changed due to the singularity of the solution at 0 or 2� . Typically, if 

( ) 00 =p , we have the boundary conditions (1.39) together with 

 ( ) ( ) 0lim
0

=
+→

x
dx

du
xp

x
, (1.42) 

or, if ( ) 02 =πp , we have (1.38) with 

 ( ) ( ) 0lim
2

=
−π→

x
dx

du
xp

x
. (1.43) 

 

The second type of boundary value problem that we consider is the following: We couple the 

differential equation (1.36) with periodic boundary condition  

 ( ) ( )π= 20 uu  (1.44) 

(i.e. 121 =χ=α , 112 −=χ=α  and 02211 =δ=β=δ=β  in (1.37)). 

To solve these problems, we use the Lax-Milgram Lemma. Firstly, we consider two definitions, 

and then present the Lax-Milgram Lemma in a form suitable to our needs. 

 

Definition 1.2.4. Antilinear form. Let V be a complex vector space. A form CV →:l  is called 

antilinear if 

 ( ) ( )vlvl α=α  for each scalar �  and v ∈ V.  (1.45) 

 

Definition 1.2.5. Hermitian form, sesquilinear form. (cf. Kreyszig (1978: pp. 191 & 195)) Let V 

be a complex vector space. A form CVV →×:a  is called sesquilinear if it is linear in its first 

argument and antilinear in its second argument, i.e. for scalars �  and ß and all v ∈ V, w ∈ V and x ∈ 

V, we have 

 ( ) ( ) ( )xwaxwaxwva ,,, β+α=β+α  and ( ) ( ) ( )xvawvaxwva ,,, β+α=β+α . (1.46) 

The sesquilinear form a is called hermitian if it satisfies the additional condition 

 ( ) ( )vwawva ,, =  for v ∈ V, w ∈ V. (1.47) 

 



Chapter 1. Self-adjoint compact linear operators in Hilbert space 

 16

Theorem 1.2.6. Lax-Milgram Lemma. Let V be a complex Banach space with norm ⋅ , and let l 

be a bounded antilinear form on V. Suppose that CVV →×:a  is a hermitian form. We assume that 

a is 

• Continuous, i.e. there exists a constant K 
�
 0 such that 

 ( ) wvKwva ≤,  for all v ∈ V and w ∈ V, (1.48) 

• V-elliptic or V-coercive in the sense that there exists an �  > 0 such that  

 ( ) 2
, vvva α≥  for all v ∈ V. (1.49) 

Then the variational problem to find u such that 

 ( ) ( ) �
�
�

∈=
∈

V

V

vvlvua

u

 allfor  ,
 (1.50) 

is well-posed, i.e. there exists a unique solution u ∈ V that depends continuously upon the data l, 

i.e. 

 lCu ≤ . (1.51) 

for some constant C > 0. 

Proof. With (1.49), the hermitian form a clearly defines an inner product on V. Moreover, the norm 

( )vvav
a

,:=  induced by a is equivalent to ⋅  since, by (1.48) and (1.49), we have 

 vKvv
a

≤≤α . (1.52) 

The space V, being complete with respect to ⋅ , is also complete with respect to 
a

⋅ . Hence V is a 

Hilbert space with respect to a.  

On the other hand, CV →:l  defined by ( ) ( )vlvl =:  is a bounded linear form on V. By Riesz’ 

Representation Theorem, there exists a unique u ∈ V such that 

 ( ) ( )vluva =,  for all v ∈ V (1.53) 

and 

 llu == . (1.54) 

But 

 ( ) ( ) ( )vuauvavl ,, == . (1.55) 

Therefore (1.50) and (1.51) are satisfied. 
�  
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For the regular Sturm-Liouville problem (1.36), (1.38)-(1.41), we consider the following space of 

test and trial functions: 

 

( ) ( ) ( ) ( ){ }
( ) ( ){ }

( ) ( ){ }
( )

���

���
�

≠β≠βπ
≠β=β=ππ∈
=β≠β=π∈
=β=β=π=π∈=π

=

0,0 if2,0

0,0 if022,0

0,0 if002,0

0,0 if02,002,0:2,0

:

21
1

21
1

21
1

21
11

0

H

H

H

HH

V
vv

vv

vvv

. (1.56) 

In (1.56), for m ∈ N,  

 ( ) ( ) ( ) ��
�

��
	

=π∈π∈=π ,m,,k
dx

vd
v

k

k
m Κ10for  2,02,0:2,0 22 LLH  (1.57) 

is the Sobolev space of order m equipped with the norm and inner product 

 

=

=
m

k
k

k

m dx

vd
v

0

2

0

 and �
=

=
m

k
k

k

k

k

m dx

wd

dx

vd
wv

0 0

,, , (1.58) 

with  

 ( )
�π

=
2

0

2

0
: dxxvv  and ( ) ( )

π
=

2

0
0

:, dxxwxvwv  (1.59) 

the norm and inner product of ( )π2,02L . 

For the periodic problem (1.36) & (1.44), we assume in addition to (1.35) that p is periodic, i.e. 

 [ ] [ ] ( ) ( ){ }π=π∈=π∈ 202,0:2,0 00
per vvvp CC . (1.60) 

In this case, the space of test and trial functions is 

 ( ) ( ) ( ) ( ){ }π=π∈=π 202,0:2,0 11
per vvv HH . (1.61) 

Let us assume that a classical solution [ ]π∈ 2,02Cu  of the regular Sturm-Liouville problem 

(1.36), (1.38)-(1.41) exists. Let v ∈ V be an arbitrary test function. Multiplication by v  of (1.36) 

and integration by parts yield, using (1.38)-(1.39), 

 ( )
0

,, vfvua = , (1.62) 

with the sesquilinear form a defined by 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )πππγ+γ−+= 222000,,:, 210
0

wvpwvpwqv
dx

dw

dx

dv
pwva , (1.63) 

where 

 ��
��
�

=β

≠β
β
α

=γ
0 if0

0 if
:

k

k
k

k

k  for k = 1, 2. (1.64) 

The sesquilinear form a is clearly hermitian. 
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Definition 1.2.7. Sturm-Liouville variational problem. The problem of finding a function u such 

that 

 ( ) ��
��
�

∈=
∈

, allfor  ,,
0

V

V

vvfvua

u
 (1.65) 

is called the variational formulation of the Sturm-Liouville problem (1.36), (1.38)-(1.41). 

 

We will use the following result (cf. Dautray & Lions (2000a: pp. 42-44)) in the proof of Theorem 

1.2.9 below: 

 

Lemma 1.2.8. For every �  > 0, there exists a constant 0>≡ εCC  such that 

 
2

0

2

0

2
vC

dx

dv
v +ε≤

∞
 for all ( )π∈ 2,01Hv , (1.66) 

where 
∞

⋅  denotes the supremum norm. 

 

Theorem 1.2.9. There exists an M �  0 such that if 

 ( ) Mxp ≥  and ( ) Mxq ≥  for all [ ]π∈ 2,0x , (1.67) 

then the Sturm-Liouville variational problem (1.65) is well-posed. 

Proof. By the Cauchy-Schwarz inequality, the antilinear form ( )
0

,: vfvl =  and the sesquilinear 

form a are both clearly continuous on ( )π2,01H . Moreover, we infer from (1.40) that there exists an 

01 >M  such that 

 
[ ]

( ) 1
2,0

inf Mxp
x

≥
π∈

. (1.68) 

Regarding the V-ellipticity of a, we shall now distinguish between two cases. 

Case 1: 01 ====ββββ  and 02 ====ββββ  in (1.56), and thus 01 ====γγγγ  and 02 ====γγγγ  in (1.63) 

In this case, ( )π= 2,01
0HV . We may take M = 0 in (1.67). For ( )π∈ 2,01

0Hv , we have 

 

( )

2

1

2

0
1

0

0
0

,

,,,

vK

dx

dv
M

dx

dv

dx

dv
p

vqv
dx

dv

dx

dv
pvva

≥

≥

≥

+=

 

because of the Poincaré-Friedrichs inequality. This proves the V-ellipticity of a in this case. 
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Case 2: 01 ≠≠≠≠ββββ  or 02 ≠≠≠≠ββββ  in (1.56), and thus 01 ≠≠≠≠γγγγ  or 02 ≠≠≠≠γγγγ  in (1.63) 

Let v ∈ V. From (1.63), we have 

 

( ) ( ) ( ) ( ) ( )

[ ]
( ) ( ){ } ( ) ( ) ( ) ( )

[ ]
( ) ( ){ } ( ) .,mininf

0022,mininf

0022,,,

2

21

2

0

2

0
2,0

2

1

2

2

2

0

2

0
2,0

2

1

2

20
0

∞∞π∈

π∈

γ+γ−�
�

�

�

�
�

�

�

+≥

γ−ππγ−�
�

�

�

�
�

�

�

+≥

γ−ππγ−+≥

vpv
dx

dv
xqxp

vpvpv
dx

dv
xqxp

vpvpvqv
dx

dv

dx

dv
pvva

x

x
 

Using Lemma 1.2.8 with ( )
∞

γ+γ
β=ε

p21

:  for some ( )1,0∈β , we obtain 

 

( )
[ ]

( ) ( ){ } ( )

[ ]
( ) ( ){ } ( )

[ ]
( ) ( ){ } ( )

[ ]
( ) ( ){ }

[ ]
( ) ( ){ }

[ ]
( ) ( ){ }

[ ]
( ) ( ){ } ( ).11,mininf,mininf

,mininf,mininf

,mininf

,mininf

,mininf,

2

0
2,0

2

02,0

2

0
2,0

2

02,0

2

0
21

2,0

2

0212,0

2

0

2

0
21

2

0

2

0
2,0

<β
�

�
�	



�

−+
�

�

�
	



�

ε
−>

�
�
�	



�

β−+
�

�

�
	



�

ε
β−=

�
�
�	



�

γ+γε−+

�
�
�	



�

γ+γ−=

�
�

�

�

	
	




�

+εγ+γ−�
�

�

�

	
	




�

+≥

π∈π∈

π∈π∈

∞π∈

∞π∈

∞π∈

dx

dv
xqxpv

C
xqxp

dx

dv
xqxpv

C
xqxp

dx

dv
pxqxp

vpCxqxp

vC
dx

dv
pv

dx

dv
xqxpvva

xx

xx

x

x

x

 

On taking �

�

�
�
�

ε
> 1,max

C
M  in (1.67), it follows that a is ( )π2,01H -elliptic. 

By Theorem 1.2.6, there exists a unique ( )π∈ 2,01Hu  that satisfies (1.65) and depends 

continuously upon f. 
�  

 

We now present a regularity result. 

 

Theorem 1.2.10. The solution u of the Sturm-Liouville variational problem (1.65) has the regularity 

( )π∈ 2,02Hu . 

Proof. Suppose that u is the solution of (1.65). Fix any ( )π∈ 2,0Dv , where ( )π2,0D , the space of 

test functions, consists of infinitely differentiable functions with compact support in ( )π2,0 . In view 

of (1.63) and of the definition of the distributional derivative, it follows that  
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 fqu
dx

du
p

dx

d =+
��

���
�

−  in ( )π′ 2,0D ,  (1.69) 

where ( )π′ 2,0D , the space of distributions on ( )π2,0 , consists of linear continuous functionals on 

( )π2,0D  equipped with the canonical topology of L. Schwartz. 

As ( )π∈ 2,02Lf , it follows from (1.69) that ( )π∈+
��

�	

�

− 2,02Lqu
dx

du
p

dx

d
. With ( )π∈ 2,02Lqu , 

we have ( )π∈
�

���
�

2,02L
dx

du
p

dx

d
. Since 

xd

ud
p

dx

du

dx

dp

dx

du
p

dx

d
2

2

+=
��

���
�

, where ( )π∈ 2,02L
dx

du

dx

dp
 and p 

is bounded from below, we have ( )π∈ 2,02Hu .  

�  

 

Using the same method as with the Sturm-Liouville problem (1.36), (1.38)-(1.39), we will now 

solve the periodic boundary value problem (1.36) & (1.44). 

If we define the continuous hermitian form 

 ( )
0

0

,,:, wqv
dx

dw

dx

dv
pwva += , (1.70) 

then the variational formulation of the boundary value problem (1.36) & (1.44) is to find a function 

u such that  

 
( )

( ) ( ) ��
��

�

π∈=

π∈

.2,0 allfor  ,,

2,0
1
per0

1
per

H

H

vvfvua

u
 (1.71) 

We still need an assumption of the form (1.67). In this case, it will be sufficient for M to be any 

positive value. Indeed, for any M > 0, 

 
( )

,

,

2

1

2

0

2

0

vM

v
dx

dv
Mvva

=

���
�

  !
"

+≥
 

which shows that a is ( )π2,01H -elliptic. By Theorem 1.2.6, we have proved the following result: 

 

Theorem 1.2.11. Under the condition (1.67), with M an arbitrary positive number, the variational 

problem (1.71) is well-posed. 

 

Remark 1.2.12. The proofs of Theorem 1.2.9 and Theorem 1.2.11 motivate that we assume 

throughout this work that the condition (1.67) holds. 
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In a similar fashion to Theorem 1.2.10, we obtain the following: 

 

Theorem 1.2.13. The solution u of the variational problem (1.71) has the regularity ( )π∈ 2,02Hu . 

 

Remark 1.2.14. The regularity ( )π∈ 2,02Hu  in Theorem 1.2.10 and Theorem 1.2.13 permits us to 

give an interpretation of the variational problems (1.65) and (1.71). 

If we replace the function f in (1.65) by the expression given in (1.69), we obtain, for all v ∈ V, 

 ( )
0

,, vqu
dx

du
p

dx

d
vua +

��
���

�
−=  (1.72) 

or (cf. (1.63)) 

 

( ) ( ) ( )

( ) ( ) ( ) ���

���
	

+

�

��
�

−=πππγ+

γ−+

.,222

000,,

0

2

10
0

vqu
dx

du
p

dx

d
vup

vupvqu
dx

dv

dx

du
p

 (1.73) 

But integration by parts yields 

 
( ) ( ) ( )

( ) ( ) ( ) ���
���
�

πππ+

−+=+
��

���
�

−

.222

000,,,
0

00

v
dx

du
p

v
dx

du
pvqu

dx

dv

dx

du
pvqu

dx

du
p

dx

d

 (1.74) 

Comparison of (1.73) and (1.74) shows, in view of (1.64), that 

 ( ) ( ) ( ) ( )0000 1 up
dx

du
p γ=  and ( ) ( ) ( ) ( )ππγ=ππ 2222 2 up

dx

du
p , (1.75) 

i.e. the boundary conditions (1.38)-(1.39) are satisfied. Thus u ∈ V solves (1.36), (1.38)-(1.39) in 

the sense of distributions. 

A similar interpretation may be obtained for the variational problem (1.71) in connection with 

the periodic problem (1.36) & (1.44). 

 

Theorem 1.2.15. The eigenvalue problem 

 
( )

( ) ( ) ��
��
�

π=

πλ=+
��

 !"
#

−

20

2,0on  

uu

uqu
dx

du
p

dx

d

 (1.76) 

has eigenvalues ( )∞
=λ 1kk  and eigenfunctions { } N∈kkw  that satisfy the following: 

(a)  The eigenvalues ( )∞
=λ 1kk  form a positive increasing unbounded sequence of real numbers, i.e. 
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 Λ≤λ≤λ≤λ< 3210 . (1.77) 

(b) The eigenfunctions { } N∈kkw , where ( )π∈ 2,01
perHkw , form a Hilbert basis of ( )π2,02L . 

(c) There holds the identity 

 ( )
0

,, vwvwa kkk λ=  for k ∈ N and ( )π∈ 2,01
perHv . (1.78) 

 Consequently, the eigenfunctions 
N∈

��

�
�
�

��

�
�
�

λ
k

k

k

w
1

 form a Hilbert basis of ( )π2,01
perH  with 

respect to the inner product a. 

Proof. Define the operator ( ) ( ) ( )π⊂π→π 2,02,02,0: 11
per

2 HHLK  that associates with each f the 

corresponding solution u to the problem (1.36) & (1.44). K is linear and, by (1.51), bounded. By the 

Rellich Theorem, the embedding ( ) ( )π→π 2,02,0: 21 LHJ  is compact. If KJT ο=: , then T is 

compact as well. 

(a) For any ( )π∈ 2,02Lv  and ( )π∈ 2,02Lw , 

 

( ) ( )
( ) ( )

( )
.,

 of Definition,

hermitian is ,

 of Definition,,

0

0

0

wTv

TTvw

aTvTwa

TTwTvaTwv

=
=
=
=

 

Therefore T is self-adjoint. By Theorem 1.1.14(b), the eigenvalues ( )∞
=µ 1kk  of T form a decreasing 

sequence of real numbers with limit 0.  

For each eigenvalue �  and associated eigenvector ( )π∈ 2,02Lv  of T, we have 

 

( ) ( )
( )

( )( )
( ). ofy Injectivit0

 of coercivity-2,0

,
 of Definition,

,

1
2

0

2

1

2

0

0

2

0

T

a
v

Tv

v

TvTva
TTvTva

Tvvv

>

π
α

≥

=µ

=
=µ

H

 

Hence ( )∞
=µ 1kk  is a positive sequence. 

If 
k

k µ
=λ 1
:  and kw  is the eigenvector with 1

0
=kw  associated with each kµ , then ( )∞

=λ 1kk  is an 

increasing unbounded sequence, and (1.76) becomes, for any k ∈ N, 

 kkk Tww λ=  where ( )π∈ 2,01
perHkw . (1.79) 
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(b)-(c) By Theorem 1.1.14(d), { } N∈kkw  is a Hilbert basis of ( )π2,02L . Moreover, for all 

( )π∈ 2,01
perHv , using (1.79), we have 

 

( ) ( )
( )

,,

,

,,

0
vw

vTwa

vTwavwa

kk

kk

kkk

λ=
λ=

λ=
 

which proves (1.78). If k

k

k wv
λ

= 1
: , then 

 

( ) ( )

.,

,
1

,

nm
n

m

nm

nm

nm

ww

wwavva

λ
λ=

λλ
=

 

Therefore { } N∈kkv  is a Hilbert basis of ( )π2,01
perH  with respect to the inner product a. 

�  
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Chapter 2. General linear diffusion problem 
 

In this chapter, we consider existence and uniqueness of solutions to the general linear diffusion 

initial-boundary value problem 

 fbu
x

u
c

t

u =+
∂
∂−

∂
∂

2

2

 on ( ) ( )T,02,0 ×π  (2.1) 

 ( ) ( )xuxu 00, =  for ( )π∈ 2,0x  (2.2) 

 ( ) ( )tutu ,2,0 π=  for ( )Tt ,0∈ . (2.3) 

Here the constants b > 0 and c > 0, the finite limit time T > 0 and the functions ( ) R→π2,0:0u  and 

( ) ( ) R→×π Tf ,02,0:  are given, whereas the function ( ) ( ) R→×π Tu ,02,0:  is unknown. 

There are several methods of solving evolution problems (see e.g. Dautray & Lions (2000b: pp. 

509-523)). In view of the numerical approach followed in this work, we shall use a specific 

Galerkin method that is related to the Fourier series or diagonalization method in Hilbert spaces, as 

developed by Raviart & Thomas (1983: pp. 155-161). 

The following notation and function spaces will be used frequently. We systematically separate 

the variables x and t for a given function [ ] [ ] R→×π Tw ,02,0:  by associating with w, for [ ]Tt ,0∈ , 

the function ( ) [ ] R→π2,0:tw  such that ( )( ) ( )txwxtw ,= . 

Given a Hilbert space V and an integer m 
�
 0, we consider on the one hand the space 

 [ ]( ) [ ] ��
�

��
�

=→= mk
dt

vd
tTvT k

k
m Κα ,1,0for continuousis ,0::,,0 VVC , (2.4) 

which is a Banach space under the norm 

 [ ]( ) [ ]

( ) ���
	

�

�
=

∈≤≤
V

VC k

k

TtmkT dt

tud
v m

,00,,0
supmax: . (2.5) 

On the other hand, we consider the Hilbert space 

 ( )( ) ( ) ( ) �
���

��
∞<→= �T dttvTvT

0

22 ,0: of class:,,0
V

VVL  (2.6) 

equipped with the norm and inner product 

 ( )( ) ( )
2

1

0

2

,,0
:2 ���

����
�

= �T
T

dttvv
VVL

 and ( )( ) ( ) ( )
�

=
T

T
dttwtvwv

0
,,0

,:, 2 VVL
. (2.7) 

We assume once and for all that the data 0u  and f satisfy 

 ( )π∈ 2,02
0 Lu  and ( ) ( )( ) ( ) ( )( )π=×π∈ 2,0,,0,02,0 222 LLL TTf . (2.8) 
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In order to obtain a variational formulation of (2.1)-(2.3), we assume, as usual, that this problem 

admits a smooth enough solution u, e.g.  

 [ ] ( ) ( )( )π∩π∈ 2,02,0,,0 21
per

1 HHC Tu .  (2.9) 

Fix a test function ( ) ( )( )π∈ψ 2,0,,0 1
per

2 HL T . Multiplication of (2.1) by ψ  and integration over 

( ) ( )T,02,0 ×π  lead to 

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ���

���

�

ψ=

ψ+ψ
∂
∂−ψ

∂
∂

� �

� �� �� �

π

πππ

.,,

,,,,,,

0

2

0

0

2

00

2

0
2

2

0

2

0

T

TTT

dtdxtxtxf

dtdxtxtxubdtdxtxtx
x

u
cdtdxtxtx

t

u

 (2.10) 

Integration by parts with respect to x in the second term on the left hand side yields, because of the 

boundary condition (2.3), 

  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ���

���

�

ψ=

ψ+
∂
ψ∂

∂
∂+ψ

∂
∂

	 	

	 		 		 	

π

πππ

.,,

,,,,,,

0

2

0

0

2

00

2

00

2

0

T

TTT

dtdxtxtxf

dtdxtxtxubdtdxtx
x

tx
x

u
cdtdxtxtx

t

u

 (2.11) 

Recognising that, due to the smoothness of u, 

 ( ) ( )
0

0
,, v

dt

tdu
vtu

dt

d = , (2.12) 

and taking ( ) ( ) ( )xvttx γ=ψ , , with ( )T,0D∈γ  and ( )π∈ 2,01
perHv , we have 

 ( ) ( ) ( ) ( )
00

0
0

,,,, vtfvtub
dx

dv

dx

tdu
cvtu

dt

d =++  in ( )T,0D′ . (2.13) 

If the sesquilinear form ( ) ( ) CHH →π×π 2,02,0: 11a  is defined as  

 ( )
0

0

,,:, wvb
dx

dw

dx

dv
cwva +=  for all ( )π∈ 2,01Hv  and ( )π∈ 2,01Hw , (2.14) 

then it is continuous, i.e.  

 
( ) { } ( )

( ) 
�

�


π∈

π∈=≤

,2,0 and 

2,0 allfor  ,max:  where,
1

1

11

H

H

w

vcbawvawva
 (2.15) 

and ( )π2,01H -elliptic or ( )π2,01H -coercive in the sense that  

 ( ) 2

1
, vvva α≥  for all ( )π∈ 2,01Hv , where { }cb,min:=α . (2.16) 

The form a is also clearly hermitian. 

The equation (2.13) leads to the variational formulation of the general linear diffusion problem: 
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Definition 2.1. General linear diffusion variational problem. The problem of finding a real-

valued function 

 ( ) ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 201
per

2 LCHL TTu   (2.17) 

such that, for almost all t in ( )T,0 , 

 ( ) ( )( ) ( )
00

,,, vtfvtuavtu
dt

d =+  for all ( )π∈ 2,01
perHv  (2.18) 

 ( ) 00 uu = , (2.19) 

with the derivative 
dt

d
 in the sense of distributions, is called the variational formulation of the 

general linear diffusion problem (2.1)-(2.3). 

 

Remark 2.2. Strictly speaking, the test function ( ) ( )( )π∈ψ 2,0,,0 1
per

2 HL T  is taken such that 

 ( ) ( )( )π∈
∂
ψ∂

2,0,,0 22 LL T
t

 and ( ) 0=ψ T , (2.20) 

where 
t∂
ψ∂

 is the derivative in the sense of distributions. Integration by parts in the variable t in the 

first integral in (2.11) shows that, for any ( ) ( )( )π∈ψ 2,0,,0 1
per

2 HL T  satisfying (2.20), we have 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
00

0
0

00 0

0,,,, ψ+ψ=ψ+ψ− ��� udtttfdtttuadtt
dt

d
tu

TTT

. (2.21) 

The equation (2.21) is an alternative variational formulation of the general linear diffusion problem. 

This type of variational formulation is studied in, e.g. Lions (1961: p. 44). 

 

The variational problem (2.17)-(2.19) is closely related to the following eigenvalue problem of the 

type studied in Section 1.2: Find  

 ( )π∈ 2,01
perHw  (2.22) 

and �  ∈ C such that 

 wbw
dx

wd
c λ=+− 2

2

 on ( )π2,0  (2.23) 

or, equivalently, 

 ( )
0

,, vwvwa λ=  for all ( )π∈ 2,01
perHv . (2.24) 

Regarding this eigenvalue problem, we have the following result: 
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Theorem 2.3. 

(a)  The eigenvalues in (2.23) and (2.24) are given by the positive unbounded sequence 

 bckk +=λ 2  for k ∈ Z. (2.25) 

(b) Associated with each kλ  is the eigenfunction 

 ( ) ikx
k exw

π
=

2

1
 for k ∈ Z. (2.26) 

(c) The system { } Z∈kkw  is a Hilbert basis of ( )π2,02L , and the system 
Z∈

��
��
�

��
��
�

λ
k

k

k

w
1

 is a Hilbert 

basis of ( )π2,01
perH  with respect to the inner product a. 

Proof. All we have to show is the explicit form of kλ  and kw . By the properties of the hermitian 

form a (cf. (2.15) and (2.16)), Theorem 1.2.15 guarantees that the eigenvalues form an increasing 

unbounded sequence of positive real numbers with corresponding eigenfunctions forming a Hilbert 

basis of ( )π2,02L  and ( )π2,01
perH . 

The solution to the ordinary differential equation (2.23) is of the form 

 ( ) x
c

b
ix

c

b
i

BeAexw
−λ−−λ

+= . (2.27) 

In view of the periodicity condition (2.22), we must have 

 
x

c

b
i

e
−λπ

=
2

1  and 
x

c

b
i

e
−λπ−

=
2

1 .  (2.28) 

This implies that, for some k ∈ Z, 

 k
c

bk =−λ
, (2.29) 

and therefore kλ  is given by (2.25). 

For k ∈ Z, let us define kw  by (2.26). Clearly, kw  satisfies (2.27). Moreover, { } Z∈kkw  is a Hilbert 

basis of ( )π2,02L . 

�  

 

Theorem 2.4. The variational problem (2.17)-(2.19) has a unique solution u. With the eigenvalues 

{ } Z∈λ kk  and eigenfunctions { } Z∈kkw  defined in Theorem 2.3, u has, for [ ]Tt ,0∈ , the Fourier series 

representation 

 ( ) ( ) ( )� 	
∈

−λ−λ− 

�
�

�
�

+=
Zk

k

t

k
st

k
t wdswsfewuetu kk

0
000 ,, . (2.30) 
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Proof. The proof will be done in two parts. 

Part 1: Existence of solution. 

We proceed by the Galerkin method, the four main steps of which are listed below. 

1. Approximation of (2.17)-(2.19) in a finite dimensional space 

For each m ∈ N, let 

 { }m

mkkm w −== span:S . (2.31) 

Following Temam (1979: p. 44), the expanding sequence  ( )∞
=1mmS  is a Galerkin approximation to 

the space ( )π2,01
perH  due to the fact that 

 Υ
∞

=1m
mS  is dense in ( )π2,01

perH . (2.32) 

Consider the finite dimensional analogue of the variational problem (2.17)-(2.19): For m ∈ N, 

find 

 ( )( ) [ ] ( )( )π∩∈ 2,0,,0,,0 202 LCSL TTu mm   (2.33) 

such that 

 ( ) ( )( ) ( )
00

,,, vtfvtuavtu
dt

d
mm =+  for all mv S∈  and ( )Tt ,0∈  (2.34) 

 ( ) �
−=

=
m

mk
kkm wwuu

00,0 . (2.35) 

The condition (2.33) shows that any solution of (2.33)-(2.35) admits the representation 

 ( ) ( )�
−=

α=
m

mk
kkm wttu :  for ( )Tt ,0∈ , (2.36) 

with unknown coefficients { }m

mkk −=α . For mmmk ,,1, Κ+−−= , take kwv =  in (2.34). Using (2.24) 

and (2.35), it follows that solving (2.34)-(2.35) is equivalent to solving, for mmmk ,,1, Κ+−−= , 

the initial value problem 

 
( ) ( ) ( ) ( )

( ) ��
��
�

=α

∈=αλ+α

.,0

,0for  ,

00

0

kk

kkkk

wu

Ttwtftt
dt

d

 (2.37) 

Easy calculation shows that the unique solution of the initial value problem (2.37) is 

 ( ) ( ) ( )
�

−λ−λ− +=α
t

k
st

k
t

k dswsfewuet kk

0
000 ,, . (2.38) 

Therefore the problem (2.33)-(2.35) has a unique solution given by 
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 ( ) ( ) ( )� �
−=

−λ−λ− ���
�

���
�

+=
m

mk
k

t

k
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k
t

m wdswsfewuetu kk

0
000 ,, . (2.39) 

2. A priori estimates 

In this specific case of a Galerkin method, which is related to the Fourier series or diagonalization 

method, the a priori estimates step amounts to proving that ( )∞
=1mmu  is a Cauchy sequence in both 

[ ] ( )( )π2,0,,0 20 LC T  and ( ) ( )( )π2,0,,0 1
per

2 HL T  (For the general procedure involving a priori 

estimates, refer to Dautray & Lions (2000b: pp. 514-515)). 

Since Parseval’s identity gives 
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it follows that 

 0,lim
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For any m ∈ N and p ∈ N with p > m, we have 
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It then follows that 
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[ ] ( )( )

[ ]
( ) ( ) [ ] ( )( )( )

( ) { }( ). of Definition,
2

1
,

 of Definition
sup

1 0

2

0
1

2

00

2,0,,0

0,0

2,0,,0

20

20

Z

LC

LC

∈
+=+=

π

∈

π

λ���
����

�
+≤

⋅
−=

−

� ��
kk

p

mk

T

k

p

mk
k

T
mp

Tt

Tmp

dswsf
b

wu

tutu

uu

 

In view of (2.40), [ ] ( )( ) 0lim
2,0,,0 20
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∞→ LC Tmp

mp
p
m

uu , which shows that  ( )∞
=1mmu  is a Cauchy sequence in 

[ ] ( )( )π2,0,,0 20 LC T . 

For any m ∈ N and p ∈ N with p > m, and a the hermitian form defined in (2.14), we have 
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which, by (2.40), shows that ( ) ( )( ) 0lim
2,0,,0 1

per
2

=−
π

>
∞→
∞→ HL Tmp

mp
p
m

uu , and ( )∞
=1mmu  is a Cauchy sequence in 

( ) ( )( )π2,0,,0 1
per

2 HL T  as well. 

3. Passage to limit u 

In the general situation, a weak compactness argument is used in this step (see e.g. Dautray & Lions 

(2000b: pp. 515-516)). This step is much simpler in our case, because of the specific method under 

consideration. 

Since both [ ] ( )( )π2,0,,0 20 LC T  and ( ) ( )( )π2,0,,0 1
per

2 HL T  are complete and continuously 

embedded in ( ) ( )( )π× 2,0,02 TL , there exists a unique ( ) ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 201
per

2 LCHL TTu  

such that the Cauchy sequence ( )∞
=1mmu  converges to u in both [ ] ( )( )π2,0,,0 20 LC T  and 

( ) ( )( )π2,0,,0 1
per

2 HL T . Note that, in view of (2.39), we have (2.30). 

4. Confirmation that the limit u is a solution to (2.17)-(2.19) 

Fix ( )T,0D∈ψ  and n ∈ N. For any m �  n, multiplication of (2.34) by ψ  yields, by the 

distributional definition of derivatives, 

 ( ) ( ) ( )( ) ( ) ( ) ( )
			

ψ=ψ+ψ−
TT

m

T

m dttvtfdttvtuadtt
dt

d
vtu

0
0

00
0

,,,  for all nv S∈ . (2.41) 

Since, in (2.41), ( )∞
=1mmu  converges to u in the sense of the space of vector distributions 

( ) ( )( ) ( ) ( )( )π′∩π′ 2,0,,02,0,,0 21
per LDHD TT , it follows that 

 ( )
( )

( )( ) ( ) ( )
( )TT

T

vtfvtua
dt

d
vtu

,0,00,0,0
,0,0

0
,,,,,, ψ=ψ+ψ−  for all nv S∈ . (2.42) 

By (2.32), the relation (2.42) holds for all ( )π∈ 2,01
perHv . Hence the function u satisfies (2.18) on 

( )T,0  in the sense of distributions. Moreover, since ( )∞
=1mmu  converges to u in [ ] ( )( )π2,0,,0 20 LC T , it 

follows from the pointwise convergence in ( )π2,02L  that 
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Therefore u satisfies (2.19). 

Part 2: Uniqueness of solution  

The solution u is unique as a result of the representation (2.30). �
 

 

Remark 2.5. The solution u in (2.30) is real-valued, even though it is expressed as a series of 

complex functions. Indeed, we have, for ( ) ( ) ( )Ttx ,02,0, ×π∈ , 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( ).,

,,

valued-real ,
,,

 of Form,,,

0
000

0

0
000

0
000

txu

wdswsfewue

ww

uf
xwdswsfewue

uxwdswsfewuetxu

k
k

t

k
st

k
t

kkk
k

t

k
st

k
t

k
k

t

k
st

k
t

kk

kk

kk

=

���
����

�
+=

���
����

�
=

���
����

�
+=

���
����

�
+=

� 	
� 	
� 	

∈

−λ−λ−

−∈
−−

−λ−
−

λ−

∈

−λ−λ−

Z

Z

Z

 

 

Theorem 2.6. The solution u of (2.17)-(2.19) satisfies the inequality 
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from which it follows that the solution u depends continuously upon the data, in the sense that 
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Proof. By (2.30), we have 
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It then follows that 
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Remark 2.7. It is possible to prove the inequality of continuous dependence (2.44) with a constant 

not dependent on T. If in (2.34), we set ( )tuv m=  and use the relation 
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0
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dt

d
tut

dt

du
mm

m = , (2.45) 

we obtain 
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This means that mu  satisfies the relation 

 ( ) ( ) ( )( ) ( ) ( )
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0
00

0

2

0
,,

2

1
,

2

1
. (2.46) 

Taking the limit as ∞→m , we have 

 ( ) ( ) ( )( ) ( ) ( )
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. (2.47) 

The relation (2.47) is called the energy equality, since the quantity  
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 ( ) ( ) ( ) ( )( )
�
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t
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0
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0
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2

1
:  (2.48) 

represents the energy of the system (see Dautray & Lions (2000b: p. 520)).  

We then have 
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A further consequence of the energy equality (2.47) is the continuous dependence of u in the 

norm of ��
���

�
��

������
���� π2,0,,0 1

per
2 HL T  with respect to 0u  and f, given by 

 ( ) ( )( ) ( ) ( )( )
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Indeed, 
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We now present a regularity result: 
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Theorem 2.8. If the initial data 0u  is of class ( )π2,01
perH , then the solution u of the problem (2.17)-

(2.19) has the regularity 

 ( ) ( )( )π∈
∂
∂

2,0,,0 22 LL T
t

u
 (2.50) 

and 

 ( ) ( )π∈ 2,02Htu  for almost all ( )Tt ,0∈ . (2.51)  

Proof. For any m ∈ N, and mmmk ,,1, Κ+−−= , taking kwv =  in (2.34) and multiplication by 

( ) km wtu
dt

d
,  results in 

 ( ) ( ) ( ) ( ) ( )
0

00

2

0
,,,,, kkmkkmmkm wwtu

dt

d
tfwwtu

dt

d
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d =
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+ . (2.52) 

Recognising that ( ) ( ) ( ) ( )( )tutua
dt

d
t

dt

du
tua mm

m
m ,

2

1
, =

�
�
�	



�

, summation of (2.52) over mmm ,,1, Κ+−− , 

integration over [ ]T,0  and rearrangement of terms yield, by the Parseval identity, 
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Hence ( ) ( )( )π∈
∂

∂
2,0,,0 22 LL T

t

um  for each m ∈ N, and, taking the limit as ∞→m , it follows that 

( ) ( )( )π∈
∂
∂

2,0,,0 22 LL T
t

u
. 

Since u satisfies (2.1) in the sense of distributions (see Remark 2.9 below), with ( ) ( )π∈ 2,02Ltf  

and ( ) ( )π∈
∂
∂

2,02Lt
t

u
 for almost all ( )Tt ,0∈ , it follows that ( ) ( ) ( )π∈+

∂
∂− 2,02

2

2

Ltbut
x

u
c  for 
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almost all ( )Tt ,0∈ . Then, since ( ) ( )π∈ 2,02Ltu , ( )π∈
∂
∂

2,02
2

2

L
x

u
, and therefore ( ) ( )π∈ 2,02Htu , for 

almost all ( )Tt ,0∈ . �
 

 

Remark 2.9. The regularity (2.50)-(2.51) in Theorem 2.8 permits us to give an interpretation of the 

variational problem (2.17)-(2.19). 

Suppose that u is the solution of the problem (2.17)-(2.19). Fix ( )T,0D∈ψ  and ( )π∈ 2,0Dv . 

Substitution of v in (2.18), multiplication by ψ  and integration over ( ) ( )T,02,0 ×π  leads to 
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 (2.53) 

If 

 ( ) ( ) ( )txvtx ψ=φ :, , (2.54) 

then ( ) ( )( )T,02,0 ×π∈φ D  and (2.53) becomes 
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. (2.55) 

As the space consisting of finite linear combinations of functions φ  of the form (2.54) is dense in 

( ) ( )( )T,02,0 ×πD , (2.55) is equivalent to 

 
DD

DD
×′

×′

φ=φ+
∂
∂−

∂
∂

,,2

2

fbu
x

u
c

t

u
 for all ( ) ( )( )T,02,0 ×π∈φ D . (2.56) 

Therefore any solution of the variational problem (2.17)-(2.19) is also a solution, in the sense of 

distributions, of the initial-boundary value problem (2.1)-(2.3). 
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Chapter 3. A semi-discrete spectral method for 
the general linear diffusion problem 

 

The work in this chapter depends on the theory done in Chapter 2 (especially in Theorem 2.4). We 

therefore continue with the notational conventions used in the previous chapter. For convenience, 

we will repeat the most important formulae here. We will also assume that u denotes the solution of 

(2.1)-(2.3), or 

 

( ) ( )
( ) ( )
( ) ( ) ��
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�

π=
=

×π=+
∂
∂−

∂
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,,2,0

0,

,02,0on  

0

2

2

tutu

xuxu

Tfbu
x

u
c

t

u

 (3.1) 

in the sense of Theorem 2.4. 

In this chapter, we investigate a semi-discrete (in the x variable) approximation of the general 

linear diffusion problem (2.1)-(2.3) (or (3.1)) or (2.17)-(2.19). Given the analysis done in Chapter 2, 

it is natural to use a spectral method of Fourier-Galerkin type in the sense described below. 

First requirement of the Fourier-Galerkin spectral method 

With each positive integer m, we associate the finite dimensional subspace mS  of ( )π2,01
perH  

defined in (2.31) by 

 { }m

mkkm w −== span:S , where ( ) ikx
k exw

π
=

2

1
. (3.2) 

Second requirement of the Fourier-Galerkin spectral method 

For each positive integer m, we approximate the solution u of (2.1)-(2.3) or (3.1) by mu , which is 

represented in the form 

 ( ) ( )�
−=

α=
m

mk
kkm wttu , (3.3) 

with unknown coefficients { }m

mkk −=α . 

Third requirement of the Fourier-Galerkin spectral method 

In general, mu  will not satisfy 

 fbu
x

u
c

t

u =+
∂
∂−

∂
∂

2

2

 and ( ) 00 uu = , (3.4) 

i.e. the residuals 
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 fbu
x

u
c

t

u
Ru m

mm
m −+

∂
∂−

∂
∂=

2

2

:  and ( ) 00: uuIu mm −=  (3.5) 

will not vanish everywhere. Consequently, the third requirement of the Fourier-Galerkin spectral 

method is to minimize the residuals mRu  and mIu  by demanding that 
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 allfor  0,

,0 and  allfor  0,
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or, equivalently, for mmmk ,,1, Κ+−−= , that (2.37) be satisfied: 
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 (3.7) 

 

Theorem 3.1. The Fourier-Galerkin spectral approximation (3.3) & (3.7) is the mth partial sum of 

the Fourier series of u. Consequently ( )∞
=1mmu  converges to u in ( ) ( )( )π2,0,,0 1

per
2 HL T  and 

[ ] ( )( )π2,0,,0 20 LC T . 

Proof. This is a consequence of (2.30) and (2.38), where the Fourier series of u and the solution to 

(3.1) and (3.7) are given respectively. The convergence of the sequence ( )∞
=1mmu  to u in the stated 

topologies was established in Step 3 (p. 32) of the proof of Theorem 2.4. �  

 

Remark 3.2. An alternative proof of the convergence of the Fourier-Galerkin spectral 

approximation (3.3) & (3.7) can be found using the classical framework of Lax-Richtmyer, i.e. 

consistency and stability (cf. Dautray & Lions (2000c: p. 37)). 

The approximation (3.3) & (3.7) is consistent in the sense that there exist, for m ∈ N, projection 

operators ( ) mmP SL →π2,0: 2  such that 

 0lim
0

=−
∞→

vPv m
m

 for all ( )π∈ 2,02Lv . (3.8) 

Indeed, taking 	
−=

=
m

mk
kkm wwvvP ,: , Theorem 1.1.3 immediately leads to (3.8). 

In addition, the approximation is stable in the sense that 
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This follows directly from (2.46), since 
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In addition to the above convergence results, we have the following exponential rate of 

convergence: 

 

Theorem 3.3. For m ∈ N, there holds the pointwise error estimate 
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Furthermore, if u satisfies the regularity condition 

 ( ) ( )π∈ 2,0ptu H  for ( )Tt ,0∈  (3.11) 

for some integer p > 1, then 
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Proof. If u satisfies (3.11) for some p ∈ N, then 
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Since  

 ( ) ( ) ( ) ( ) ( ) ( )
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0
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1
t

dx

du
t

dx

du
tutututu m

mm −+−=−  with ( ) ( )π∈ − 2,01pt
dx

du
H , (3.14) 

the estimate (3.13) follows from (3.12). �
 

 

Remark 3.4. If ( )π∈ 2,01
per0 Hu , we know that ( ) ( )π∈ 2,02Htu , i.e. p = 2 (cf. Theorem 2.8). 

 

Remark 3.5. The estimates in Theorem 3.3 are sharper than those obtained by Thomée (1997: 

Chapter 1), essentially because in this case ( )tum  is the best approximation of ( )tu  in mS  with 

respect to the inner product 
0

,⋅⋅  (cf. Reddy (1998: pp. 192-193), Canuto et al (1988: p. 277)). 

For example, Thomée (1997: Theorem 1.3) states that 
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0 1
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under the assumptions  

 ( ) ( )π∈ 2,02Htu  and ( ) ( )π∈ 2,01Ht
dt

du
. (3.16) 

Our rate of convergence ( ) ( ) 	
���=−
m

tutu m

1
O

0
 in (3.10) is valid without this assumption. Even 

when (3.16) is met, our estimate is sharper. Indeed, using the seminorm on ( )π2,01H  defined by 
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Chapter 4. Finite difference methods for a first 
order initial value problem 

 

This chapter is devoted to some numerical approximations of initial value problems for ordinary 

differential equations. In Section 4.1, we define, in a general framework, the concepts of 

consistency, zero-stability and convergence of finite difference methods that correspond to linear 

one-step methods. These concepts are applied to the classical � -method in Section 4.2. In Section 

4.3, we design an original scheme, the non-standard � -method, which has the advantage of 

preserving some qualitative properties of the solution of the initial value problem. 

 

4.1. Generalities 
 

We consider the initial value problem for the first order ordinary differential equation 

 
( ) ( )

( )
��

�
�
�

η=

=≡

.0

0in  ,

y

,Tytg
dt

dy
Dy

 (4.1) 

We assume once and for all that the problem (4.1) is well-posed, i.e. it has a unique solution that 

depends continuously upon the data. Typically, this is true when the function ( ) ( )ztgzt ,, →  is 

continuous on ( ) ( )∞∞−× ,,0 T  and satisfies the Lipschitz condition 

 ( ) ( ) 2121 ,, zzLztgztg −≤−  for all ( )Tt ,0∈ , ( )∞∞−∈ ,1z  and ( )∞∞−∈ ,2z  (4.2) 

for some constant L (cf. Lambert (1991: p. 6), Burden & Faires (1997: pp. 256-257)). Consequently, 

we assume that (4.2) is true. Whenever necessary, we assume more regularity on g so that the 

solution y is smoother. 

For the numerical approximation of (4.1), we fix an integer N, and define the step-size 

 
N

T
t =∆ : . (4.3) 

We then replace the continuous interval [ ]T,0  by the mesh of equidistant points 

 { }Nntntt nn ,,1,0for  : Κ=∆= . (4.4) 

For Nn ,,1,0 Κ= , ny  is used to denote an approximation of ( )nty , whereas ng  denotes ( )nn ytg , . 

The finite difference method entails solving in ny  the equation 

 ( )nntnt gyFyD ,∆∆ = , (4.5) 
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where tD∆  is a difference operator such that nt yD∆  approximates ( )ntDy , and ( )nnt gyF ,∆  

approximates ( )( )nn tytg ,  in some way. 

The finite difference method that we consider in this work is a particular case of the linear one-

step methods investigated by Lambert (1973: Chapters 2 & 3, 1991: Chapter 3). Consequently the 

three concepts that form an integral part of contemporary analysis of numerical methods are defined 

below in accordance to Lambert. 

 

Definition 4.1.1.  

(a) Consistency. (Lambert, 1991: p. 28) The finite difference scheme (4.5), viewed as a linear one-

step method, is called consistent, provided that for all well-posed initial value problems (4.1) 

with exact solution y, the truncation error ( ) ( ) ( )( )( )tytgtyFtyD tt ,,∆∆ −  satisfies 

 ( ) ( ) ( )( )( )( ) 0,,lim =− ∆∆∞→∆
tytgtyFtyD ttt

 for any [ ]Tt ,0∈ . (4.6) 

(b) Zero-stability. (Lambert, 1991: p. 32) The finite difference scheme (4.5) is called zero-stable if 

there exist constants K > 0 and 00 >h  such that, for all ( ]0,0 ht ∈∆ , the relation ε≤− Kyy nn
~  

holds whenever ε≤δ−δ nn

~
 for a given accuracy �  > 0 and any two perturbations ( )N

nn 0=δ  and 

( )N

nn 0

~
=δ  of the data in (4.1) with corresponding perturbed solutions ( )N

nny 0=  and ( )N

nny 0
~

= . 

(c) Convergence. (Lambert, 1973: p. 22) The finite difference scheme (4.5), viewed as a linear 

one-step method, is called convergent if, for all well-posed initial value problems (4.1) with 

exact solution y, we have  

 ( ) 0lim
0

=−
=∆
→∆

tyyn

ttn
t

 for any [ ]Tt ,0∈  (4.7) 

 for all solutions ( )N

nny 0=  of (4.5) satisfying ( )ty ∆η=0 , where ( ) η=∆η
→∆

t
t 0

lim . 

 

In this conceptual framework, we have the following equivalence theorem due to Dahlquist (cited 

by Lambert (1973: p. 33, 1991: p. 36)): 

 

Theorem 4.1.2. The necessary and sufficient conditions of the method (4.5) to be convergent are 

that it be both consistent and zero-stable. 
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4.2. The 
�
-method 

 

The � -method for approximating (4.1) reads 

 
( ) ��

�
��

η=

−=θ−+θ=
∆
−

+
+

,

1,,1,0for  1

0

1
1

y

Nngg
t

yy
nn

nn Κ
 (4.8) 

where [ ]1,0∈θ  is a given parameter. In the notation of (4.5), we have 

 
t

yy
yD nn

nt ∆
−= +

∆
1  and ( ) ( ) nnnnt gggyF θ−+θ= +∆ 1, 1 . (4.9) 

As mentioned earlier, the � -method (4.8) is a linear one-step method, the structure of a linear k-

step method being (Lambert, 1973: p. 4) 

 ��
=

+
=

+ β=α
∆

k

j
jnj

k

j
jnj gy

t 00

1
 for 1,,1,0 −= Nn Κ . (4.10) 

For some specific values of � , the � -method is known under the names indicated below: 

 

Value of �   Name of method 

0=θ   Forward Euler method 

2

1=θ   Trapezoidal rule, Crank-Nicolson method 

1=θ   Backward Euler method 

 

We now present the convergence of the � -method. 

 

Theorem 4.2.1. The � -method (4.8) is consistent, zero-stable and thus convergent. 

Proof. To prove consistency, we consider any well-posed initial value problem (4.1) with 

continuously differentiable solution y on [ ]T,0 . The truncation error of the � -method (4.8) at a fixed 

[ ]Tt ,0∈  is 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )( )tytgttyttg
t

tytty
tt ,1,: θ−+∆+∆+θ−

∆
−∆+=τ∆ . (4.11) 

We therefore have 

 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )

( ) ( ) ( )( )( ) ( ) ( )( )tytgttyttg
t

tytty

tytgttyttg
t

tytty
t

tt

t
t

t

,1,limlim

,1,limlim

00

00

θ−+∆+∆+θ−
�	
��

∆
−∆+=

�	
�� θ−+∆+∆+θ−
∆

−∆+=τ

→∆→∆

→∆∆→∆
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( ) ( ) ( )( )

.0

,lim
0

=

−=τ∆→∆
tytgt

dt

dy
tt

t  

By Definition 4.1.1(a), this means that the � -method is consistent. 

For zero-stability, it is difficult to proceed directly by using Definition 4.1.1(b). However, it is 

known that the linear multi-step method (4.10) is zero-stable if and only if every root of the first 

characteristic polynomial 

 ( ) �
=

α=ρ
k

j

j
j zz

0

:  (4.12) 

has modulus less than or equal to 1, and those with modulus 1 are simple (cf. Lambert  (1991: p. 

35)). Since the � -method (4.8) is a linear one-step method for which the only root, z = 1, of the 

corresponding polynomial ( )zρ  is simple, we conclude that the � -method is zero-stable. 

Using Theorem 4.1.2, (4.7) follows. �
 

 

Remark 4.2.2. Some clarification is necessary about the convergence proved in Theorem 4.2.1. In 

view of Definition 4.1.1(b), the zero-stability of the � -method simply means that this method is 

insensitive to perturbations whenever the step-size t∆  approaches 0. In other words, zero-stability 

controls the manner in which errors accumulate, but only in the limit as 0→∆t . However, in 

practice the limit of t∆  is never reached. What one obtains are different discrete solutions 

corresponding to different non-zero values of t∆ . 

In this regard, there exist several examples of linear multi-step methods that are convergent, i.e. 

consistent and zero-stable, but for which a value 0h  of the step-size may be found such that, for 

0ht >∆ , the error of the method increases as t∆  increases, whereas for 0ht <∆  it decreases. Let us 

illustrate this fact for the forward Euler method (i.e. �  = 0 in (4.8)). For this method, it can be shown 

(cf. Burden & Faires (1997: pp. 264-266)) that there holds the error bound 

 ( ) ( )1
2

−∆≤− nLt
nn e

L

tM
yty  for Nn ,,1,0 Κ= , (4.13) 

where L is the Lipschitz constant in (4.2) and y is supposed to be of class [ ]T,02C  such that 

 ( ) ∞<≤ Mt
dt

yd
2

2

 for [ ]Tt ,0∈  (4.14) 

for some constant M. Furthermore, if one considers the perturbed Euler method 

 
( )

,~
1,,1,0for  ~,~~

00

11

δη
δ

+=
−=+∆+= ++

y

Nnyttgyy nnnnn Κ
 (4.15) 
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where δ≤δn  for Nn ,,1,0 Κ= , then Burden & Faires show that 

 ( ) ( ) nn LtLt
nn ee

t

tM

L
yty 01

2

2~ δ+−
��

���
�

∆
δ+∆≤−  for Nn ,,1,0 Κ= . (4.16) 

The error bound (4.16) is no longer linear in t∆ . In fact, since 

 ∞=
��

�	

�

∆
δ+∆

→∆ t

tM
t 2

lim
0

, (4.17) 

the error would be expected to become large for sufficiently small values of t∆ . Let 

 ( )
t

tM
tE

∆
δ+∆=∆

2
: . (4.18) 

Then 

 ( ) ( )22 t

M
t

td

dE

∆
δ−=∆

∆
, (4.19) 

and if 
M

t
δ<∆ 2

, then ( ) 0<∆
∆

t
td

dE
 and E is decreasing. Similarly, if 

M
t

δ>∆ 2
, then ( ) 0>∆

∆
t

td

dE
 

and E is increasing. The minimal value of E occurs when 

 
M

t
δ=∆ 2

. (4.20) 

Decreasing t∆  beyond this value will tend to increase the total error in the approximation. 

 

The above comments motivate the need for another stability theory that applies when t∆  takes a 

fixed non-zero value. For a fixed step-size 0>∆t , stability of the � -method means that the 

propagation of error is insignificant as ∞→n . Following Raviart & Thomas (1983: Chapter 7), we 

assume, as usual, that the derivative 
y

g

∂
∂

 is constant, and consider the model and test problem 

 
( )

( ) �
�
�

η=

∞λ−=

,0

0in  

y

,y
dt

dy
 (4.21) 

where, for convenience, we have  

 0<
∂
∂≡λ−
y

g
. (4.22) 

The solution of (4.21) is 

 ( ) tety λ−η= . (4.23) 

The � -method (4.8) applied to (4.21) yields 
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( )

,

 for  
1

11

0

1

η=

∈
∆θλ+

∆λθ−−=+

y

n y
t

t
y nn N

 

and therefore 

 
( ) η

�
�
��

�
�

∆θλ+
∆λθ−−=

n

n t

t
y

1

11
 for n ∈ N. (4.24) 

The exact solution (4.23) and the discrete solution (4.24) are identical at the initial time t = 0. In 

view of (4.23) and (4.24), the propagation of error will be insignificant as ∞→n  if and only if 

 
( )

1
1

11 ≤
∆θλ+

∆λθ−−
t

t
, (4.25) 

which is the condition of stability for the � -method for a fixed t∆ . When 

 
( )

1
1

11 <
∆θλ+

∆λθ−−
t

t
, (4.26) 

we say that the � -method is absolutely stable for the fixed step-size t∆  to express the fact that 

( )∞
=1nny  in (4.24) goes to 0 as ∞→n , like ( )ty  in (4.23) as ∞→t . 

 

Remark 4.2.3. It is easy to see that if 
2

1≥θ , then the � -method is stable for any 0>∆t . According 

to standard terminology, the � -method is then said to be unconditionally stable. If 
2

1<θ , then the � -

method is stable only for t∆  satisfying  

 
θ−

≤∆λ
21

2
t . (4.27) 

In this case, the � -method is called conditionally stable. 

 

Remark 4.2.4. Setting th ∆−= λ: , the number 

 
( )

h

h
x

θ
θ

−
−+=

1

11
 (4.28) 

is the only root of the stability polynomial ( )hr ,π  (defined by Lambert (1973: p. 65)) for the � -

method (4.8) viewed as a linear one-step method (4.10). It is in terms of (4.28) and (4.26) that 

Lambert (1991: p. 70) defines the concept of absolute stability. 
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4.3. The non-standard � -method 
 

In this section, we will develop an original powerful variant of the � -method. We assume that the 

initial value problem for the first order differential equation (4.1) is autonomous, i.e. 

 
( ) ( )

( ) ��
��
�

η=

=≡

,0

0in  

y

,Tyg
dt

dy
Dy

 (4.29) 

the other conditions on g being satisfied. 

Non-standard finite difference schemes for (4.29) were introduced by Mickens (1994: Chapter 4) 

as powerful numerical methods that preserve significant properties of exact solutions of the 

involved differential equations. Schemes were empirically developed using a collection of rules set 

by Mickens.  

Anguelov & Lubuma (2000, 2001a, 2001b) provide some mathematical justifications for the 

success of these empirical procedures. In particular, non-standard finite difference schemes can be 

defined as follows by using two of Mickens’ rules: 

 

Definition 4.3.1. The scheme (4.5) is called a non-standard finite difference method if at least one 

of the following conditions is met: 

(a) In the first order discrete derivative nt yD∆  that occurs in (4.5), the traditional denominator t∆  

is replaced by a positive function φ  such that 

 ( ) ( )( )2O ttt ∆+∆=∆φ  as 0→∆t . (4.30) 

(b) Non-linear terms in ( )yg  are approximated in a non-local way, i.e. by a suitable function of 

several points of the mesh (e.g. ( )( ) 1
2

+≈ nnn yyty , ( )( ) 1
23

+≈ nnn yyty ). 

 

The power of the non-standard finite difference method over the standard method is expressed in 

the next definition: 

 

Definition 4.3.2. P-stability. (Anguelov & Lubuma (2000, 2001a)) Assume that the solutions of 

(4.29) satisfy some property P. The numerical scheme (4.5) is called (qualitatively) stable with 

respect to the property P (or P-stable) if, for every value of 0>∆t , the set of solutions of (4.5) 

satisfy property P. 
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Our aim is to construct a non-standard � -method that is stable with respect to the properties of 

fixed-points of (4.29). Our construction is based on Definition 4.3.1(a) (often referred to as 

renormalization of the denominator). In other words, we are, in view of (4.8), looking for discrete 

schemes of the form 

 ( ) ( ) nn
nn gg

t

yy θ−+θ=
∆φ
−

+
+ 11
1  for 1,,1,0 −= Nn Κ , (4.31) 

or, equivalently, 

 ( ) ( )( ) ( )111 ,,1 +++ ∆≡θ−+θ∆φ+= nnnnnn yytGggtyy  for 1,,1,0 −= Nn Κ  (4.32) 

with suitable initial values. 

 

Definition 4.3.3. Fixed-point of differential equation. Any constant y~  such that ( ) 0~ =yg , is 

called a fixed-point of the differential equation (4.29). 

 

We consider fixed-points with regard to the behaviour of the other solutions of the differential 

equation around them. Generally, fixed-points which attract other solutions in some neighbourhood 

when ∞→t , are called stable, those that repulse other solutions are called unstable. We restrict our 

study to hyperbolic fixed-points y~ , i.e. fixed-points y~  satisfying the relation 

 ( ) 0~ ≠≡ y
dy

dg
J . (4.33) 

The reason for this restriction is the Hartman & Grobman theorem (Stuart & Humphries, 1998: pp. 

156 & 164), which guarantees that the asymptotic behaviour of solutions of (4.29) with initial data 

near y~ may be reduced to the behaviour of solutions of the linear equation 

 ε=ε
J

dt

d
. (4.34) 

The equation (4.34) may formally be obtained as follows. Consider the perturbed trajectory 

( ) ( )tyty ε+= ~: . We have 

 ( )
( ) ( ) ( ),~~

~

2εε

ε

ε

Oy
dy

dg
yg

yg
dt

dy

dt

d

++=

+=

=

 

using a Taylor expansion of g around y~ . Since we are only interested in small values of � , we retain 

only the linear part of this differential equation, and (4.34) follows. 

 



Chapter 4. Finite difference methods for a first order initial value problem 

 53

Definition 4.3.4. Linear stability of fixed-point of differential equation. A hyperbolic fixed-point 

y~  of (4.29) is called linearly stable provided that the solution �  of (4.34) corresponding to any small 

enough initial data satisfies ( ) 0lim =ε
∞→

t
t

. Otherwise, the fixed-point is called linearly unstable. 

 

Remark 4.3.5. The linear stability of a hyperbolic fixed-point y~  of (4.29) is equivalent to having  

J < 0 in (4.33). Likewise, a fixed-point y~  is linearly unstable if and only if J > 0 in (4.33). 

 

We now turn to the discrete analogue of our discussion on fixed-points. 

 

Definition 4.3.6. Fixed-point of discrete scheme. A constant y~  is called a fixed-point of the 

difference scheme (4.31) or (4.32) if yyn
~=  is a fixed-point of the mapping G in (4.32). 

 

Remark 4.3.7. In view of the definition of G, y~  is a fixed-point of the discrete scheme (4.31) if and 

only if y~  is a fixed-point of the differential equation in (4.29). 

 

Let y~  be a fixed-point of the discrete scheme (4.31). Consider, from (4.31), the discrete trajectory 

nn yy ε+= ~:  and the discrete perturbation equation 

 ( ) ( ) ( ) ( )nn
nn ygyg

t
ε+θ−+ε+θ=

∆φ
ε−ε

+
+ ~1~

1
1  for 1,,1,0 −= Nn Κ . (4.35) 

Taylor expansion of ( )1
~

+ε+ nyg  and ( )nyg ε+~  around y~  yields, on retaining only the linear part in 

nε , the equation 

 ( ) ( ) nn
nn JJ

t
εθ−+εθ=

∆φ
ε−ε

+
+ 11
1  for 1,,1,0 −= Nn Κ , (4.36) 

or equivalently 

 ntn J ε=ε ∆+1  with 
( )( )

( ) Jt

Jt
J t θ∆φ−

θ−∆φ+=∆ 1

11
 for 1,,1,0 −= Nn Κ , (4.37) 

which is the discrete analogue of the error equation (4.34). 

 

Definition 4.3.8. Linear stability of fixed-point of discrete scheme. Assume that y~  is a hyper-

bolic fixed-point of (4.29). As a fixed-point of (4.31), this y~  is called linearly stable provided that 

the solution ( ) 0≥ε nn  of (4.37) corresponding to any small enough initial data satisfies 0lim =ε
∞→ nn

. 

Otherwise, the fixed-point is called linearly unstable. 
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Remark 4.3.9. The linear stability of a hyperbolic fixed-point y~  of (4.31) is equivalent to having 

1<∆tJ  in (4.37). Likewise, a fixed-point y~  is linearly unstable if and only if 1≥∆tJ  in (4.37). 

 

We now formalize the stability under consideration, as a special case of the P-stability in Definition 

4.3.2: 

 

Definition 4.3.10. Elementary stability. The finite difference scheme (4.5) is called elementary 

stable if, for any value of the step-size t∆ , its only fixed-points y~  are those of the differential 

equation (4.29), the linear stability properties of each y~  being the same for both the differential 

equation and the discrete scheme.  

 

Theorem 4.3.11. The standard 
�
-method (4.8) is not elementary stable. 

Proof. It is sufficient to consider the forward Euler method. i.e. 
�
 = 0 in (4.8). Let y~  be a fixed-

point of the differential equation (4.29) and the finite difference scheme (4.8). The discrete error 

equation (4.37) becomes 

 ( ) nn tJ ε∆+=ε + 11  for 1,,1,0 −= Nn Κ , (4.38) 

so that 

 ( ) 01 ε∆+=ε n
n tJ  for Nn ,,1,0 Κ= . (4.39) 

Suppose that the fixed-point y~  is linearly stable for the differential equation (4.29) (i.e. J < 0). 

However, ( )∞
=ε 1nn  diverges for 

J
t

−
≥∆ 2

, which means that y~  is linearly unstable for the finite 

difference scheme (4.8). 
�  

 

Remark 4.3.12. The only exception to the result in Theorem 4.3.11 is the Crank-Nicolson method, 

i.e. 
2

1=θ , which is elementary stable (cf. Anguelov & Lubuma (2001a)). 

 

In contrast to the negative result in Theorem 4.3.11, we have the following new elementary stable 

non-standard scheme that extends the results of Anguelov & Lubuma (2001a) and Mickens (1994: 

Section 4.2) regarding the forward and backward Euler methods: 
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Theorem 4.3.13. Let φ  be a real-valued function on R that satisfies (4.30) and the additional 

condition 

 ( ) 10 <φ< x  for x > 0 (4.40) 

(e.g. ( ) xex −−=φ 1 ). Assume that the differential equation (4.29) has a finite number of fixed-points, 

all hyperbolic. Set 

 ( ) ( ) ��
�
�
�

��
�
�
�

== 0~~max: ygy
dy

dg
q . (4.41) 

Then the non-standard � -method 

 
( ) ( )

�
�
	

��



�

η=

−=θ−+θ=
∆φ
−

+
+

,

1,,1,0for  1

0

1
1

y

Nngg

q

tq
yy

nn
nn Κ

 (4.42) 

or 

 ( )
q

tq
yy

yD nn
nt ∆φ

−= +
∆

1  and ( ) ( ) nnnnt gggyF θ−+θ= +∆ 1, 1  (4.43) 

in the notation of (4.5), is elementary stable. 

Proof. By Remark 4.3.7, y~  is a fixed-point of the differential equation (4.29) if and only if y~  is a 

fixed-point of (4.42). 

Suppose that y~  is a hyperbolic fixed-point of (4.29). The discrete error equation (4.37) reads 

 
( )( )

( )
nn

q

J
tq

q

J
tq

ε�
�
�
�



�

�
�
�
�

�

�

θ∆φ−

θ−∆φ+
=ε +

1

11

1  for 1,,1,0 −= Nn Κ , (4.44) 

so that 

 
( )( )

( )
0

1

11
ε�

�
�
�

�

�

�
�
�
�

�

�

θ∆φ−

θ−∆φ+
=ε

n

n

q

J
tq

q

J
tq

 for Nn ,,1,0 Κ= . (4.45) 

If y~  is linearly unstable for the differential equation (i.e. J > 0), then 

 
( )( )

( )

( )( )

( )
1

1

11

1

11
≥

θ∆φ−

θ−∆φ+
=

θ∆φ−

θ−∆φ+

q

J
tq

q

J
tq

q

J
tq

q

J
tq

, (4.46) 
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which, in view of (4.45), implies that ( ) 1≥ε nn  diverges. Thus y~  is also a linearly unstable fixed-point 

of the non-standard scheme (4.42). If, on the other hand, y~  is linearly stable for the differential 

equation (i.e. J < 0), then 

 

( )( )

( )

( )( )

( )

( )( )

( )

1

1

11

1

11

1

11

<

θ∆φ+

θ−∆φ−
=

θ∆φ+

θ−∆φ−
=

θ∆φ−

θ−∆φ+

q

J
tq

q

J
tq

q

J
tq

q

J
tq

q

J
tq

q

J
tq

 

because of (4.40) and (4.41). Consequently, in view of (4.45), ( ) 1≥ε nn  converges to 0. Therefore y~  

is also linearly stable for the non-standard scheme (4.42). 
�  

 

The non-standard 
�
-method preserves the zero-stability, consistency and convergence properties of 

the standard 
�
-method. 

 

Theorem 4.3.14. The non-standard 
�
-method (4.42) is consistent, zero-stable and thus convergent. 

Proof. This is a consequence of Theorem 6 in Anguelov & Lubuma (2001a), observing that the 

function tF∆  in (4.43) satisfies the Lipschitz condition 

 ( )( ) ( )( ) nn
n

nntnnt
n

zyLzgzFygyF −≤−
∈

∆∆
∈ NN

sup,,sup  (4.47) 

for any two bounded sequences ( )∞
=1nny  and ( )∞

=1nnz , and L the constant in (4.2). Indeed, 

 

( )( ) ( )( )
( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

.sup

on condition  Lipschitz1

inequality Triangle1
1

,,

11

11

11

nn
n

nnnn

nnnn

nnnn

nntnnt

zyL

gzyzyL

zgygzgyg
zgygzgyg

zgzFygyF

−≤
−θ−+−θ≤

−θ−+−θ≤
−θ−+−θ=

−

∈

++

++

++

∆∆

N

 

�  

 

Remark 4.3.15. The non-standard 
�
-method is absolutely stable for all values of [ ]1,0∈θ  and 

0>∆t . Indeed, the non-standard analogue of (4.24) is given by 
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( )( )

( ) η���
�

���
�

θ∆λφ+
θ−∆λφ−=

n

n t

t
y

1

11
. (4.48) 

Using (4.40), it follows that 

 
( )( )

( ) 1
1

11 <
θ∆λφ+

θ−∆λφ−
t

t
. (4.49) 

 

At the end of this chapter, we have the following comparative table, which clearly shows the power 

of the non-standard � -method (4.42) over the standard � -method (4.8): 

 

Property Standard � -method Non-standard � -method 

Consistency Yes Yes 

Zero-stability Yes Yes 

Convergence Yes Yes 

Absolute stability for all t∆  No Yes 

Elementary stability for all �  No Yes 
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Chapter 5. Full discretization of the general linear 
diffusion problem 

 

In this chapter, we consider a fully discrete (i.e. in both the x and t variables) approximation of the 

general linear diffusion problem (2.1)-(2.3) or (2.17)-(2.19): 

 

( ) ( )
( ) ( )
( ) ( ) ��

�
�

��
�
�
�

π=
=

×π=+
∂
∂−

∂
∂

.,2,0

0,

,02,0on  

0

2

2

tutu

xuxu

Tfbu
x

u
c

t

u

 (5.1) 

The Fourier-Galerkin spectral method (3.3) & (3.7) is used for the spatial approximation. For the 

discretization in time, we will consider, in turn, the � -method (as discussed in Section 4.2) and the 

non-standard � -method (Section 4.3). 

We return to the notation used in Chapters 2 and 3. In particular, we will make use of the 

eigenvalues { } Z∈λ kk  and eigenfunctions { } Z∈kkw  of the eigenvalue problem (2.23), as given by 

(2.25) and (2.26): 

 bckk +=λ 2  and ( ) ikx
k exw

π
=

2

1
. (5.2) 

As previously, we will also assume that u denotes the solution of (5.1) in the sense of Theorem 2.4. 

In addition, for a given number of time steps N and step-size t∆  defined by (4.3), we replace, as 

before, the interval [ ]T,0  by the mesh (4.4). We adopt the notation 

 ( )
0, ,: knnk wtfg =  and ( )�

−=
=

m

mk
kknnm wwtff

0, ,: , (5.3) 

and denote by nk,α  the finite difference approximation to ( )nk tα . Moreover, we set 

 �
−=

α=
m

mk
knknm wu ,, : . (5.4) 
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5.1. Spectral-� -method 
 

For fixed m ∈ N and mmmk ,,1, Κ+−−= , the sequence ( )N

nnk 0, =
α  is determined by applying the � -

method (4.8) to the initial value problem (2.37) given by 

 
( ) ( ) ( ) ( )

( ) ��
��
�

=α

∈=αλ+α

.,0

,0for  ,

0 kk

kkkk

wu

Ttwtftt
dt

d

 (5.5) 

In other words, ( )N

nnk 0, =
α  solves the difference equation 

 
( )( ) ( ) �

�
�
�

	
=α

−=θ−+θ=αθ−+θαλ+
∆

α−α
++

+

.,

1,,1,0for  11

000,

,1,,1,
,1,

kk

nknknknkk
nknk

wu

Nngg
t

Κ
 (5.6) 

Multiplying (5.6) by kw , summing over mmmk ,,1, Κ+−−= , taking the inner product with any 

mv S∈  (with mS  defined in (2.31)) and using the identity (2.24) in successive order lead to the 

spectral-� -method 
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Remark 5.1.1. The simple structure of (5.5) is due to the orthonormality of the basis { }m

mkkw −=  of 

mS . In general, for an arbitrary basis { }m

mkkw −= , the analogue of (5.5) is obtained as follows. Define 

the vectors  
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,

,
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m

m

m

wtf

wtf

wtf

t
Μ

ρ
, (5.8) 

and the mass matrix ( ) ( )
0

,: ijij wwm ==M  as well as the stiffness matrix ( ) ( )( )ijij wwar ,:==R . 

Then the general form of (5.5) is the first-order initial-value problem 

 
( ) ( ) ( ) ( )

( ) !"
!#
$

β=α

∈χ=α+α

.0

,0for  
ρρ

ρρρ
Ttttt

dt

d
RM

 (5.9) 
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The � -method for the system (5.9) is 

 
( ) ( )( ) ( ) ( ) ( )

.

1,,1,0for  11
1
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111

β=α

−=χθ−+χθ=αθ−+αθ+α−α
∆ +++

ρρ
Κ

ρρρρρρ
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t nnnnnn RM
 

Despite the simple structure of (5.5), it is a stiff system, as is the general system (5.9). The 

stiffness of (5.9) means the following (Dautray & Lions, 2000c: p. 68): Some of the characteristic 

values of the system (5.9), i.e. eigenvalues �  satisfying 

 ( ) ( )tt α=αλ
ρρ

RM , (5.10) 

have small or bounded modulus as ∞→m , i.e. the dimension of the system tends to ∞  (which is 

necessary to obtain convergence in space), while others have very large modulus, which tends to ∞  

with m. 

 

Theorem 5.1.2. For 1
2

1 ≤θ≤ , the spectral-� -method (5.7) is stable in the sense of Lax-Richtmyer, 

i.e. 

 
00,0, mnm uKu ≤  for Ttn ≤∆  (5.11) 

for some constant K �  0. 

Proof. We use ( )m

mkka −=diag  to denote the diagonal matrix with entries ( )m

mkka −= , and define  
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. (5.12) 

Then (5.7) (with f = 0) is equivalent to 
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Using 
E

⋅  to denote the Euclidean norm, we have 
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since 
( )

1
1

11 ≤
θλ∆+

λθ−∆−

k

k

t

t
 for 1

2

1 ≤θ≤  (cf. Remark 4.2.3). Hence 
E0,E, mnm α≤α

ρρ
. Thus 
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Remark 5.1.3. We know (cf. Theorem 2.4) that the problem (5.1) is well-posed (see Dautray & 

Lions (2000c: p. 36)). Therefore, in view of the Lax equivalence theorem (Dautray & Lions, 2000c: 

p. 37), the spectral-� -method would be convergent for 1
2

1 ≤θ≤ , in the sense that 

 ( ) 0lim
0,

0

=−

=∆
→∆

∞→ nm

ttn
t

m
utu  for all ( )Tt ,0∈  (5.14) 

under the assumption that the method is consistent.  

 

We now present a result on the order of convergence, following, to some extent, Raviart & Thomas 

(1983: pp. 177-178): 

 

Theorem 5.1.4. For m ∈ N, the solution { }N

nnmu
0, =
 in mS  of the scheme (5.7) satisfies the following 

estimates: 

(a) If 1
2

1 ≤θ<  and [ ] ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 221
per

1 LCHC TTu , there exists for any 00 >h  a 

constant C > 0 such that for all 0ht ≤∆ , we have 

 ( ) ( ) ( ) ( ) ( ) ���
�

���
�

∆+−+≤− 		 nn tt
m

nnnm dss
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1
. (5.15) 

(b) If 
2

1=θ  and [ ] ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 231
per

1 LCHC TTu , then 
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dt

ud
tCdss

dt
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s

dt
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t
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m
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0 0
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3
2

0 00
0,

1
,  (5.16) 

 where C is independent of m, t∆  and u. 
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(c) If 
2

1
0 <θ≤  and [ ] ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 221

per
1 LCHC TTu , we have, under the stability 

condition 
θ−

≤∆λ
21

2
tm  (cf. (4.27)), the formula 

 ( ) ( ) ( ) ( ) ( )
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n nt t

m
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s
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0 0 0
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1
, (5.17) 

 where C is independent of m, t∆  and u. 

Proof. The proof is given in full by Raviart & Thomas (1983: p. 178). We shall restrict ourselves to 

a straightforward proof for the case �  = 1, following Thomée (1997: Theorem 1.5). Consider 

 ( )nmnmnm tuue −= ,, : , (5.18) 

the error between the fully discrete approximation and the semi-discrete spectral approximation at 

ntt = . Adding and subtracting terms in (5.7) and rearrangement yield, for all mv S∈ , 
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Using (2.18), (5.19) becomes 
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Substituting 1, += nmev  into (5.20) and observing that ( ) 0, 1,1, ≥++ nmnm eea , we obtain 
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so that 
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Repeated application of (5.21) leads to 
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Then we have 
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due to (3.10) and our calculations here. 	
 

 

The error estimates can be improved upon by using any regularity properties of u. 

 

Corollary 5.1.5. Suppose that 

 ( ) ( )π∈ 2,02Htu  and ( ) ( )π∈ 2,01Ht
dt

du
 (5.22) 

(cf. (2.50)-(2.51)). For m ∈ N, the solution { }N

nnmu
0, =

 in mS  of the scheme (5.7) satisfies the 

following estimates: 

(a) If 1
2

1 ≤θ<  and [ ] ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 221
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1 LCHC TTu , there exists for any 00 >h  a 

constant C > 0 such that for all 0ht ≤∆ , we have 
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(b) If 
2

1=θ  and [ ] ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 231
per

1 LCHC TTu , then 
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 where C is independent of m, t∆  and u. 
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(c) If 
2

1
0 <θ≤  and [ ] ( )( ) [ ] ( )( )π∩π∈ 2,0,,02,0,,0 221

per
1 LCHC TTu , we have, under the stability 

condition 
θ−

≤∆λ
21

2
tm  (cf. (4.27)), the formula 

 ( ) ( ) ( ) ( )
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nn tt

nnm dss
dt
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m
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m
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20,

11
, (5.25) 

 where C is independent of m, t∆  and u. 

Proof. These results follow easily by using (3.12). �
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5.2. Spectral-non-standard � -method 
 

The choice of the spectral-� -method in Section 5.1, with �  lying in the interval ��
���

�
1,

2

1
, was 

motivated by what we studied in Section 4.2. In that section, we proved that the � -method, applied 

to an initial value problem for a first order differential equation, is stable for any 0>∆t  if and only 

if �	

��


∈θ 1,

2

1
 (cf. Remark 4.2.3). 

However, in Section 4.3, we considered the non-standard � -method, which is elementary stable 

(Theorem 4.3.13) as well as absolutely stable (Remark 4.3.15) for any 0>∆t  and [ ]1,0∈θ . It is 

therefore natural to wonder whether the use of the non-standard � -method could provide fully 

discrete spectral methods with better stability properties than the method we studied in Section 5.1.  

In this section, we describe some possible spectral non-standard � -methods, the full analysis of 

which will be done in further study. The procedure to design non-standard schemes for initial value-

boundary value problems such as (5.1) is due to Mickens (1994: Chapter 7) and formalized by 

Anguelov & Lubuma (2001a). 

The stationary case of the problem (5.1) is the boundary value problem 
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.20

2,0on  
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2

uu

fbu
dx

ud
c

 (5.26) 

According to the analysis done in Section 1.2 and Chapter 4, a discrete solution to (5.26) is obtained 

by the Fourier-Galerkin spectral method as 

 ( ) ( )xwxu
m

mk
kkm �
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α= , (5.27) 

or, equivalently, 
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The space-independent case of (5.1) is the initial value problem 

 
( )

( ) ��
��
�

η≡=

=+

.0

,0on  

0uu

Tfbu
dt
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 (5.29) 

For the decay problem 
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u

Tbu
dt

du
 (5.30) 

the non-standard � -method developed in Theorem 4.3.13 reads 
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where φ  satisfies the conditions (4.30), (4.40). Notice that his scheme is elementary stable, even if 

b < 0. Another elementary stable non-standard scheme that could be considered for (5.30) is 
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 (5.32) 

The scheme (5.32) is exact (cf. Mickens (1994: p. 71)) in the sense that ( ) nn utu =  for u the solution 

of (5.30). 

In view of (5.31) and (5.32), the following non-standard schemes may be considered for (5.29): 
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We may now combine (5.28) and (5.33) to obtain the following spectral-non-standard � -method 

for (5.1): 
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Another spectral-non-standard scheme results from (5.28) and (5.34), and reads as follows: 
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Notice that the non-standard schemes (5.35) and (5.36) can be defined as such even when ( )uff =  

in (5.1). 

For m ∈ N fixed, applying the non-standard � -method (4.42) (with φ  satisfying (4.30) and 

(4.40), and q defined by (4.41)) to (5.5) yields 
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If, in (5.1), we have f = 0, then the method (5.37) is elementary stable (by Theorem 4.3.13). From 

(5.37) it follows (similar to the derivation of (5.7) from (5.6)) that 
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The spectral-non-standard � -methods (5.35), (5.36) and (5.38) obtained for (5.1) are all 

elementary stable in the limit space-independent case (5.30). Further qualitative properties (e.g. 

convergence) of these schemes, as well as the study of some numerical experiments, form an 

integral part of our ongoing research. 
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