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Introduction

The continuous-discrete time series problem is concerned with fitting continuous

time series models to discrete time series data. There are a number of reasons

for wanting to do this. Firstly, to provide forecasts or interpolates between obser-

vations; secondly, to provide estimates of signal derivatives; thirdly, to deal with

unequally spaced data; fourthly, as an alternative to fitting splines; fifthly, as part

of a continuous time control design scheme. Solo (1984, p. 326)

The purpose of this study is to investigate some qualitative and quantitative properties

of the class of continuous-time autoregressive moving average (CARMA) time series models,

which are defined as follows. If {ε(t)}t∈[0,∞) is a continuous-time white noise process, and

α1, α2, . . . , αp and β1, β2, . . . , βq are real constants, the process {Y (t)}t∈[0,∞) satisfying (at

least formally) the stochastic differential equation

αpY (t) + αp−1Y
′(t) + · · ·+ α1Y

(p−1)(t) + Y (p)(t) = ε(t) + β1ε
′(t) + β2ε

′′(t) + · · ·+ βqε
(q)(t),

is called a continuous-time autoregressive moving average process of order (p, q) (or, in short,

a CARMA (p, q) process).

Due to their linear specification, CARMA models result in tractable likelihoods for ob-

served discrete-time data. Hence this method is rather popular for the analysis of irregu-

larly sampled time series data, as is often encountered in financial applications and control

problems (cf. Robinson, 1977; Jones, 1981; Khabie-Zeitoune, 1982; Pandit and Wu, 1983;

Jones, 1984; Masry, 1984; Jones, 1985; Harvey, 1989; Bergstrom, 1990; Tong, 1990; Hynd-

man, 1993; Jones, 1993; Belcher, Hampton and Tunnicliffe Wilson, 1994; Brockwell, 2000; Tsai

and Chan, 2000). Attention has also been paid (by Robinson (1980) and Masry (1997)) to the

case where the observation times themselves form stationary point processes. Bartlett (1955),

Dzhaparidze (1971) and Priestley (1981) have also presented some results on the estimation

of the model from a continuous record.

The application of CARMA models to time series with regularly sampled data, a field

conventionally considered the exclusive domain of discrete-time methodology, has also re-

ceived considerable attention (cf. Bartlett, 1946; Durbin, 1961; Telser, 1967; Hannan, 1970;
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Introduction

Phillips, 1972; Pandit and Wu, 1975; Jones, 1981; Bergstrom, 1984; Solo, 1984). In addition,

the embedding of discrete-time autoregressive moving average (DARMA) models into their

continuous-time counterparts has also been the subject of a number of papers; the intertex-

tual discourse between Chan and Tong (1987), Liu (1988), He and Wang (1989) and Brockwell

(1995) serves as illustration in this regard.

In general, the properties of CARMA processes are well-documented, and have been known

for a considerable period of time (cf. Doob, 1953). From a statistical point of view, much

insight is to be gained from the study of these properties, without having to delve too deep

into serious measure theory.

In Chapter 1, we consider two often-used continuous-time stochastic processes, namely

continuous-time white noise and Brownian motion. The most prominent result in this chapter

is the additivity property of Brownian motion, expressed as its relationship with Gaussian

continuous-time white noise. The presentation of the material covered in this chapter is

deliberately non-measure theoretical, with the emphasis being on the development of ideas

and concepts for use in the remainder of this work.

Chapter 2 is concerned with the general linear diffusion process, which is defined as the

solution of the stochastic differential equation

dX (t) = AX (t) dt + σe ε (t) ,

with σ ∈ [0,∞) being a constant, A a p× p matrix, e a p-dimensional vector and {ε(t)}t∈[0,∞)

a Gaussian continuous-time white noise process, under suitable initial conditions. Section 2.1

constitutes a brief introduction to the Itô integral, which is one of the canonical forms of the

stochastic integral (the other being the Stratonovich integral). Some elementary properties

of this integral are also presented. In Section 2.2, the interpretation of the above stochastic

differential equation is given in terms of Itô calculus. We prove that its solution exists, and

also obtain explicit formulae for the first and second order moments of this solution. The

chapter concludes with some necessary and sufficient conditions for the weak stationarity of

the general linear diffusion process.

The main results of this study are presented in Chapter 3. In Section 3.1, the CARMA

process is introduced, and its first and second-order moments and stationarity properties

are discussed. Having established that the continuous-time autoregressive (CAR) process

is a special CARMA process, Section 3.2 is devoted to establishing the properties of CAR

processes. Likewise, the continuous-time moving average (CMA) process forms the focus of

Section 3.3.

No attention is paid to the application of these models to actual time series. Several

(very involved) methods for estimation of parameters and prediction of observations exist,

e.g. the use of Kalman filters (cf. Kalman and Bucy, 1961) and Yule-Walker equations (cf.
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Introduction

Hyndman, 1993). The amount of work necessary for a proper investigation of these methods

is of great enough magnitude to warrant an essay of this kind in itself.
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Chapter 1

Foundation processes

In this chapter, we study two often-used continuous-time stochastic processes which are in-

extricably linked, namely, continuous-time white noise and Brownian motion. In Section 1.1,

we develop the notion of a continuous-time white noise process in analogy to the well-known

discrete-time white noise process. In Section 1.2, we first define Brownian motion in the con-

ventional way, and then investigate its specific relationship with Gaussian continuous-time

white noise.

1.1 Continuous-time white noise

We first consider the well-known discrete-time white noise process (cf. Cryer, 1986, pp. 15-16).

Definition 1.1.1 (Discrete-time white noise) A discrete-time stochastic process {εn}n∈N0

taking values in R is called a discrete-time white noise process if it has the following properties:

1. For n ∈ N0,

E (εn) = 0. (1.1.1)

2. There exists a constant σ2
ε ∈ [0,∞) satisfying

cov (εm, εn) = δm−nσ
2
ε for all m ∈ N0 and n ∈ N0, (1.1.2)

where the Kronecker delta function δ : R → {0, 1} is defined as

δm :=





1 if m = 0

0 if m 6= 0
. (1.1.3)

It seems reasonable to expect that a continuous-time white noise process should have

similar first and second order moments to a discrete-time white noise process. However,
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Section 1.1. Continuous-time white noise

there is one startling difference concerning its variance. We illustrate this by contradiction,

essentially following the same line of reasoning as Priestley (1981, Section 3.7.1). Suppose

that {ε(t)}t∈[0,∞) is a continuous-time real-valued stochastic process with expected value

E (ε (t)) = 0 for t ∈ [0,∞) (1.1.4)

and, for a constant σ2
ε ∈ [0,∞), covariance

cov (ε (s) , ε (t)) = δt−sσ
2
ε for all s ∈ [0,∞) and t ∈ [0,∞) . (1.1.5)

Remark 1.1.2 We assume, in addition, that {ε(t)}t∈[0,∞) is integrable with respect to time

as well as with respect to its probability space. The purpose of this assumption is to satisfy the

premises of Fubini’s Theorem (cf. Adams and Guillemin, 1996, Section 2.3), which guaran-

tees that integrals with respect to probability spaces (e.g. expected values, covariances) can be

interchanged with integrals with respect to time.

Let us construct a random variable U as some linear combination of {ε(t)}t∈[0,∞) , i.e. for

numbers a ∈ [0,∞) and b ∈ (a,∞) and a square integrable deterministic function g : [a, b] →
R, U is defined as

U :=

b∫

a

g(t)ε (t) dt. (1.1.6)

The first and second order moments of U are

E (U) = E




b∫

a

g(t)ε (t) dt


 cf. (1.1.6)

=

b∫

a

g(t)E (ε (t)) dt Remark 1.1.2

= 0 cf. (1.1.4) (1.1.7)

and

var (U) = cov




b∫

a

g(s)ε (s) ds,

b∫

a

g(t)ε (t) dt


 cf. (1.1.6)

=

b∫

a

b∫

a

g(s)g(t)cov (ε (s) , ε (t)) ds dt Remark 1.1.2

=

b∫

a

b∫

a

g(s)g(t)δt−sσ
2
ε ds dt cf. (1.1.5)

= 0. cf. (1.1.3) (1.1.8)
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Section 1.1. Continuous-time white noise

Equations (1.1.7) and (1.1.8) imply that any random variable U of the form (1.1.6) takes the

constant value zero almost surely. Hence {ε(t)}t∈[0,∞) is degenerate in the sense that it is of

little use in generating non-trivial stochastic processes.

The only way to obviate this fundamental difficulty is to require the second order moments

of a continuous-time white noise process to satisfy

cov (ε (s) , ε (t)) = δ (t− s) σ2
ε for all s ∈ R and t ∈ R, (1.1.9)

where δ is the Dirac mass function (cf. Pandit and Wu, 1983, Section 6.2) satisfying

∫

R

g(t)δ (t) dt = g(0) for all integrable functions g : R → R (1.1.10)

δ (t) = 0 for t 6= 0. (1.1.11)

Remark 1.1.3 The Dirac mass is a so-called singular distribution (cf. Sauer, 2001, p. 3),

and therefore a member of the class of generalized functions on R. In fact, it is possible (cf.

Sauer, 2001, p. 6) to construct the Dirac mass as the pointwise limit of a sequence of functions

that are all infinitely differentiable.

Remark 1.1.4 Some authors (e.g. Pandit and Wu, 1983; Jones, 1985) prefer to write (1.1.10)

and (1.1.11) (albeit formally) as

∫

R

δ(t) dt = 1 and δ(t) =




∞ if t = 0

0 if t 6= 0
. (1.1.12)

In view of (1.1.12), the variance of a continuous-time white noise process can intuitively be

regarded as infinite (cf. Chatfield, 1996, pp. 43-44).

Indeed, if {ε(t)}t∈[0,∞) satisfies (1.1.9), then U in (1.1.6) has the property

var (U) = cov




b∫

a

g(s)ε (s) ds,

b∫

a

g(t)ε (t) dt


 cf. (1.1.6)

=

b∫

a

b∫

a

g(s)g(t)cov (ε (s) , ε (t)) ds dt Remark 1.1.2

=

b∫

a

b∫

a

g(s)g(t)δ (t− s) σ2
ε ds dt cf. (1.1.9)

= σ2
ε

b∫

a

(g(t))2 dt. cf. (1.1.10), (1.1.11) (1.1.13)
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Section 1.1. Continuous-time white noise

Clearly, var (U) ≥ 0, and var (U) = 0 if and only if g is almost surely zero on the interval [a, b].

It turns out that there does not exist any “reasonable” stochastic process satisfying (1.1.4)

and (1.1.9) (cf. Øksendal, 2000). Nevertheless, it is possible to represent {ε(t)}t∈[0,∞) as a

generalized stochastic process called a continuous-time white noise process.

Definition 1.1.5 (Continuous-time white noise) A continuous-time white noise process

{ε(t)}t∈[0,∞) is defined to be the real-valued continuous-time stochastic process satisfying (1.1.4)

and (1.1.9).

Remark 1.1.6 Kallianpur and Karandikar (1988, Chapter 1) follow a more rigorous ap-

proach to the definition of continuous-time white noise. Having shown that a continuous-time

white noise process cannot be measurable (Remark 2, p. 24), neither can its sample paths

be continuous (Remark 1, p. 24), they conclude that the best definition of a continuous-time

white noise process is “that stationary process which has constant spectral density” (p. 26).

They also show (p. 25–26) that this definition of a continuous-time white noise process leads

to (1.1.4) and (1.1.9). It is therefore consistent with Definition 1.1.5.

Remark 1.1.7 In the remainder of this chapter, we assume a continuous-time white noise

process to be integrable with respect to time as well as with respect to its probability space (see

Remark 1.1.2). We also need to assume that, at the initial time (t = 0), the sample path of

such a continuous-time white noise process has a finite value almost surely.
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Section 1.2. Brownian motion

1.2 Brownian motion

We now turn our attention to a stochastic process which is a prominent member of the class

of Wiener processes. Priestley (1981, p. 167) describes Brownian motion as being the

. . . well known phenomenon in physics which describes the random movement of

microscopic particles suspended in a liquid or gas. It was first observed experi-

mentally by Robert Brown in 1827, and is due to the impact on the particles of

randomly moving molecules of the liquid or gas. . . . There is a substantial lit-

erature on the subject in the context of statistical mechanics—starting with the

pioneering work of Einstein. . .

In this work, we will use one-dimensional real-valued Brownian motion, which is defined as

follows.

Definition 1.2.1 (Brownian motion) A real-valued continuous-time stochastic process

{W (t)}t∈[0,∞) is called Brownian motion if it satisfies the following:

1. We have

W (0) = 0 almost surely. (1.2.1)

2. There exists a constant σ2
W ∈ [0,∞), called the variance of {W (t)}t∈[0,∞), such that

W (t) ∼ N
(
0, σ2

W t
)

for all t ∈ (0,∞) , (1.2.2)

i.e. W (t) has a normal distribution with mean 0 and variance σ2
W t.

3. The process {W (t)}t∈[0,∞) has stationary increments, i.e. for all s > 0 and t > 0, the

distribution of W (t + s)−W (t) is independent of t.

4. The process {W (t)}t∈[0,∞) has independent increments, i.e. W (t2)−W (t1) and W (t3)−
W (t2) are independent for any real numbers t1, t2 and t3 satisfying

0 ≤ t1 ≤ t2 ≤ t3. (1.2.3)

The existence and uniqueness of Brownian motion has been proven conclusively (see, for

instance, Karatzas and Shreve (1988, Section 2.1-2.2) and Rogers and Williams (1994a, The-

orem I.6.1)). In addition, it is related to the class of Gaussian continuous-time white noise

processes in a very specific way.

We first define a Gaussian continuous-time stochastic process.

12



Section 1.2. Brownian motion

Definition 1.2.2 (Gaussian continuous-time stochastic process) A continuous-time

stochastic process {X(t)}t∈[0,∞) is called Gaussian if
t∫

0

X(u) du is normally distributed for all

t ∈ (0,∞).

The next result is is an adaptation of a discussion by Priestley (1981, pp. 161-163).

Theorem 1.2.3 Suppose that {ε(t)}t∈[0,∞) is a Gaussian continuous-time white noise process.

If the continuous-time stochastic process {W (t)}t∈[0,∞) is defined by

W (t) :=

t∫

0

ε (u) du for t ∈ [0,∞) , (1.2.4)

then {W (t)}t∈[0,∞) is a Brownian motion.

Proof. We show that {W (t)}t∈[0,∞) satisfies all the properties of Brownian motion set out in

Definition 1.2.1:

1. Since
0∫
0

ε (u) du = 0 almost surely (see Remark 1.1.7), Property 1 is satisfied.

2. For t ∈ (0,∞), we have

E (W (t)) = E




t∫

0

ε (u) du


 cf. (1.2.4)

=

t∫

0

E (ε (u)) du Remark 1.1.7

= 0. cf. (1.1.4) (1.2.5)

Moreover, there exists a constant σ2
ε ∈ [0,∞) such that, for s ∈ (0,∞) and t ∈ (0,∞),

cov (W (s) ,W (t)) = cov




min{s,t}∫

0

ε (u) du,

max{s,t}∫

0

ε (v) dv


 cf. (1.2.4)

=

min{s,t}∫

0

max{s,t}∫

0

cov (ε (u) , ε (v)) du dv Remark 1.1.7

=

min{s,t}∫

0

max{s,t}∫

0

δ(u− v)σ2
ε du dv cf. (1.1.9)

=

min{s,t}∫

0

σ2
ε dv cf. (1.1.10)

= σ2
ε min {s, t} . (1.2.6)

13



Section 1.2. Brownian motion

In particular,

var (W (t)) = σ2
εt for t ∈ [0,∞) . (1.2.7)

In the light of the fact that {ε(t)}t∈[0,∞) is Gaussian, equations (1.2.5) and (1.2.7) imply

that Property 2 is satisfied, with the variance σ2
W in Definition 1.2.1 being equal to σ2

ε .

3. For all s ∈ (0,∞) and t ∈ (0,∞), W (t + s) −W (t) is normally distributed, since it is

the difference between the normal variates W (t + s) and W (t) (cf. Bain and Engelhardt,

1991, Example 6.4.7). The expected value and variance of W (t + s)−W (t) are given,

respectively, by

E (W (t + s)−W (t)) = E (W (t + s))− E (W (t))

= 0 cf. (1.2.5) (1.2.8)

and

var (W (t + s)−W (t)) = var (W (t + s))− 2cov (W (t + s) ,W (t)) + var (W (t))

= σ2
ε(t + s)− 2σ2

εt + σ2
εt cf. (1.2.6), (1.2.7)

= σ2
εs. (1.2.9)

Equations (1.2.8) and (1.2.9) permit us to conclude that the distribution of W (t + s)−
W (t) is independent of t. Hence {W (t)}t∈[0,∞) has stationary increments.

4. For t1, t2 and t3 satisfying (1.2.3), we have

cov (W (t2)−W (t1) ,W (t3)−W (t2))

= cov (W (t1) ,W (t2))− cov (W (t1) ,W (t3))− var (W (t2)) + cov (W (t2) ,W (t3))

= σ2
εt1 − σ2

εt1 − σ2
εt2 + σ2

εt2 cf. (1.2.6), (1.2.7)

= 0. (1.2.10)

Thus W (t2)−W (t1) and W (t3)−W (t2) are uncorrelated. Since both W (t2)−W (t1)

and W (t3) −W (t2) are normal random variables, it follows that they are independent

(cf. Bain and Engelhardt, 1991, Section 5.4).
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Chapter 2

A general multivariate stochastic

process

This chapter is devoted to the study of the general class of continuous-time stochastic processes

to which CARMA processes belong. In Section 2.1, we provide some background information

on the Itô integral, while we develop notation and conventions for use in the remainder of

this work. In Section 2.2, we turn our attention to the general linear multivariate diffusion

process, and investigate its qualitative and quantitative properties.

2.1 The Itô integral

In this section, we briefly define and describe the properties of the Itô integral, which is the

most frequently used form of the stochastic integral. We also use the definition and properties

of the univariate Itô integral to define and characterize its multivariate counterpart.

Definition 2.1.1 (Itô integral) For any real-valued continuous-time stochastic process

{Z(t)}t∈[0,∞) with continuous sample paths (i.e. Z is a continuous function of time), the Itô

integral, if it exists, is defined as the mean square limit

∞∫

0

Z(u) dW (u) := lim
n→∞,4t→0

n−1∑

k=0

Z(k4t) (W ((k + 1)4t)−W (k4t)) . (2.1.1)

For a given upper limit t ∈ [0,∞), the Itô integral on [0, t] is defined as the mean square limit

t∫

0

Z(u) dW (u) := lim
n→∞,4t→0,n4t=t

n−1∑

k=0

Z(k4t) (W ((k + 1)4t)−W (k4t)) . (2.1.2)

15



Section 2.1. The Itô integral

For a continuous deterministic function Z : [0, t] → R, we can compare the form of the Itô

integral (2.1.2) with the well-known Riemann integral

t∫

0

Z(u) du := lim
n→∞,4t→0,n4t=t

n−1∑

k=0

Z(k4t) ((k + 1)4t− k4t) . (2.1.3)

If W : [0, t] → R is simply assumed to be a differentiable deterministic function, then we can

also compare (2.1.2) with the Riemann-Stieltjes integral

t∫

0

Z(u) dW (u) := lim
n→∞,4t→0,n4t=t

n−1∑

k=0

Z(k4t) (W ((k + 1)4t)−W (k4t)) . (2.1.4)

The main difference between the Itô integral (2.1.2) and the integrals (2.1.3) and (2.1.4) is

that, in (2.1.3) and (2.1.4), convergence takes place in R, while the mean square limit in (2.1.2)

is again a random variable.

We now have an important result concerning the existence and uniqueness of the Itô

integral, as well as its properties.

Theorem 2.1.2 If a real-valued continuous-time stochastic process {Z(t)}t∈[0,∞) with contin-

uous sample paths is square integrable on an interval [0, t], i.e.

E




t∫

0

(Z(u))2 du


 < ∞, (2.1.5)

then its Itô integral on [0, t] exists and is unique. In addition, the Itô integral on [0, t] has the

following properties:

1. It is linear in its argument, i.e. for α ∈ R, β ∈ R and stochastic processes {Y (t)}t∈[0,∞)

and {Z(t)}t∈[0,∞) satisfying (2.1.5), we have

t∫

0

(αY (u) + βZ(u)) dW (u) = α

t∫

0

Y (u) dW (u) + β

t∫

0

Z(u) dW (u) . (2.1.6)

2. It has the Itô isometry property, i.e. for {Y (t)}t∈[0,∞) and {Z(t)}t∈[0,∞) satisfying (2.1.5),

we have

E







t∫

0

Y (u) dW (u)







t∫

0

Z(u) dW (u)





 = E




t∫

0

Y (u)Z(u) du


 . (2.1.7)

3. It has the martingale property, i.e. for {Z(t)}t∈[0,∞) satisfying (2.1.5), we have

E




t∫

0

Z(u) dW (u)

∣∣∣∣∣∣
W (s)


 =

s∫

0

Z(u) dW (u) for s ∈ [0, t) . (2.1.8)
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Section 2.1. The Itô integral

Proof. This result is a consequence of the fact that every stochastic process with continuous

sample paths can be expressed as the mean square limit of a sequence of step processes,

i.e. stochastic processes taking constant values on a finite number of subsets of [0,∞). The

complete proof is given by Brzez̀niak and Zastawniak (1999, Section 7.1, Theorem 7.3)

The Itô integral is also forced to be additive in its limits by the following definition.

Definition 2.1.3 We define the Itô integral over [s, t], where s ∈ [0,∞] and t ∈ [0,∞], of a

stochastic process {Z(t)}t∈[0,∞) satisfying (2.1.5) as

t∫

s

Z(u) dW (u) :=

t∫

0

Z(u) dW (u)−
s∫

0

Z(u) dW (u) . (2.1.9)

We now turn to the definition of Itô integrals of multivariate stochastic processes.

Definition 2.1.4 (Multivariate Itô integral (vector)) For k = 1, 2, . . . , p, suppose that

{Xk(t)}t∈[0,∞) are real-valued continuous-time stochastic processes with continuous sample

paths satisfying (2.1.5). If the p-variate stochastic process {X(t)}t∈[0,∞) is defined by

X (t) :=




X1(t)

X2(t)
...

Xp(t)




for t ∈ [0,∞) , (2.1.10)

then we define its Itô integral on [0, t] as

t∫

0

X (u) dW (u) :=




t∫
0

X1(u) dW (u)

t∫
0

X2(u) dW (u)

...
t∫

0

Xp(u) dW (u)




. (2.1.11)

The Itô integral of matrix-valued stochastic processes is defined in exactly the same fashion.

Definition 2.1.5 (Multivariate Itô integral (matrix)) Suppose that {Xkl(t)}t∈[0,∞), for

k = 1, 2, . . . , p and l = 1, 2, . . . , q, are real-valued continuous-time stochastic processes with

continuous sample paths satisfying (2.1.5). If the pq-variate stochastic process {X(t)}t∈[0,∞)

is defined by

X (t) :=




X11(t) X12(t) · · · X1q(t)

X21(t) X22(t) · · · X2q(t)
...

...
. . .

...

Xp1(t) Xp2(t) · · · Xpq(t)




for t ∈ [0,∞) , (2.1.12)
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then we define its Itô integral on [0, t] as

t∫

0

X (u) dW (u) :=




t∫
0

X11(u) dW (u)
t∫

0

X12(u) dW (u) · · ·
t∫

0

X1q(u) dW (u)

t∫
0

X21(u) dW (u)
t∫

0

X22(u) dW (u) · · ·
t∫

0

X2q(u) dW (u)

...
...

. . .
...

t∫
0

Xp1(u) dW (u)
t∫

0

Xp2(u) dW (u) · · ·
t∫

0

Xpq(u) dW (u)




.

(2.1.13)

We define the Riemann integrals of deterministic vector- and matrix-valued functions in

obvious analogy.

The following result regarding multivariate Itô integrals, which we will use frequently,

follows immediately from Theorem 2.1.2.

Theorem 2.1.6 The Itô integrals (2.1.11) and (2.1.13) exist and are both unique. The Itô

integral on [0, t] of a p-variate stochastic process {X(t)}t∈[0,∞) such as in (2.1.10) or a pq-

variate stochastic process {X(t)}t∈[0,∞) such as in (2.1.12) has the following properties:

1. It is linear.

2. It has the Itô isometry property, in the sense that

E







t∫

0

X (u) dW (u)







t∫

0

X (u) dW (u)




T

 = E




t∫

0

X (u) (X (u))T du


 .

(2.1.14)

3. It has the martingale property, i.e.

E




t∫

0

X (u) dW (u)

∣∣∣∣∣∣
W (s)


 =

s∫

0

X (u) dW (u) for s ∈ [0, t) . (2.1.15)

Once again (in similar fashion to Definition 2.1.3), the multivariate Itô integral can be

forced to be additive in its limits.

Definition 2.1.7 We define the Itô integral over [s, t], where s ∈ [0,∞] and t ∈ [0,∞], of a

p-variate stochastic process {X(t)}t∈[0,∞) such as in (2.1.10), or a p2-variate stochastic process

{X(t)}t∈[0,∞) such as in (2.1.12), as

t∫

s

X (u) dW (u) :=

t∫

0

X (u) dW (u)−
s∫

0

X (u) dW (u) . (2.1.16)
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Section 2.2. The general multivariate linear diffusion process

2.2 The general multivariate linear diffusion process

We now turn our attention to the p-variate continuous-time stochastic process {X(t)}t∈[0,∞)

satisfying (in the notation of Section 1.2)

dX (t) = AX (t) dt + σe ε (t) for t ∈ [0,∞) , (2.2.1)

where σ ∈ [0,∞) is a constant, A is a p×p matrix, e is a p-dimensional vector and {ε(t)}t∈[0,∞)

is a Gaussian continuous-time white noise process. Moreover, we assume that

X (0) is normally distributed and uncorrelated with W (t) for all t ∈ (0,∞) . (2.2.2)

In the light of Theorem 1.2.3, we refer in the sequel to a Gaussian continuous-time white

noise process {ε(t)}t∈[0,∞) as {dW (t)}t∈[0,∞) , where {W (t)}t∈[0,∞) is the associated Brownian

motion with variance σ2
W , as defined in (1.2.4). We also restrict our attention to standard

Brownian motion, which is the special case of Brownian motion having σ2
W = 1 in (1.2.2).

Employing conventional notation in (2.2.1), the process under consideration is the p-variate

stochastic process {X(t)}t∈[0,∞) satisfying the linear stochastic differential equation

dX (t) = AX (t) dt + σe dW (t) for t ∈ [0,∞) . (2.2.3)

Remark 2.2.1 In the terminology of Rogers and Williams (1994b, Chapter V), the stochastic

process {X(t)}t∈[0,∞) satisfying (2.2.3) is called an (A, σe) diffusion.

Some clarification is necessary as to the exact interpretation of (2.2.3), which, considered

on its own, is actually meaningless. In principle this is due to the term dW (t) on the right-

hand side: as the sample paths of Brownian motion have infinite variation (cf. Rogers and

Williams, 1994b, Lemma IV.2.16), Brownian motion is not differentiable (cf. Brzez̀niak and

Zastawniak, 1999, Theorem 6.6), and therefore dW (t) does not exist. In fact, (2.2.3) is

considered to be a formal representation of the Itô integral equation

X (t) = X (0) +

t∫

0

AX (u) du + σ

t∫

0

e dW (u) for t ∈ [0,∞) . (2.2.4)

We can now proceed to find the solution of (2.2.3) and (2.2.4).

Remark 2.2.2 A number of results in this section depend on the Itô formula, an important

result in stochastic calculus which we will not consider here. Statements and proofs of the

univariate version of this formula can be found in the books by Brzez̀niak and Zastawniak

(1999, Theorems 7.5–7.6) (simplified version) and Rogers and Williams (1994b, Theorem

IV.18.4). The multivariate version of the Itô formula is considered in the works by Øksendal

(1989, p. 33), Kallianpur (1980, Section 4.5) and Rogers and Williams (1994b, Theorem

IV.18.8).
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Theorem 2.2.3 The solution {X(t)}t∈[0,∞) of the stochastic differential equation (2.2.3) exists

and satisfies

X (t) = eAtX (0) + σ

t∫

0

eA(t−u)e dW (u) for t ∈ [0,∞) , (2.2.5)

where, for any square matrix P, the matrix exponential function is defined by

eP :=
∑

k∈N0

1

k!
Pk with P0 := I. (2.2.6)

Proof. If we define the stochastic process {Y(t)}t∈[0,∞) by

Y(t) := e−AtX (t) for t ∈ [0,∞) , (2.2.7)

then the Itô formula permits us to conclude that

Y(t) = X (0) + σ

t∫

0

e−Aue dW (u) for t ∈ [0,∞) . (2.2.8)

Thus (2.2.5) holds.

The following result follows directly from Theorem 2.2.3 (cf. Brockwell, 2000, p. 4).

Corollary 2.2.4 The solution of the stochastic differential equation (2.2.3) satisfies

X (t) = eA(t−s)X (s) + σ

t∫

s

eA(t−u)e dW (u) for t ∈ [0,∞) and s ∈ [0, t) . (2.2.9)

We now present some properties of the solution of (2.2.3).

Theorem 2.2.5 The solution of (2.2.3) has the Markov property (cf. Rogers and Williams,

1994a, Definition III.1.1), i.e.

P
(
{X (t + s) ∈ E}| {X (u)}u∈[0,t]

)
= P ({X (t + s) ∈ E}|X (t)) for E ⊆ Rp,

s ∈ (0,∞) and t ∈ (0,∞) . (2.2.10)
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Proof. In short, we have

P
(
{X (t + s) ∈ E}| {X (u)}u∈[0,t]

)

= P






eAX (t) + σ

t+s∫

t

eA(t−u)e dW (u) ∈ E





∣∣∣∣∣∣
X (t) , {X (u)}u∈[0,t)


 cf. (2.2.9)

= P






eAsX (t) + σ

t+s∫

t

eA(t−u)e dW (u) ∈ E





∣∣∣∣∣∣
X (t) , {W (u)}u∈[0,t)


 cf. (2.2.5)

= P






eAsX (t) + σ

t+s∫

t

eA(t−u)e dW (u) ∈ E





∣∣∣∣∣∣
X (t)


 cf. (2.1.2)

= P ({X (t + s) ∈ E}|X (t)) . cf. (2.2.9) (2.2.11)

The next result provides explicit formulae for the first and second order moments of

{X(t)}t∈[0,∞) .

Theorem 2.2.6 The process {X(t)}t∈[0,∞) in (2.2.3) has expected value function

E (X (t)) = eAtE (X (0)) for t ∈ [0,∞) (2.2.12)

and covariance function

cov (X (s) ,X (t)) = eAsvar (X (0)) eATt + σ2

min{s,t}∫

0

eA(s−u)eeTeAT(t−u) du

for s ∈ [0,∞) and t ∈ [0,∞) . (2.2.13)

Proof. Applying the Itô formula yet again, this time to the process
{
e−AteW (t)

}
t∈[0,∞)

, we

obtain

eW (t) =

t∫

0

AeA(t−u)eW (u) du +

t∫

0

eA(t−u)e dW (u) . (2.2.14)

For t ∈ [0,∞),

E (X (t)) = E


eAtX (0) + σ

t∫

0

eA(t−u)e dW (u)


 cf. (2.2.5)

= eAtE (X (0)) + E




t∫

0

eA(t−u)e dW (u)




= eAtE (X (0)) + E


eW (t)−

t∫

0

AeA(t−u)eW (u) du


 cf. (2.2.14)
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= eAtE (X (0)) + eE (W (t))−
t∫

0

AeA(t−u)eE (W (u)) du

= eAtE (X (0)) . (2.2.15)

Thus (2.2.12) holds.

For any s ∈ [0,∞) and t ∈ [0,∞), we have

cov (X (s) ,X (t))

= E
(
X (s) (X (t))T

)
− E (X (s)) (E (X (t)))T

= E





eAsX (0) + σ

s∫

0

eA(s−u)e dW (u)





eAtX (0) + σ

t∫

0

eA(t−u)e dW (u)




T



− eAsE (X (0)) (E (X (0)))TeATt cf. (2.2.5), (2.2.12)

= eAsvar (X (0)) eATt + σeAsE (X (0)) E







t∫

0

eA(t−u)e dW (u)




T



+ σE




s∫

0

eA(s−u)e dW (u)


 E

(
(X (0))T

)
eATt

+ σ2E




s∫

0

eA(s−u)e dW (u)




t∫

0

eA(t−u)e dW (u)




T

 cf. (2.2.2)

= eAsvar (X (0)) eATt + σ2E




s∫

0

eA(s−u)e dW (u)




t∫

0

eA(t−u)e dW (u)




T

.

cf. (2.2.15)

= eAsvar (X (0)) eATt + σ2E




s∫

0

eA(s−u)e dW (u)




s∫

0

eA(t−u)e dW (u)




T


+ σ2E




s∫

0

eA(s−u)e dW (u)




t∫

s

eA(t−u)e dW (u)




T



= eAsvar (X (0)) eATt + σ2E




s∫

0

eA(s−u)e dW (u)




s∫

0

eA(s−u)e dW (u)




T
 eAT(t−s)

+ σ2E




s∫

0

eA(s−u)e dW (u)


 E







t∫

s

eA(t−u)e dW (u)




T

 cf. (2.1.2)
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= eAsvar (X (0)) eATt + σ2E




s∫

0

eA(s−u)eeTeAT(t−u) du


 cf. (2.1.14), (2.2.15)

= eAsvar (X (0)) eATt + σ2

s∫

0

eA(s−u)eeTeAT(t−u) du.

Thus (2.2.13) holds.

With the first and second order moments of {X(t)}t∈[0,∞) in hand, we now turn to the

stationarity properties of {X(t)}t∈[0,∞) . In practice, strict stationarity is seldom achieved, or

even desired; we restrict ourselves to the investigation of weak stationarity.

Definition 2.2.7 (Weak stationarity) A multivariate stochastic process {X(t)}t∈[0,∞) is

called weakly stationary, or second order stationary, if its first and second order moments

are independent of time, i.e. its mean is constant and, for t ∈ [0,∞) and s ∈ [0,∞),

cov (X (s) ,X (t)) depends on time only through t− s.

Asymptotic weak stationarityis weaker than the form of stationarity described in Definition

2.2.7. As the name implies, asymptotically weakly stationary processes can be said to become

(approximately) weakly stationary after the passage of enough time.

Definition 2.2.8 (Asymptotic weak stationarity) A multivariate stochastic process

{X(t)}t∈[0,∞) is called asymptotically weakly stationary, or asymptotically second order sta-

tionary, if the limits with respect to time of its first and second order moments are independent

of time, i.e. both lim
t→∞

E (X (t)) and lim
t→∞

cov (X (t + h) ,X (t)) exist (the latter for all h ∈ R).

In order to study the stationarity properties of {X(t)}t∈[0,∞) in (2.2.3), we need the fol-

lowing auxiliary result.

Lemma 2.2.9 The eigenvalues of a p× p matrix A have negative real parts if and only if

lim
t→∞

eAt = 0. (2.2.16)

Proof. Suppose that λ1, λ2, . . . , λp represent the (not necessarily distinct) eigenvalues of A,

and r1, r2, . . . , rp represent the corresponding eigenvectors. If

R := [r1 r2 · · · rp] , (2.2.17)

then R−1 exists, since the eigenvectors of A are linearly independent. If

E := diag {λ1, λ2, . . . , λp} , (2.2.18)
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then

AR = RE

A = RER−1. (2.2.19)

Therefore

eAt = eRER−1t cf. (2.2.19)

=
∑

k∈N0

tk

k!

(
RER−1

)k
cf. (2.2.6)

= R


∑

k∈N0

tk

k!
Ek


R−1

= R


diag





∑

k∈N0

(λ1t)
k

k!
,
∑

k∈N0

(λ2t)
k

k!
, . . . ,

∑

k∈N0

(λtt)
k

k!






R−1 cf. (2.2.18)

= R
(
diag

{
eλ1t, eλ2t, . . . , eλpt

})
R−1. (2.2.20)

For k = 1, 2, . . . , p, we have (cf. Saff and Snider, 1993, p. 75)

lim
t→∞

∣∣eλkt
∣∣ = lim

t→∞
eRe(λk)t |cos (Im (λk) t) + i sin (Im (λk) t)|

≤ lim
t→∞

eRe(λk)t. (2.2.21)

Thus

lim
t→∞

eλkt = 0 if and only if Re (λk) < 0. (2.2.22)

In the light of (2.2.20), the relation (2.2.22) implies that lim
t→∞

eAt = 0 if and only if λ1, λ2, . . . , λp

all have negative real parts.

With this result in hand, we can now obtain a necessary and sufficient condition for

{X(t)}t∈[0,∞) in (2.2.3) to be asymptotically weakly stationary.

Theorem 2.2.10 The process {X(t)}t∈[0,∞) in (2.2.3) is asymptotically weakly stationary if

and only if all the eigenvalues of the matrix A in (2.2.3) have negative real parts.

Proof. In this proof, we essentially follow the same approach as Arató (1982, pp. 118-119).

Suppose, on the one hand, that all the eigenvalues of A have negative real parts. Equation

(2.2.16) then follows from Lemma 2.2.9. This implies that the integral

Σ := σ2

∞∫

0

eAueeTeATu du (2.2.23)
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exists. For h ∈ [0,∞), we have

lim
t→∞

cov (X (t + h) ,X (t)) = lim
t→∞


eA(t+h)var (X (0)) eATt + σ2

t∫

0

eA(t+h−u)eeTeAT(t−u) du




cf. (2.2.13)

= eAh
(

lim
t→∞

eAt
)

var (X (0))
(

lim
t→∞

eATt
)

+ σ2eAh lim
t→∞

t∫

0

eA(t−u)eeTeAT(t−u) du

= eAhσ2

∞∫

0

eAueeTeATu du cf. (2.2.16)

= eAhΣ. cf. (2.2.23)

(2.2.24)

In addition, for h ∈ (−∞, 0),

lim
t→∞

cov (X (t + h) ,X (t)) = lim
t→∞

cov (X (t− |h|) ,X (t))

=
(

lim
t→∞

cov (X (t) ,X (t− |h|))
)T

=
(

lim
t→∞

cov (X ((t− |h|) + |h|) ,X (t− |h|))
)T

=
(
eA|h|Σ

)T
cf. (2.2.23)

= Σe−ATh. (2.2.25)

Moreover,

lim
t→∞

E (X (t)) = lim
t→∞

(
eAtE (X (0))

)
cf. (2.2.12)

=
(

lim
t→∞

eAt
)

E (X (0))

= 0. cf. (2.2.16)

(2.2.26)

Hence {X(t)}t∈[0,∞) is asymptotically weakly stationary.

On the other hand, if one or more of the eigenvalues of A have non-negative real parts,

then Σ in (2.2.23) does not exist (cf. Lemma 2.2.9). Then, in similar fashion to (2.2.24),

it follows that lim
t→∞

var (X (t)) is divergent. Therefore {X(t)}t∈[0,∞) cannot be asymptotically

weakly stationary.

In the (asymptotically) weakly stationary case, the covariance function simplifies signifi-

cantly. It is customary to rather express it in terms of the lag, i.e. as

Γ(t, h) := cov (X (t + h) ,X (t)) for t ∈ [0,∞) and h ∈ R (2.2.27)
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It follows from (2.2.24) and (2.2.25) (cf. Khabie-Zeitoune, 1982, p. 16) that

lim
t→∞

Γ(t, h) =





eAhΣ if h ∈ [0,∞)

Σe−ATh if h ∈ (−∞, 0)
. (2.2.28)

The next result follows immediately from Theorem 2.2.10 (cf. Brockwell, 2000, pp. 4-5).

Corollary 2.2.11 Suppose that, in (2.2.3), the matrix A is chosen such that all its eigenvalues

have negative real parts. If Σ is defined by (2.2.23) and X (0) ∼ N (0,Σ), then {X(t)}t∈[0,∞)

is a stationary zero-mean Gaussian process with covariance function

Γ(h) =





eAhΣ if h ∈ [0,∞)

Σe−ATh if h ∈ (−∞, 0)
. (2.2.29)
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Chapter 3

Moment and stationarity properties of

continuous-time autoregressive moving

average processes

The main results of this study are presented in this chapter. In Section 3.1, we introduce the

most general case, namely, the continuous-time autoregressive moving average (CARMA) time

series model. We discuss its first and second-order moments and stationarity properties. Hav-

ing established that the continuous-time autoregressive (CAR) process is a special CARMA

process, Section 3.2 is devoted to establishing the properties of CAR processes. Likewise, the

continuous-time moving average (CMA) process forms the focus of Section 3.3.

3.1 Continuous-time autoregressive moving average

processes

A discrete-time autoregressive moving average process is defined as follows (cf. Jones (1981,

p. 165), Cryer (1986, p. 70) and Brockwell (1995, p. 457)).

Definition 3.1.1 (DARMA (p, q) process) Suppose that {εn}n∈N0
is a discrete-time white

noise process, and φ1, φ2, . . . , φp and θ1, θ2, . . . , θq (where q < p) are real numbers. The

discrete-time stochastic process {Yn}n∈N0
satisfying the difference equation

Yn − φ1Yn−1 − φ2Yn−2 − · · · − φpYn−p = εn − θ1εn−1 − θ2εn−2 − · · · − θqεn−q

for n = p, p + 1, p + 2, . . . (3.1.1)

is called a discrete-time autoregressive moving average process of order (p, q) (or, in short, a

DARMA (p, q) process).
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Section 3.1. Continuous-time autoregressive moving average processes

Continuous-time autoregressive moving average (CARMA) processes are defined along

similar lines, with the most prominent change being the replacement of the difference equation

by a differential equation. The definition that is most often encountered in statistical literature

(cf. Robinson (1980, p. 263), Jones (1981, p. 171), Priestley (1981, p. 176), Brockwell (1995,

p. 452) and Brockwell (2000, p. 3)) reads as follows. If {ε(t)}t∈[0,∞) is a Gaussian continuous-

time white noise process, and α1, α2, . . . , αp and β1, β2, . . . , βq (where q < p) are real numbers,

then the CARMA (p, q) process {Y (t)}t∈[0,∞) is defined to be a solution of the stochastic

differential equation

αpY (t) + αp−1Y
′(t) + · · ·+ α1Y

(p−1)(t) + Y (p)(t) = ε(t) + β1ε
′(t) + · · ·+ βqε

(q)(t)

for t ∈ (0,∞) , (3.1.2)

under suitable initial conditions.

In view of the non-realizability of {ε(t)}t∈[0,∞) , the above definition should be interpreted

in a formal way. We now present the rigorous definition of a continuous-time autoregressive

moving average process (cf. Brockwell (1995, p. 452), Brockwell (2000, pp. 3-4)).

Definition 3.1.2 (CARMA (p, q) process) For p ∈ N and q ∈ N0 satisfying p > q, let

the real numbers α1, α2, . . . , αp and β1, β2, . . . , βq be given. Suppose that A is a p × p matrix

defined as

A :=





−α1 if p = 1


0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0
. . . . . .

...
...

...
...

. . . 1 0

0 0 0 · · · 0 1

−αp −αp−1 −αp−2 · · · −α2 −α1




otherwise
, (3.1.3)

and let b and e be p-dimensional vectors defined, respectively, by

b :=




1

β1

β2

...

βq

0

0
...

0




and e :=




0

0
...

0

1




. (3.1.4)
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Section 3.1. Continuous-time autoregressive moving average processes

Suppose that there exists a continuous-time real-valued stochastic process {X(t)}t∈[0,∞) such

that the p-variate stochastic process {X(t)}t∈[0,∞) defined by

X (t) :=




X(t)

X ′(t)
...

X(p−1)(t)




for t ∈ [0,∞) (3.1.5)

satisfies the stochastic differential equation

dX (t) = AX (t) dt + σe dW (t) for t ∈ [0,∞) , (3.1.6)

where σ ∈ [0,∞) is given and {W (t)}t∈[0,∞) is standard Brownian motion, under the initial

condition

X (0) is normally distributed and uncorrelated with W (t) for all t ∈ (0,∞) . (3.1.7)

The continuous-time stochastic process {Y (t)}t∈[0,∞) defined by

Y (t) = bTX (t) for t ∈ [0,∞) , (3.1.8)

is called a continuous-time autoregressive moving average process of order (p, q) (in short, a

CARMA (p, q) process).

Remark 3.1.3 In the terminology of the state-space representation approach to linear filtering

(cf. Kalman and Bucy, 1961), equation (3.1.6) is called the state equation and (3.1.8) is called

the observation equation. In fact, given the form of A, b and e in (3.1.3)-(3.1.4), equations

(3.1.6) and (3.1.8) are called the state and observation equations of the second canonical form

of a linear filter (cf. Wiberg, 1971).

Remark 3.1.4 The restriction on p and q in Definition 3.1.2 is necessary and sufficient for

the CARMA (p, q) process {Y (t)}t∈[0,∞) to be completely non-deterministic (cf. Doob (1953,

p. 579), Priestley (1981, Section 10.1)).

Equation (3.1.2) should be regarded as a formal representation of (3.1.6) (together with

(3.1.8)), which is, in turn (as in Section 2.1), a formal representation of the Itô integral equation

X (t) = X (0) +

t∫

0

AX (u) du + σ

t∫

0

e dW (u) for t ∈ [0,∞) . (3.1.9)

Comparing (3.1.7) with (2.2.2) and (3.1.6) with (2.2.3), it follows that the results of Section

2.2 directly apply to the stochastic process {X(t)}t∈[0,∞) , and, by (3.1.8), to {Y (t)}t∈[0,∞) .
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Section 3.1. Continuous-time autoregressive moving average processes

According to Theorem 2.2.3, the process {Y (t)}t∈[0,∞) exists and is given by

Y (t) = bTeAtX (0) + σbT

t∫

0

eA(t−u)e dW (u) for t ∈ [0,∞) . (3.1.10)

Theorem 2.2.6 provides us with the exact form of the first and second order moments of

{Y (t)}t∈[0,∞) . For t ∈ [0,∞), the expected value function is given by

E (Y (t)) = bTE (X (t)) cf. (3.1.8)

= bTeAtE (X (0)) . cf. (2.2.12) (3.1.11)

For s ∈ [0,∞) and t ∈ [0,∞), the covariance function is given by

cov (Y (s), Y (t)) = bTcov (X (s) ,X (t))b cf. (3.1.8)

= bTeAsvar (X (0)) eATtb + σ2

min{s,t}∫

0

bTeA(s−u)eeTeAT(t−u)b du.

cf. (2.2.12) (3.1.12)

In order to determine the conditions under which {Y (t)}t∈[0,∞) is asymptotically weakly

stationary, we need to find the eigenvalues of A. Easy calculation shows that the p eigenvalues

of A are exactly the roots of the so-called autoregressive polynomial α(z), defined as

α(z) := zp + α1z
p−1 + · · ·+ αp for z ∈ C. (3.1.13)

With Theorem 2.2.10 in hand, the asymptotic weak stationarity of {Y (t)}t∈[0,∞) translates

to all the roots of α(z) having negative real parts. If this is assumed, then the asymptotic

expected value of {Y (t)}t∈[0,∞) is given by

lim
t→∞

E (Y (t)) = lim
t→∞

bTeAtE (X (0)) cf. (3.1.11)

= 0. cf. (2.2.26) (3.1.14)

Moreover, if we define

γ(t, h) := cov (Y (t + h), Y (t)) for t ∈ [0,∞) and h ∈ R (3.1.15)

and

Σ := σ2

∞∫

0

eAueeTeATu du, (3.1.16)
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Section 3.1. Continuous-time autoregressive moving average processes

then

lim
t→∞

γ(t, h) = bT
(

lim
t→∞

cov (X (t + h) ,X (t))
)

b cf. (3.1.8)

= bT
(

lim
t→∞

Γ(t, h)
)

b cf. (2.2.27)

=





bTeAhΣb if h ∈ [0,∞)

bTΣe−AThb if h ∈ (−∞, 0)
cf. (2.2.28)

= bTeA|h|Σb, (3.1.17)

because of the fact that any real number is equal to its own transpose.

Now, suppose that all the roots of the autoregressive polynomial α(z) in (3.1.13) have nega-

tive real parts, and that X (0) ∼ N (0,Σ). Equation (3.1.8) implies that Y (0) ∼ N
(
0,bTΣb

)
.

From Corollary 2.2.11, it follows that {X(t)}t∈[0,∞) , and therefore {Y (t)}t∈[0,∞) , is a station-

ary zero-mean Gaussian process. The covariance function of {Y (t)}t∈[0,∞) is then given (for

h ∈ R) by

γ(h) = bTΓ(h)b cf. (3.1.8)

=





bTeAhΣb if h ∈ [0,∞)

bTΣe−AThb if h ∈ (−∞, 0)
cf. (2.2.29)

= bTeA|h|Σb (3.1.18)

(cf. Brockwell, 2000, p. 5), once again for the reason that any real number is its own transpose.

Remark 3.1.5 In the special case where the autoregressive polynomial α(z) in (3.1.13) has p

distinct zeroes, then, according to Brockwell (2000, p. 5), the covariance function γ has a very

simple form. Indeed, if the so-called moving average polynomial is defined as

β(z) := 1 + β1z + β2z
2 + · · ·+ βqz

q for z ∈ C, (3.1.19)

then

γ(h) =
∑

{λ∈C|α(λ)=0}

eλ|h|β(λ)β(−λ)

α′(λ)α(−λ)
for h ∈ R. (3.1.20)
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Section 3.2. Continuous-time autoregressive processes

3.2 Continuous-time autoregressive processes

Discrete-time autoregressive processes are defined as follows (cf. Cryer (1986, p. 59–60), Brock-

well (1995, p. 455)).

Definition 3.2.1 (DAR (p) process) Suppose that {εn}n∈N0
is a discrete-time white noise

process, and φ1, φ2, . . . , φp are real numbers. The discrete-time stochastic process {Yn}n∈N0

satisfying the difference equation

Yn − φ1Yn−1 − φ2Yn−2 − · · · − φpYn−p = εn for n = p, p + 1, p + 2, . . . (3.2.1)

is called a discrete-time autoregressive process of order p (or a DAR (p) process).

As with CARMA processes, continuous-time autoregressive (CAR) processes are defined by

replacing the difference equation by a differential equation. The usual definition then reads as

follows (cf. Jones (1981, p. 170), Priestley (1981, p. 174), Jones (1985, p. 653), Hyndman (1993,

p. 281)): If {ε(t)}t∈[0,∞) is a Gaussian continuous-time white noise process, and α1, α2, . . . , αp

are real numbers, then the CAR (p) process {Y (t)}t∈[0,∞) is defined to be a solution of the

stochastic differential equation

αpY (t) + αp−1Y
′(t) + · · ·+ α1Y

(p−1)(t) + Y (p)(t) = ε(t) for t ∈ (0,∞) (3.2.2)

coupled with suitable initial conditions.

Once again, the non-realizability of {ε(t)}t∈[0,∞) poses problems in the validity of the above

definition. We now present a rigorous definition of a continuous-time autoregressive process

(cf. Jones (1981, p. 654), Jones (1985, pp. 170–171) and Hyndman (1993, p. 282)).

Definition 3.2.2 (CAR (p) process) For p ∈ N, let the real numbers α1, α2, . . . , αp be

given. Suppose that e is a p-dimensional vector and A is a p × p matrix defined, respec-

tively, by

e :=




0

0
...

0

1




and A :=





−α1 if p = 1


0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0
. . . . . .

...
...

...
...

. . . 1 0

0 0 0 · · · 0 1

−αp −αp−1 −αp−2 · · · −α2 −α1




otherwise
. (3.2.3)
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A continuous-time real-valued stochastic process {X(t)}t∈[0,∞) is called a continuous-time

autoregressive process of order p (or a CAR (p) process) if the p-variate stochastic process

{X(t)}t∈[0,∞) defined by

X (t) :=




X(t)

X ′(t)
...

X(p−1)(t)




for t ∈ [0,∞) (3.2.4)

satisfies the stochastic differential equation

dX (t) = AX (t) dt + σe dW (t) for t ∈ [0,∞) , (3.2.5)

where σ ∈ [0,∞) is given and {W (t)}t∈[0,∞) is standard Brownian motion, under the initial

condition

X (0) is normally distributed and uncorrelated with W (t) for all t ∈ (0,∞) . (3.2.6)

Comparing Definition 3.2.2 with Definition 3.1.2, the specific relationship between the

CARMA (p, q) process and the CAR (p) process, which is (in view of Theorem 2.2.5) a com-

pletely non-deterministic p-dimensional Markov process, is immediately clear. The fact that

a CAR (p) process is exactly the same as a CARMA (p, 0) process, is due to Doob (1944, The-

orems 3.9 and 4.9). Remark 3.1.4 should also be interpreted in the light of this well-known

result, which is valid in both the discrete-time and continuous-time cases. It reads as follows.

Theorem 3.2.3 A one-dimensional process is a DARMA (p, q)—or CARMA (p, q)—process

with p > q if and only if it is a component process of a completely non-deterministic discrete-

time—or continuous-time—p-dimensional Markov process.

An equivalent definition of a CAR (p) process {Y (t)}t∈[0,∞) would therefore be that it

satisfies the state equation (3.2.5) and observation equation

Y (t) = bTX (t) for t ∈ [0,∞) , (3.2.7)

where b is a p-dimensional vector defined by

b :=




1

0

0
...

0




. (3.2.8)
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For the purpose of consistency of notation, we will denote a CAR (p) process by {Y (t)}t∈[0,∞) ,

although it is exactly the same stochastic process as {X(t)}t∈[0,∞) in Definition 3.2.2.

As usual, (3.2.2) is regarded as a formal representation of (3.2.5) (coupled with (3.2.7)),

which is, in turn, a formal representation of the now familiar Itô integral equation

X (t) = X (0) +

t∫

0

AX (u) du + σ

t∫

0

e dW (u) for t ∈ [0,∞) . (3.2.9)

Using the properties of CARMA processes established in Section 3.1, the qualitative and

quantitative properties of the CAR (p) process {Y (t)}t∈[0,∞) are easily determined. According

to Theorem 2.2.3 (cf. (3.1.10)), {Y (t)}t∈[0,∞) exists and satisfies

Y (t) = bTeAtX (0) + σbT

t∫

0

eA(t−u)e dW (u) for t ∈ [0,∞) . (3.2.10)

Once again, Theorem 2.2.6 provides us with the exact form of the first and second order

moments of {Y (t)}t∈[0,∞) . According to (3.1.11), the expected value function of {Y (t)}t∈[0,∞)

is given by

E (Y (t)) = bTeAtE (X (0)) for t ∈ [0,∞) . (3.2.11)

Using (3.1.12), the covariance function of {Y (t)}t∈[0,∞) is of the form

cov (Y (s), Y (t)) = bTeAsvar (X (0)) eATtb + σ2

min{s,t}∫

0

bTeA(s−u)eeTeAT(t−u)b du

for s ∈ [0,∞) and t ∈ [0,∞) . (3.2.12)

As is the case with CARMA processes, Theorem 2.2.10 allows the asymptotic weak sta-

tionarity of {Y (t)}t∈[0,∞) to be translated to all the roots of the autoregressive polynomial

α(z) := zp + α1z
p−1 + · · ·+ αp for z ∈ C (3.2.13)

having negative real parts. If this is indeed the case, then the asymptotic expected value of

{Y (t)}t∈[0,∞) is given (according to (3.1.14)) by

lim
t→∞

E (Y (t)) = 0. (3.2.14)

Moreover, if we define γ by (3.1.15) and Σ by (3.1.16), then, as in (3.1.17), the asymptotic

covariance of {Y (t)}t∈[0,∞) is equal to

lim
t→∞

γ(t, h) = bTeA|h|Σb. (3.2.15)
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Now, suppose that all the roots of α(z) in (3.2.13) have negative real parts. If we assume

that X (0) ∼ N (0,Σ), then (3.2.7) implies that Y (0) ∼ N
(
0,bTΣb

)
. From Corollary 2.2.11,

it follows that {X(t)}t∈[0,∞) , and therefore {Y (t)}t∈[0,∞) , is a stationary zero-mean Gaussian

process. The covariance function of {Y (t)}t∈[0,∞) is then given by (3.1.18) as

γ(h) = bTeA|h|Σb. (3.2.16)

Remark 3.2.4 In the special case where the autoregressive polynomial α(z) in (3.2.13) has p

distinct zeroes, then, according to Brockwell (2000, p. 5), the covariance function γ is of the

very simple form

γ(h) =
∑

{λ∈C|α(λ)=0}

eλ|h|

α′(λ)α(−λ)
for h ∈ R. (3.2.17)
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3.3 Continuous-time moving average processes

A discrete-time moving average process is defined as follows (cf. Cryer (1986, p. 54)).

Definition 3.3.1 (DMA (q) process) Suppose that {εn}n∈N0
is a discrete-time white noise

process, and θ1, θ2, . . . , θq are real numbers. The discrete-time stochastic process {Yn}n∈N0

satisfying the difference equation

Yn = εn − θ1εn−1 − θ2εn−2 − · · · − θqεn−q for n = q, q + 1, q + 2, . . . (3.3.1)

is called a discrete-time moving average process of order q (or, in short, a DMA (q) process).

Continuous-time moving average (CMA) processes are defined similarly, by replacement

of the difference equation by a differential equation. The most frequently used definition (cf.

Priestley, 1981, p. 176) reads as follows. If {ε(t)}t∈[0,∞) is a Gaussian continuous-time white

noise process, and β1, β2, . . . , βq are real numbers, then the CMA (q) process {Y (t)}t∈[0,∞) is

defined to be a solution of the differential equation

Y (q+1)(t) = ε(t) + β1ε
′(t) + β2ε

′′(t) + · · ·+ βqε
(q)(t) for t ∈ (0,∞) , (3.3.2)

under suitable initial conditions.

Remark 3.3.2 Unlike the models encountered before, there is a striking difference between the

left-hand sides of (3.3.1) and (3.3.2). The object of (3.3.2) is not Y (t), as would be expected,

but its (q + 1)th derivative, while its counterpart in (3.3.1) is Yn, as usual. This is mainly due

to Theorem 3.2.3 and the necessity to write the CMA (q) model in terms of a suitable CARMA

model.

In view of the non-realizability of {ε(t)}t∈[0,∞) , the above definition should be interpreted

in a formal way. We now present the rigorous definition of a continuous-time moving average

process.

Definition 3.3.3 (CMA (q) process) For q ∈ N, let the real numbers β1, β2, . . . , βq be given.

Suppose that A is a (q + 1)× (q + 1) matrix defined as

A :=




0 1 0 0 · · · 0

0 0 1 0 · · · 0

0 0 0
. . . . . .

...
...

...
...

. . . 1 0

0 0 0 · · · 0 1

0 0 0 · · · 0 0




, (3.3.3)
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and let b and e be (q + 1)-dimensional vectors defined, respectively, by

b :=




1

β1

β2

...

βq




and e :=




0

0
...

0

1




. (3.3.4)

Suppose that there exists a continuous-time real-valued stochastic process {X(t)}t∈[0,∞) such

that the (q + 1)-variate stochastic process {X(t)}t∈[0,∞) defined by

X (t) :=




X(t)

X ′(t)
...

X(q)(t)




for t ∈ [0,∞) (3.3.5)

satisfies the stochastic differential equation

dX (t) = AX (t) dt + σe dW (t) for t ∈ [0,∞) (3.3.6)

(called the state equation), where σ ∈ [0,∞) is given and {W (t)}t∈[0,∞) is standard Brownian

motion, under the initial condition

X (0) is normally distributed and uncorrelated with W (t) for all t ∈ (0,∞) . (3.3.7)

The continuous-time stochastic process {Y (t)}t∈[0,∞) defined by the observation equation

Y (t) = bTX (t) for t ∈ [0,∞) (3.3.8)

is called a continuous-time moving average process of order q (in short, a CMA (q) process).

Once again, (3.3.2) should be regarded as a formal representation of (3.3.6) (together with

(3.3.8)), which is, as usual, a formal representation of

X (t) = X (0) +

t∫

0

AX (u) du + σ

t∫

0

e dW (u) for t ∈ [0,∞) . (3.3.9)

Comparing Definition 3.3.3 with Definition 3.1.2, it is clear that a CMA (q) process is simply

a CARMA (q + 1, q) process with autoregressive parameters all equal to zero. In addition, the
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specific form of A in (3.3.3) permits, for t ∈ R, the computational simplification

eAt =
∑

k∈N0

tk

k!
Ak cf. (2.2.6)

=

q+1∑

k=0

tk

k!
Ak

=




1 t t2

2
· · · tq−1

(q−1)!
tq

q!

0 1 t · · · tq−2

(q−2)!
tq−1

(q−1)!

0 0 1
. . .

...
...

...
...

. . . . . . t t2

2

0 0 · · · 0 1 t

0 0 · · · 0 0 1




. (3.3.10)

Using the properties of CARMA processes established in Section 3.1, the qualitative and

quantitative properties of the CMA (q) process {Y (t)}t∈[0,∞) are easily determined. Theorem

2.2.3 guarantees that the process {Y (t)}t∈[0,∞) exists and satisfies (when combining (2.2.5)

with (3.3.10))

Y (t) =
[

1 β1 + t β2 + β1t + t2

2
· · · βq + βq−1t + · · ·+ tq

q!

]
X (0)

+ σ

t∫

0

(
βq + βq−1(t− u) + · · ·+ (t− u)q

q!

)
dW (u) for t ∈ [0,∞) . (3.3.11)

The exact form of the first and second order moments of {Y (t)}t∈[0,∞) are provided by

Theorem 2.2.6. Combining (3.1.11) with (3.3.10), the expected value function is given by

E (Y (t)) =
[

1 β1 + t β2 + β1t + t2

2
· · · βq + βq−1t + · · ·+ tq

q!

]
E (X (0))

for t ∈ [0,∞) . (3.3.12)

From (3.1.11) it follows that, for s ∈ [0,∞) and t ∈ [0,∞), the covariance function is given

by

cov (Y (s), Y (t))

=
[

1 β1 + s β2 + β1s + s2

2
· · · βq + βq−1s + · · ·+ sq

q!

]
var (X (0))




1

β1 + t

β2 + β1t + t2

2
...

βq + βq−1t + · · ·+ tq

q!



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+ σ2

min{s,t}∫

0

(
βq + βq−1(s− u) + · · ·+ (s− u)q

q!

)(
βq + βq−1(t− u) + · · ·+ (t− u)q

q!

)
du.

(3.3.13)

The specific form of A in (3.3.3) allows us to calculate the q + 1 eigenvalues of A directly:

they are all equal to zero. This is consistent with the fact that, in the case of the CMA (q)

process, the autoregressive polynomial α(z) (defined in (3.2.13)) reduces to

α(z) = zq+1 for z ∈ C. (3.3.14)

Unfortunately, in stark contrast to the discrete-time case, Theorem 2.2.10 asserts that

{Y (t)}t∈[0,∞) is not asymptotically weakly stationary. Even without referring to Theorem

2.2.10, this disappointing fact is evident from the second term on the right-hand side of

(3.3.13); due to its polynomial nature, a limiting covariance matrix such as Σ in (3.1.16)

cannot exist.

Now, suppose that X (0) ∼ N (0,Σ) for some given (q+1)× (q+1) matrix Σ. In the usual

fashion, (3.3.8) then implies that Y (0) ∼ N
(
0,bTΣb

)
. In this case, due to the fact that all

the eigenvalues of A are zero, Corollary 2.2.11 does not apply. As consolation, however, it can

at least be said that {X(t)}t∈[0,∞) , and therefore {Y (t)}t∈[0,∞) (from (3.3.12)), is a zero-mean

Gaussian process.
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