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Abstract

We are concerned with the number and frequency of transactions on financial markets. Using
transactions data on FTSE 100 index futures in 2002 from LIFFE, we illustrate the stylized features of
transaction tick data. We find effects pointing to the presence of strong seasonal patterns, long-term
serial dependence, clustering as well as strong interdependence between asks and trades and bids and
trades, respectively.

We also develop a model for the times and frequencies of transactions. We propose that transactions
in individual assets form inhomogeneous Poisson processes, their intensities being generated by a
continuous-time Markov chain describing the level of activity in the market. In addition, an iterative
maximum likelihood estimation procedure is developed; we use it with success to model transactions
in FTSE 100 index futures.
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Chapter 1

Introduction

In this work, we study the number and frequency of transactions on financial markets. In addition to
considering the stylized features of such count data, we develop a modelling framework in aid of our
understanding of the processes generating activity on the trading floor.

During their opening hours, financial markets operate on a continuous, high frequency basis. Tra-
ditionally, however, virtually all available data sets on market activity were based on discrete sampling
at lower (often much lower) intervals. The advent of the age of technology has brought about a dra-
matic fall in the cost of gathering and storing data, as well as making the simultaneous transmission
of information to physically dispersed viewers possible. In this sense, the very structure of markets
has changed (Goodhart and O’Hara, 1997, p. 74), having important implications for both the avail-
ability of and the need to interpret high frequency data. In recent years, data sets containing data
sampled at ever increasing frequency have become available; we now have what Engle (2000, p. 2)
terms wultra-high frequency data, commonly known as tick data. Every single transaction is recorded;
data sampled at higher frequency, even continuously, cannot provide more information about financial
markets than what we have at our disposal at the moment. Chapter 2 is devoted to studying the
stylized features of high-frequency transaction data; we use data from transactions in Financial Times
Stock Exchange (FTSE) 100 index futures in 2002 on the London International Financial Futures and
Options Exchange (LIFFE).

Applied research in high frequency financial data has a rather short history. According to Lin,
Knight and Satchell (1999, p. 28), it may be dated from the First International Conference on High
Frequency Data in Finance, on 29-31 March 1995, sponsored by Olsen and Associates; several papers
presented at this conference subsequently appeared in the collection by Lequeux (1999). Perhaps most
indicative of the speed at which interest in this area has developed is the fact that, as early as 1997,
two issues of the Journal of Empirical Finance (Baillie and Dacorogna, 1997) were devoted to this
topic; inter alia including a comprehensive review (Goodhart and O’Hara, 1997) of a host of literature,
containing the availability of databases, statistical properties, problems and difficulties involved with
high-frequency data.

Interest in the timing and frequency of transactions has been greatly influenced by the results of
several studies indicating the importance of the number of trades as an informational proxy in the
empirical study of stock returns. Indeed, Jones, Kaul and Lipson (1994, p. 631) categorically states
that

it is the occurrence of transactions per se, and not their size, that generates volatility; trade
size has no information beyond that contained in the frequency of transactions.

In support of this conclusion, Lin et al. (1999, p. 56) also finds that the number of trades and the
number of price changes seem to be the best choices for informational variables, volume being decidedly
inferior. Dacorogna, Gengay, Miiller, Olsen and Pictet (2001, p. 46) warns, and rightly so, against the
indiscriminate use of quote data as an informational proxy, as quotes are prone to manipulation by
market agents, and therefore quote data provides as much information about human behaviour as it
does about financial markets. However, with the ready availability of actual trade data, this problem
of mis-information is greatly alleviated.



Introduction

Against this backdrop, Chapter 3 considers a model of the timing of transactions, using ideas
developed by Rogers and Zane (1998). We propose that the level of activity in a financial market can
be represented by a continuous-time Markov chain; occurrences of transactions on different assets are
then modelled as a multidimensional Cox process with intensity dependent on the state of the Markov
chain. We also briefly discuss two related models, developed by Engle and Russell (1998) and Rydberg
and Shephard (1999).

Following the methodology of the potential approach of Rogers and Yousaf (2002) to modelling in-
terest and exchange rates, we also suggest a (quasi-)Bayesian iterative approach to maximum likelihood
estimation of the parameters of our model. We also illustrate the use of this method on transaction
data on trading in FTSE 100 futures.

In Chapter 4, we briefly discuss our results. As could be expected from such a complex modelling
framework, some issues remain unsolved, leaving potentially profitable future lines of research.



Chapter 2

Stylised features of transaction tick
data

In this chapter, we investigate the stylised features of high frequency transactions data, using infor-
mation on transactions—where transactions are loosely interpreted, to encompass asks and bids as
well as actual trades—on the London International Finance Futures and Options Exchange (LIFFE)
in FTSE 100 index futures during 2002. For the most part, we will follow same order as Rydberg and
Shephard (2000) in their analysis of IBM shares traded on the NYSE in 1995.

In Section 2.1, we summarise the essential knowledge needed when studying high frequency trans-
actions data, paying particular attention to the origin and nature of our tick data. With our data
set in hand, we then consider, in turn, the four outstanding features of transaction data, namely the
presence of strong seasonal patterns (Section 2.2), long memory (Section 2.3), clustering (Section 2.4)
as well as the strong dependence between bids, asks and trades (Section 2.5). Finally, in Section 2.6,
we illustrate how the microstructure of transactions depend on the trading method used by the market.

The aim of this chapter is not to present an exhaustive analysis of tick data: such an undertaking
will certainly fill several volumes, if it is to be judged by the volume of the data alone. Instead, we
will illustrate the outstanding characteristics of our data set with a broad brush, while attempting to
explain them with the tools financial theory affords us.

2.1 Introduction to FTSE 100 index futures

The Financial Times Stock Exchange (FTSE) 100 index was launched in 1984. It tracks the share price
movements of the 100 most highly capitalised blue chip companies on the London Stock Exchange,
representing approximately 80% of the UK market (FTSE, 2003). It is calculated every 15 seconds
throughout the day from 08.00 until the 16.30 closing auction (LIFFE, 2003a). The FTSE 100 index has
long been a barometer by which professional money managers and private investors measure portfolio
performance.

A LIFFE FTSE 100 index futures contract is an agreement to buy or sell a given quantity of the
assets underlying the FTSE 100 index at a specified future date, at a pre-agreed price. At any one time,
futures with delivery dates at the end of the four nearest quarterly months (March, June, September
and December) are listed for trading. Most trades take place in the “front” month; trading in futures
with this maturity date is allowed until 10:30:30 on the third Friday, or the last business day before
the third Friday, in the delivery month.

Delivery of FTSE 100 futures takes place on the first business day after the expiry date. Rather
than requiring physical delivery of the underlying basket of 100 shares, futures are cash settled at
the Exchange Delivery Settlement Price (EDSP), which is based on the average values of the FTSE
100 index every 15 seconds from 10:10 to 10:30 on the last trading day (LIFFE, 2003c). Of the 81
measured values, the highest 12 and lowest 12 are discarded and the remaining 57 are averaged and
rounded to the nearest half index point to calculate the EDSP.

As expected, activity in front month futures increases—exponentially—from the date of first listing
until the last trading day. We will not consider the complex relations that exist between trading
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in futures with different delivery trades here. In fact, as we will see shortly, the total number of
transactions does not exhibit any real quarterly seasonal pattern. This is most likely due to the
tendency of investors to gradually transfer their positions from the existing front month to the next
contract month as the last trading day of a contract month approaches (LIFFE, 2003c¢).

From its establishment in 1982 until November 1998, contracts on LIFFE traded predominantly
via open outcry. Each product was traded in a designated area, called a pit, by traders who would
register—often shout—Dbids and offers. Pit observers, wearing distinctive blue jackets, were tasked with
observing that all behaviour in the pit conformed with the rules of the market. They also reported
prices via microphones to price reporters, located off the trading floor, who would enter the prices,
in real time, into terminals. The delay in prices being vocally transmitted from pit observer to price
reporter and being entered into a terminal was typically less than a second (MacGregor, 1999, p.
308-309).

During late 1998 and 1999, LIFFE moved from open outcry to automated trading, introducing
LIFFE Connect, “the world’s most efficient, versatile and functionally rich electronic trading platform”
(Hunter, 1998). Automated trading is a completely different trading method to open outcry: there is
no trading floor, and the role of pit observers is no longer to report prices, but to observe orders as
they are matched, and to ensure an orderly market place. Collection of tick data is fully automated,
inexpensive and error-free; prices are automatically appended to tick data files generated directly from
the trading floor.

Our data set contains, for every transaction, a time stamp, the delivery date of the future, an
alphanumeric code indicating the type of transaction, the price (in index points) and the volume of the
transaction. Transactions are grouped into the following seven types (the alphanumeric codes which
will subsequently appear in tables and figures are given in brackets) (Turan, 2003; LIFFE, 2003b;
WebFinance, 2003):

1. An ask (A) is the declaration by an agent of his/her willingness to sell a specified number of
futures, accompanied by the lowest price that the agent is willing to accept.

2. A bid (B) is the declaration by an agent of his/her willingness to buy a specified number of
futures, accompanied by the highest price that the agent is prepared to pay.

3. A basis trade (J) (or cash and carry trade) is to either buy cash bonds and sell futures, or to sell
cash bonds and buy futures. Basis trading is usually a consequence of the perception that the
futures and bonds are mispriced with respect to each other, and that the mispricing will correct
itself such that the gain on one side of the trade will more than compensate for the loss on the
other side.

4. A block trade (K) is a simultaneous transaction involving a large number of securities, typically
at least 10 000. Normally only institutional investors undertake trades of this magnitude.

5. A spread trade (S) is the purchase of one futures contract and the simultaneous sale of another
in order to take advantage of relative price changes, for instance buying one futures contract and
selling another futures contract with a different delivery month.

6. A trade (T) is a transaction in the future.

7. A wolatility trade (V) is the simultaneous buying or selling of an option and its related future in
an options contract. Volatility trades enable agents to take advantage of the (implied) volatility
of the underlying contract, rather than the direction of price movement.

In this study, we will also restrict our attention to the three most prevalent transaction types, as
indicated in Table 2.1, namely asks (45.9%), bids (43.5%) and trades (10.5%). Despite the fact that
FTSE 100 futures are normally traded between 8:00 and 17:30 (LIFFE, 2003c¢), we discard all transac-
tions (ca. 6%) with timestamps outside London Stock Exchange opening hours (8:00-16:30). Entries
with timestamps before 8:00 were spurious, and almost certainly not related to actual transactions; in
addition, preliminary analysis suggested that entries were significantly different when they had a time
stamp after 16:30 .
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Type of transaction as percentage of total
Month A B J K S T Vv
January 41.819 | 43.732 | 0.004 | 0.002 | 0.016 | 14.281 | 0.146
February 43.412 | 43.683 | 0.000 | 0.000 | 0.025 | 12.778 | 0.102
March 44.077 | 43.798 | 0.004 | 0.005 | 0.184 | 11.840 | 0.093
April 44.710 | 45.459 | 0.004 | 0.001 | 0.011 | 9.735 | 0.080
May 46.145 | 43.913 | 0.004 | 0.001 | 0.014 | 9.850 | 0.072
June 44.077 | 43.091 | 0.006 | 0.011 | 0.136 | 12.608 | 0.072
July 44.563 | 41.113 | 0.003 | 0.003 | 0.008 | 14.238 | 0.072
August 45.644 | 43.987 | 0.003 | 0.002 | 0.007 | 10.306 | 0.051
September | 45.896 | 43.342 | 0.002 | 0.005 | 0.083 | 10.633 | 0.039
October 48.774 | 41.701 | 0.001 | 0.001 | 0.006 | 9.473 | 0.044
November | 48.592 | 43.973 | 0.002 | 0.002 | 0.018 | 7.377 | 0.035
December | 46.016 | 45.700 | 0.002 | 0.006 | 0.087 | 8.156 | 0.033
Total 45.933 | 43.460 | 0.003 | 0.003 | 0.044 | 10.497 | 0.060

Table 2.1: Spread of entries over different transaction types

2.2 Seasonal patterns

In 2002, FTSE 100 futures were traded on 250 days. A total of 27 463 782 transactions—on average,
111 189 per day—were observed during this period. Table 2.2 gives the distribution of transactions
over the twelve months under consideration.

Trading Total | Transactions
Month days | transactions per day
January 22 1193 031 54 228.68
February* 18 1181 516 65 639.78
March® 20 1332 410 66 620.50
April 20 1 551 334 77 566.70
May 20 1 538 428 76 921.40
June 19 1772 620 93 295.79
July 23 2 764 430 120 192.61
August 21 2 857 475 136 070.24
September 21 3 269 109 155 671.86
October 23 3903 941 169 736.57
November 21 3249 108 154 719.43
December 20 2 850 380 142 519.00
Total 248 27 463 782 111 189.40

%Tick data for 27 and 28 February were unavailable (Intelligent Financial Services Limited, 2003); as a consequence
these days were excluded.

b Although tick data for 1 March was indicated as unavailable by Intelligent Financial Services Limited (2003), the
entries for this day were in fact present; they were utilised accordingly.

Table 2.2: Number of transactions and number of trading days

Studying the number of transactions on each day that the market was open, we observe very signif-
icant changes in the activity level during the year. Despite the fact that LIFFE reported the highest
ever number of total transactions for the month of January in its history in the first month of 2002
(LIFFE Press Office, 2002), we find the lowest levels at the beginning of the year. In contrast, market
activity reaches its highest levels in September, October and November. This pattern corresponds to
the findings of Rydberg and Shephard (2000, pp. 223-224), and is almost certainly seasonal.

To the naked eye, Figure 2.1 suggests that the daily number of transactions should increase over
time. Fitting a Poisson generalized linear model with the natural logarithmic link function, we find
that (the natural logarithm of) the number of transactions per day increases significantly over time.
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However, the estimates for this gradient are very small (0.0036, 0.0033 and 0.0020, for asks, bids and
trades, respectively; time is measured in days). Consequently, we have to conclude that the long-term
trends in the number of transactions are negligible, at least on the timescale that we are interested in.

Daily asks
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Figure 2.1: Daily transactions in FTSE 100 futures

Together, Table 2.1 and Figure 2.1 suggest the existence of strong interdependence between the
daily number of bids, asks and trades. This is indeed the case: the correlation between the numbers
of asks and bids is 94.46%, while the correlation between these two variables and the number of trades
is 68.62% and 67.86%, respectively.

Table 2.3 illustrates another interesting feature of the data, namely its intra-weekly patterns. On
average, the market is at its slowest on Mondays; according to ap Gwylim, Buckle and Thomas (1999,
p. 168), this corresponds with significant lower volatility at the beginning of the week. Activity reaches
a maximum in the middle of the week, after which it slows down again. As was the case with the
long-term trend, we find that the daily number of transactions differ significantly between days of the
week.

Number | Average number of transactions
Day recorded Asks Bids Trades
Monday 47 | 45 791.340 | 42 320.277 | 10 225.511
Tuesday 52 | 50 547.923 | 49 128.558 | 11 884.981
Wednesday 48 | 54 242.646 | 51 348.167 | 12 478.646
Thursday 50 | 55 539.220 | 52 918.280 | 12 628.520
Friday 51 | 48 112.804 | 44 732.961 | 10 858.882
Total 248 | 50 867.121 | 48 128.004 | 11 624.282

Table 2.3: Number of transactions in FTSE 100 index futures by day of week

Close inspection of Figure 2.1 reveals the presence of a cyclical time-of-the-month effect: it seems
that activity is higher in die middle than at the beginning or end of a calendar month. Indeed, Figure
2.2, the correlogram of daily transactions (deseasonalised according to Table 2.3) exhibits noticeably
higher correlation at lags 20 (one month) and 40 (two months). It is also interesting to note that this
effect is most pronounced for bids, while it is almost invisible for trades.

We now consider the data at an intraday scale. Since time stamps are precise to one second, we
group trades with the same time stamp and code together. The result is a sequence { Ny}, of binned
counts; the number N,, is the number of transactions in the n*" second.

10
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Daily asks
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Figure 2.2: Autocorrelation of deseasonalised daily transaction counts of FTSE 100 index futures

We construct an estimate of the average number of transactions per second at every time of the
day, for each day of the week, by first calculating the average number of transactions in each second,
exponentially smoothing it and then fitting a natural cubic spline. Figures 2.3-2.5 are highly intriguing.

900
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1000 1100
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1300 1400 1500 1600 1700
Thursday
Friday

Figure 2.3: Estimated daily seasonal pattern of asks for FTSE 100 index futures

We find that business ambles along fairly evenly during the morning hours, slows down towards
lunchtime and then picks up again; trading reaches its highest levels in the afternoon. This is in stark
contrast to results on American markets pointing towards an inverse J-shaped pattern (cf. Goodhart
and O’Hara (1997, p. 86), Rydberg and Shephard (2000, Figure 4)).

Figures 2.3-2.5 have a number of sudden jumps in common. The opening and closing of trade on
the London Stock Exchange is most surely responsible for the rounded peaks at 8:30, and the dramatic
increase in activity just before 16:30. Likewise, the near-vertical climb in the activity rate at 14:30 can
be ascribed to the opening of American markets (Reuters, 2001), as can the quick gear-change around

11
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Figure 2.4:

Estimated daily seasonal pattern of bids on FTSE 100 index futures
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Figure 2.5: Estimated daily seasonal pattern of trades in FTSE 100 index futures
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15:00. Except for the level, the pattern of activity between 15:00 and 16:00 compares favourably with
the period of the same length, starting at 8:30.

The very pronounced peak—followed by a renormalisation of activity to the same level as over
lunch—at 13:30, on every day of the week except on a Monday, coincides with the timing of U.S.
macroeconomic announcements (Kim, 2003, Figure 1). The effects of these announcements on FTSE
100 index futures contracts extends, in both presence and form, to volume, price and volatility; it is well-
documented by, among others, ap Gwylim et al. (1999, pp. 159-173) and Clare and Courtenay (2000,
p. 269). In particular, comparison of Figures 2.3-2.5 to recent work done by Andersen, Bollerslev,
Diebold and Vega (2002, Figure 2) on intraday volatility patterns is quite illuminating.

2.3 Serial dependence in transaction counts

We return, momentarily, to the daily transaction counts studied in Section 2.2. The slow decay in
the autocorrelation function, illustrated in Figure 2.2, points to the presence of very long memory in
the level of market activity. In fact, all the autocorrelations shown (up to 60 lags, or three months)
are statistically different from zero. However, due to the fact that we have not taken any long-term
seasonal effects into account (ideally, one would need several years worth of data to estimate it), this
autocorrelation pattern may simply be a consequence of the presence of a short-term economic cycle.
Most likely, as Rydberg and Shephard (2000, p. 226) also concludes, this autocorrelation pattern is
due to a combination of long memory and economical trend.

0.33 J
0.29 7
0.25 7
0.21 7|
0.17 7
0.13 7
0.09

0.05

0.01

-0.03 7T T T T T T T T T
0 led 2e4 3ed 4ed 5e4 6ed Ted
Minimum
Median
Maximum

Figure 2.6: Minimum, median and maximum of autocorrelation of monthly second-by-second counts
of asks for FTSE 100 index futures

We now turn to the dynamics of the time series { Ny}, o of second-by-second bin counts. For each
transaction type, we first expand the entries for each calendar month into a sequence consisting of
30 600 counts per working day; the result is a time series of length between 550 800 (February) and
703 800 (July and October). Having subtracted our estimates of the daily seasonal pattern (cf. Figures
2.3-2.5), we then calculate the autocorrelation function of each series up to 61 200 lags, representing
two days.

The striking similarity between the resulting autocorrelation functions justifies our simplifying
approach. Rather than reproducing the 36 correlograms (12 for each of asks, bids and trades), we
display the minimum, median and maximum autocorrelation for each lag over the 12 months in Figures
2.6-2.8.

As was the case with the correlogram of daily transaction counts, we find that autocorrelations die
out extremely slowly. In the short run, autocorrelations are positive; they are mostly irrelevant after

13
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Figure 2.7: Minimum, median and maximum of autocorrelation of monthly second-by-second counts
of bids on FTSE 100 index futures
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Figure 2.8: Minimum, median and maximum of autocorrelation of monthly second-by-second counts
of trades in FTSE 100 index futures
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5 000 lags (ca. 80 minutes). The only exceptions are local maxima around lags 30 600 (one day) and
61 200 (two days); we concur with Rydberg and Shephard (2000, p. 226) that this phenomenon should
be ascribed to the neglected seasonal pattern.

2.4 Clustering of transactions

Having studied the gross features of the temporal dependence structure of transactions, we now turn
to the short-term behaviour of transaction counts. Figure 2.9, which was constructed in the same way
as Figures 2.6-2.8, features high autocorrelation at short lags; this decreases very rapidly, pointing
to longer runs of high transaction counts than would be the case if the times of transactions were
uniformly distributed over the course of the day. The only exception to this is the singular spike in the
autocorrelation between trade counts at lag 60; the only plausible explanation for this is that, while
asks and bids are submitted at any time, trades tend to be executed at round minutes.

Second-by-second asks Second-by-second bids Second-by-second trades
0.36 0.36 0.36
0.32 0.32 0.32
0.28 0.28 0.28
0.24 0.24 0.24
0.20 0.20 0.20
0.16 0.16 0.16
0.12 0.12 0.12
0.08 0.08 0.08
0.04 0.04 0.04
0 0 0
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
Minimum Minimum Minimum
~ Median ~ Median ~— Median
— Maximum — Maximum ~ Maximum

Figure 2.9: Short-term minimum, median and maximum autocorrelation of transactions in FTSE 100
index futures

This clustering, which is a common feature of transaction data, can be explained by the economics
of market microstructure. According to Engle and Russell (1998, p. 1129), such theories often partition
traders into two types, namely informed traders, who are assumed to possess information not publicly
available, and liquidity traders, or those not having access to the same superior information set as
informed traders. It is commonly assumed that liquidity traders arrive independently, according to
a Poisson distribution. By contrast, informed traders will enter the market only after observing a
private, potentially noisy signal.

Engle and Russell (1998, p. 1148) further explains that, in a rational expectations setting, moni-
toring the flow of orders allows specialists to detect such private information, and enter the market as
informed traders. While prices change according to the spread of this superior information, informed
traders will seek to trade as long as their information has value. As a consequence, we observe clustering
of trading following an information event because of the changing numbers of informed traders.

This phenomenon is nowhere as evident as in the bursts of trades following U.S. macroeconomic
announcements and the opening of U.S. markets, which we considered in Section 2.2. Whenever new
relevant information becomes available, activity on the market increases; this persists for some time
before returning to the previous background level.
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2.5 Dependence of trades on bids and asks

Intuitively, we expect to observe strong interdependence between bids, asks and trades. In the normal
course of business, asks and bids are expected to evolve in a similar way, with trades following closely.
This relationship, however, is far from clear-cut; bids and asks are often submitted for various reasons
other than the intention to trade. In comparison to placing bids and offers, agents should be expected
to be much more cautious when trading: FTSE 100 index futures, for instance, trade at multiples of
GBP 10, so a typical transaction would involve tens of thousands of pounds.

Having no means to identify trades with their constituent bids and asks, we are restricted to
studying the covariation between trades and, respectively, bids and asks; an covariation at lag [ of a
sequence (yx)p—, on a sequence (yi),—, is defined as

-1

(x —Z) (Yks1 — U) -

3

1
pL=—
m

=
Il

Calculating these quantities in the same way as was done in the previous two sections (by dividing
and conquering), we obtain Figure 2.10. In a sense, the smoothness of the curves are slightly disap-
pointing. Evidently, more detailed analysis is needed to obtain sensible results about interdependence
between different types of transactions on the same assets.

Second-by-second asks

167
141
121
1.0
0.8
0.6
04
02

0
0 20 40 60 80
Minimum
~ Median
~ Maximum

100

120

Second-by-second bids

16

147

127

1.07

0.8

0.6

0.4

0.2

0
0 20 40 60 80 100 120
Minimum
~ Median
~ Maximum

Figure 2.10: Covariation between trade counts and ask and bid counts at different lags

2.6 Trading methods

In their study of trades in IBM stocks on the New York Stock Exchange in 1995, Rydberg and Shephard
(2000, pp. 224-225) found the correlogram to be completely dominated by a negative autocorrelation
at lag 1. The autocorrelation function then increases from lag 2, to reach its maximum at 6; at higher
lags their empirical autocorrelation function agrees with ours. The difference at microstructure level is
due to the difference in trading methods: in 1995, the NYSE—and LIFFE—still operated on an open
outcry basis. The negative first order autocorrelation—and subsequent increase—found by Rydberg
and Shephard is most certainly due to the inability of the market maker to record trades quickly
enough at active times of the market.

In contrast, the correlograms in Figure 2.9 decrease smoothly, with no evidence of reporting de-
lay. Perhaps this single fact—that the time it takes to provide such straightforward information as
time and price, has decreased from several seconds to several milliseconds in the space of only eight
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years—epitomises the dilemma we face when attempting to understand high frequency finance. As a
consequence of our effort in developing technology to obtain faster, more accurate results, the very
object of our study is becoming more and more sophisticated. As financial expertise becomes more
prevalent, the single brilliant idea that may make an individual a millionaire becomes more and more
elusive. Complete understanding of financial markets may forever lie just beyond the horison.
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Chapter 3

A Markov-Cox model for
transaction times

In this chapter, we develop a modelling and estimation framework for intraday binned transaction
counts. In Section 3.1, we consider simple case of trades in a single asset, to ease the exposition of
our modelling assumptions. Section 3.2 considers the general situation, where a number of assets are
traded on the same market. We develop an iterative maximum likelihood estimation procedure in
Section 3.3; in Section 3.4, we illustrate this method by applying it to binned counts of transactions
in FTSE 100 index futures.

3.1 Trades in a single asset

Let us first consider the simplest case, namely that of transactions—trades, say—in a single asset.
The problem of modelling times and frequencies of trades is at heart an issue of describing a countable
random point process {t}, .y with very distinctive features. Generally speaking, the modelling of
such a process an be approached in two different ways, namely by either modelling the occurrences of
trades themselves, or modelling the durations between trades.

A prime example of the latter approach to modelling transaction processes is the Autoregressive
Conditional Duration (ACD) model, developed by Engle and Russell (1998). This model, which has
proved quite popular in the econometrics community, suggests that the expected duration between
transactions follow a process of the type

Vi = w ~+ ax;—1 + Bp;—1 for some o > 0 and G > 0,

where z; :=t; — t;_1 denotes the previous observed duration. Note that the durations are the inverse
of the intensity of the Poisson process. In some sense, the process is discrete, and the intensity with
which jumps in prices occur can only change at the discrete time points. This model is based on

the assumption thatthe standardized durations 2t are independent and identically distributed with
density function
( ”
g =
Yi

i
Zy1,T2,. "azil;o) =g <%a9>

E (mi|x1,x2,...,xi_1;9) = ’(ﬁl

and expected value

In our work, we take the first approach; we will model the times of trades as a point process. We
begin by association the times of trades with a trade counting process. Many alternative definitions
of counting processes exist (cf. Snyder (1975, p. 7), Engle and Russell (1998, p. 1129)); we follow
Grandell (1997, pp. 51-52) in calling a process a counting process if it has state space Ny U {400} and
non-decreasing right-continuous (hence cadlag) paths.
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3.1 Trades in a single asset Markov-Cox model

The natural counting process {N;},~, associated with a point process T':= {1}, is defined by
setting NV; to be the number of point in the set TN [0,¢]. In the sequel, we will conveniently abuse
notation by identifying a point process with its associated counting process, and vice versa.

In modelling trades, we intend to follow Rogers and Zane (1998, p. 2), Lin et al. (1999, pp. 45—46)
and Rydberg and Shephard (2000, p. 219) and others in assuming that trades form a Poisson process.
It is therefore imperative that we convince ourselves of the validity of such an assumption before
proceeding to the development of our model. The following theorem (Snyder, 1975, Theorem 2.2.2) is
central to the motivation of our modelling assumptions; we present it without proof.

Theorem 3.1 Let {Ni},~ be the counting process associated with a countable point process {ty}; cy-
Suppose that the following hold true:

1. Ng =0 almost surely.

2. The point process is conditionally orderly, i.e. at any time u > 0, there exists for any e > 0 a
d > 0 such that, for all At € (0,0),

P (Nusar = Nu> 1 [{Nidiepp) ) <P (Nusar = Nu =1 [{Nidrepon )

3. For allt > 0,

]P(Nt+At *Nt =1 |Nt;t1;t25' "7tNt)

At) = A(t|Neyta, ta, ... tN, ) i= Alirgo At (3.1)
exists and is a finite, integrable function of t alone. In addition, if
¢
A= /)\(u) du for all t > 0, (3.2)
0

then Ay — Ay < 00 for all finite u and v > u.

Then {N¢},~, s a Poisson counting process with intensity X (or mean measure induced by A), i.e.
for any u < v its increment N, — N,, is independent of {Nt}te[o )’ and has Poisson distribution with

v
parameter Ay, — Ay = [ A(t)dt.

Proof. Snyder (1975, pp. 51-54) ]

If the three conditions above are satisfied, Theorem 3.1 guarantees that trades follow a Poisson
process. The first two are easily dealt with; in short, requirement 2 means that, at any time, conditional
on events before that time, the probability of two or more events occurring is infinitesimal relative to
the probability of one event occurring in any sufficiently short interval of time. A moment’s reflection
convinces us that such an assumption is indeed reasonable. Requirement 3, however, poses somewhat
of a challenge.

Requirement 3 implies not only that the limit (3.1) exists, but also that {tx},  evolves without
after-effects, at least infitesimally; a point process T' := {tj},y on [0,00) is said to evolve without
after-effects if, for any u > 0, the realization T' N [u, 00) of events after u does not depend in any way
on the sequence T'N [0, u] of events that have transpired in [0, u] (Snyder, 1975, p. 42). This property
expresses the independence of the past and future of the point process, at least in the short term.

Simply assuming that requirement 3 is true for the trades process directly contradicts our conclu-
sions in Chapter 2 about the presence of clustering and long memory in the series. In addition, even
if we could assume that trades evolve without after-effects, we face yet another challenge in using the
Poisson modelling framework: the intensity. To illustrate this, we assume momentarily that require-
ment 3 above did indeed hold true. According to Theorem 3.1, trades follow a Poisson process; the
only unclarified issue remaining is the form of the intensity (3.1).

We need only refer to Figure 2.5 to convince ourselves that A cannot possibly be constant over
time. Given that the mean intensity of trades (which is the maximum likelihood estimator of A) varies
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3.1 Trades in a single asset Markov-Cox model

so widely during the course of a day, it is inconceivable that trades follow a homogeneous Poisson
process.

Allowing X to be a deterministic funcion of time certainly provides us with a more flexible modelling
framework. However, there are a number of reasons why an inhomogeneous Poisson process might fails
do justice to the trade process:

1. The observed trade intensity varies between days. Figure 3.1 depicts second-by-second counts of
trades in FTSE 100 futures on five Tuesdays in October 2002. Although all five days display the
hallmark U-shape, it is clear that the intensity of trading differs between the five days; compare,
for instance, the difference in activity in the period 13:00-14:00 between days.

2. Trades in different assets are often correlated, as are the changes in their intensities. If, in
extending this model to multiple assets, we assume that the times of trades of each asset form a
Poisson process with deterministic intensity, we are bound to encounter difficulties in explaining
interdependence between different assets. The reason for this is that the intensities of the different
assets are deterministic, and hence independent of each other.

3. A deterministic intensity function does not provide for clustering of transactions; this is even
more the case with clustering due to unforeseen, unscheduled events.
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Figure 3.1: Second-by-second frequencies of trades in FTSE 100 (delivering December 2002) on five
consecutive Tuesdays in October 2002

Thus, even if we could accept a modelling framework that does not allow for dependence between
trade counts in disjoint intervals, determining the intensity of the counting process of trades is far from
clear. Fortunately, we can remedy both these problems by allowing the intensity itself to be stochastic;
conditional on the intensity, trades can be modelled as an inhomogeneous Poisson process. In this way,
after-effects and dependencies are modelled through the intensity process, while, at the same time, we
enjoy the benefit of working with a well-documented, well-behaved point process.

Such a model is easily expressed by means of a random measure. A random measure A on [0, 00)
is a stochastic process such that Ag = 0 almost surely, with non-decreasing right-continuous (hence
cadlag) paths satisfying A; < oo for all ¢ < oo (Grandell, 1997, p. 84). Note that a counting process,
as defined above, is simply an integer-valued random measure.

In the same spirit as (3.2), the random measure A is linked to the intensity process A via the

integral equation
t

Ay = /)\(u) du for all ¢t > 0. (3.3)
0
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3.1 Trades in a single asset Markov-Cox model

Clearly, A > 0 almost surely; in our work we will take A to be strictly nonnegative. We also assume
that the paths of A are cadlag; it follows from (3.3) that the paths of A are continuous.

Formally, we model the times of trades as a Cox (or doubly stochastic Poisson) process. A point
process T' := {ty},cy is called a Cox process with mean measure induced by A—or intensity process
A—if, conditional on A, T is a Poisson process with mean measure A (Kingman, 1993, p. 65). We
defer the development of a model for the intensity process to the next section; our model allows the
intensity to be governed by both intradaily seasonality and a latent independent Markov chain.

The remainder of this section is devoted to a related model for the process {Ny},cy of binned
trades, i.e. counts of trades in a sequence of time intervals of length At, not unlike the sequences of
transaction counts considered in Chapter 2. In their BIN model, Rydberg and Shephard (1999, p. 9)
assume that the Poisson parameter ), of the n® binned count N,, follows a moving average process
of the form

P
Ap = 0+ nyan,k for some o > 0 and v1,72,...,7 > 0.
k=1
This approach is intuitively appealing; for instance, at times of heightened activity, one would naturally
want a model to predict that the number of transactions in the next bin would be high.

Rydberg and Shephard (2000, pp. 228-229) provides a simple yet striking example of how having a
nondeterministic intensity function assists us in modelling the dependence structure of trades. Indeed,
let A be the Cox mean measure. Conditional on A, — A,,, we know that the count N, — N, is a Poisson
random variable with mean A, — A,; if

>\n = A(n—‘,—l)At — AnAt for n € N,

then, conditional on A,,, the binned count N,, has a Poisson distribution with parameter A,,. Moreover,
since, conditionally on A, the Cox process has independent increments, it follows that the binned counts
are conditionally independent.

We now calculate the unconditional correlation of binned counts. For simplicity, assume that A is
covariance stationary. Let u, o and 7 denote, respectively, the mean, variance and autocorrelation
function of the process A. We also define

t

o(t) = / r(u) du and R(t) = /t p(u) du.

0

Assuming that \; is square integrable, we have

var (Ay) = UQ/t/tr(u — ) dudv = 202R(u).
00

Consequently,
cov ()\n; )\nJrs) = U2<>Rsa

where
OR, := R((s + 1)At) — 2R(sAt) + R((s — 1)At).

The moments of N,, follow immediately; we have
E (N,) =E (\,) = uAt
and
var (N,,) = var (\,) + E (\,) = 202 R(At) + pAt.
Moreover,

cov (Np, Npts) = E (NoNpys) — (E (Nn))2
= cov (A, Ants)
= 0'2<>R55
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it follows that

0'2<>Rs

Ny, Npys) = .
cor ( +s) 202R(At) 4 pAt

3.2 Transactions in multiple assets

Following Rogers and Zane (1998), we construct the Cox mean measure by using a Markov chain
representing the level of activity of the market. On the one hand, this specific choice of underlying
process is motivated by our observation that, whenever the intraday intensity changes, it remains at
the new level for some time. For instance, studying Figure 3.1, it seems reasonable to suppose that
activity is at one level in the morning, another in the middle of the day and yet another at the end of
the day.

Another motivation for using Markov chains is that they are inherently simple, and their parameters
are easy to interpret. For instance, for a Markov chain with state space I := {0, 1}N7 an element
(z1,22,...,2N) € I can be thought of as a listing of the states of N shares, where we interpret z; = 1
to mean that trading in share ¢ is very active, and x; = 0 to mean that share ¢ is quiet.

We proceed in the following way. Let X := {X,},., be a continuous-time Markov chain with finite
state space {1,2,..., N}. For simplicity of exposition, we assume X to be stationary and ergodic. Let
@ be the matrix of transition rates, and let

P(At) := e 219 for At >0 (3.4)

be the semigroup of transition matrices.

We have M different transactions processes in a market, labelled 1,2, ..., M; this may be thought
of as trades in different assets, or even different types of transactions (asks and bids, for instance)
in the same asset. Suppose that the intensity of transactions in each asset [ = 1,2,..., M can be
expressed in the form

Moy = fhstfor k=1,2,...,N, (3.5)

where f} is the mean intensity of transactions in asset [ when X is in state k, and s! is the seasonal
index of asset [ at time ¢. Combining (3.5) with (3.3), we have

t
Al =ALX) = /fg(us; du for all t > 0. (3.6)
0

Following Rogers and Zane (1998, p. 4), we suppose that these transactions are generated, in a way
that shall soon be made clear, by standard Poisson counting processes N1, N2, ..., N™  independent
of each other and of X; a standard Poisson process is a simply a homogeneous Poisson process with
unit intensity. That the assumption of independence among the Poisson processes is reasonable follows,
on the one hand, from the martingale characterisation of Poisson processes (Meyer, 1976, pp. 288—
289), and on the other, from the fact that independent Poisson processes are almost surely disjoint
(Kingman, 1993, Disjointness Lemma). The point is that, as long as our different transaction processes
do not intersect (i.e. trades in different assets taking place at the exact same moment), it is safe to
assume that N', N2,..., N™ are independent.

For each asset [ = 1,2,..., M, we now define the counting process N! by

t
N} = N'(AL(X)) = N /fg(usg du
0

This is a Cox process with mean measure induced by A! (Kingman (1993, Mapping Theorem), Cox
and Miller (1965, pp. 153-154)). By this construction, we now have M Cox processes, whose inter-
dependence is explained completely by the Markov chain X; conditional on X, the Poisson processes
N, N2, ..., NM are mutually independent, each with deterministic mean measure A'(X).
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3.3 Estimation methodology

Having calculated the seasonal indices directly from the data, our model has N(M + N —1) parameters,
consisting of the N(N — 1) off-diagonal entries of @, as well as N Poisson intensities for each of the
M assets. Given that, at each time point, we have M observables, it is clear that the number of
parameters exceeds the number of data points by far.

Conventional statistical wisdom would have a number of objections to a modelling framework such
as this: in the first instance, due to the myth that, if the number of parameters exceeds the number
of data points, the model must necessarile be degenerate. Rogers and Yousaf (2002, p. 380) provides
convincing evidence to the contrary; similarly, the fit we obtain is by no means perfect. In considering
this model, our main aim is to fit its strong structural properties; the number of parameters is a
by-product of this objective, rather than an end in itself.

Secondly, some of the parameters will be indeterminate; this is to be expected, as our estimation
procedure maximizes a real-valued function of many variables, and there is no reason to believe that
this maximum should be unique. Experience with generalised method of moments estimation based on
Laplace transforms of the history of transactions, suggested by Rogers and Zane (1998), has taught us
that care is needed in ensuring that our estimation method is as proficient as possible in distinguishing
between rival models of similar (but different) merit. In addition, it is well known that Markov chains
do not have unique @-matrices; interchanging rows (and corresponding columns) results in the same
Markov chain, albeit with altered state labels.

Finally, we observe that the estimates of many of the parameters will be subject to large error;
this is simply the consequence of some parameters having little or no influence on the model values
for the observables. For instance, at a time when we believe strongly that the Markov chain X is
in state i, say, we should accept that the Poisson intensities associated with state j # ¢ cannot be
estimated with high precision. Rogers and Yousaf (2002, pp. 380-381) also points out that this type of
situation—where the parameter space is very large in relation to the sample space—is quite common
in the finance industry, and that resulting problems with parameter stability have proven very hard
to deal with in practice. We take note of these objections and warnings; however, our methods will be
justified by the quality of the fit that they achieve, and the stability of the estimates they produce.

Our model is parametrised by a vector 6; as usual, we regard 6 as a stacked vector consisting of
the N(N — 1) off-diagonal entries of @), together with the M N Poisson intensities

1 r1 1 M M M
f15f25"'7fNa"'7f1 af2 a"')fN'

We will be very lenient in the range {2 of values of #; our only absolute requirement is that {2 is
contained in [0, c0) NMFN-1)

As necessitated by the format of our data, we can only observe the Cox processes N' N2 ... NM
periodically; we fix this period At > 0, and let t;, := kAt for k € N,. We also let n} be the observed
number of transactions in the I*" asset in the interval (t;_1,%x]. For the sake of brevity, we write

nﬁc = (nll,nlg,...,ngc),nkz (n}c,ni,...,nkM) and ng = (n,lg,ni,,nﬂ/[)

for the sequences of observed trades,

I — m _— pm_m — 1 2 M
St = g Nk = f1sy and A = (Al7k,)\l,k,...,)\l7k)

te —
for the Poisson intensities (cf. (3.5)), as well as
Xk = th and Xk = (X(),Xl, . ,Xk)

for the Markov process.

We adopt a Bayesian standpoint. Suppose that po : {1,2,..., N} — [0,1] is the initial law of X,
and the initial distribution of 6 is given by the density ¢ : RNM+N=1 _, [0, 00). The likelihood of
(Xk, ng, 9) is

k
Hk (Xk,nk, )O((,bo [LO Xo ]:[pr 1,X At|9 (an\Xj’jAt), (37)
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where {p; ; (At|0)]i=1,2,...,N,j=1,2,...,N} are the elements of the matrix P(At|¢) defined in
(3.4), and 7 : N} — [0, 1] is the multivariate Poisson probability mass function, i.e.

l
o3
M l
N AL = M*Aikmf —1.9 N 3.8
T (Nke | Az ke )—H (! e N, orz=1,2,...,N. (3.8)
I=1 k/*

Form =1,2,..., M, the quantity A"}, At is our best approximation of the Cox mean measure Ay, (1) —
Ay, (1) (cf. (3.6)); note how our independence assumption simplifies the structure of the Poisson
probability in (3.8).
We are primarily interested in the posterior distribution of (X%, #) given ny; we introduce the
notation
Ly (2,0 |ng) == > Hy (X, 0y, 0) . (3.9)
Xr€{0,1,....N}*x{z}

Combining (3.7) and (3.9), the recursive relationship

N

Lip1 (2,0 n541) =Y Li (1,60 ) pro (A]0) 7 (ngs1 A1 AL) (3.10)
=1

follows immediately. However, for the Markov chain model in mind, even the simplified expression
(3.10) is far too complicated to allow exact calculation, let alone detailed analysis. As a matter of
necessity, we make some simplifying assumptions.

We follow Rogers and Yousaf (2002, pp. 384-385) in using a conditional-independence calibration.
In our model, it is easy to imagine the situation where we have information with regards to the process
over a very long time span; we postulate that the likelihood can be factorised as

Lk (:c,t9|nk) = Uk (:c|nk)¢)k (9|Ilk) (311)

On the one hand, having seen a great amount of data, we expect to have a fairly accurate idea of the
parameter 0; the values of 6 will largely be determined by the long-run average behaviour of the market.
On the other hand, as a result of the ergodicity of the Markov chain, the posterior distribution of Xj
will be more influenced by recent events. As a consequence, an assumption of approximate conditional
independence of the posterior distributions of X and 6 is within reason.

We assume moreover, for k € N, that ¢, takes the form

on ) xexp {5 (6-0) -5 (6- 1) | .12

for a positive symmetric matrix Si. If we suspect that we have very nearly identified the true value of
0, then such a quadratic approximation to the likelihood is quite natural. On the one hand, it stems
from a normal appproximation, on the other, from the Taylor expansion of the log-likelihood (with the
gradient being negligible near its maximum).

Combining (3.10) with (3.11) and (3.12), we obtain, for k € N,

Liy1 (2,0 ngq1)

N 1
o 3w (Ui ) pre (AE[0) f (mis [ M1 At) exp {5 (9 - ék) - S (9 - ok)} . (3.13)

=1

Armed with initial values éo, So and g, we update the maximum likelihood estimate iteratively.
At step k + 1, assume 0y, Dy, Sy and py known. Optimising

N

> Lip1 (1,0 [ngiq) (3.14)
=1
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over € Q, we find the new maximum likelihood estimate 0y of 0. Substituting 41 into (3.14) and
differentiating, we find the the Hessian Si11. Finally, 41 is calculated from

Pt (o, 0gg)

o< zNjuk (I |ny) /pl,x (AL10) f (ns1 [Mpp1 ) exp {—% (9 - ék) .S, (9 - ék)} do; (3.15)
Q

=1

we scale the entries of ug4+1 to have unit sum.

Having designed an estimation method, the next logical step is to investigate methods of comparing
the fits of different models, for instance to determine the optimal number of states. As a point of
departure, one may consider the one-step prediction

N
ﬁgchl = Z pie (M |nk)>‘£n,k' (3.16)

m=1

Comparing 7} 41 with the observed value nt 41 provides us with a measure of the fit of the model.

However, we cannot attach very much weight to such an error estimate, since nfc 41 is a Poisson
variable: its variance is the same as its mean.

Direct comparison of maximum likelihood values across models proves to be the best measure for
comparison of fit, provided that we take into account the fact that this cannot be done directly, due
to the missing constant of proportionality in (3.13). Experience has shown that, when ignoring this
constant, likelihood values decrease dramatically when the number of states is increased; this creates
the illusion that increasing the number of states worsens the fit, whereas this is emphatically not the
case. This misconception can be remedied by calculating the missing constant of proportionality for
each model, and dividing the maximum likelihood by it.

Comparing maximum likelihood values at each timestep may be misleading, because a single max-
imum likelihood value is certainly not representative of the performance of the model over the whole
period of estimation. In fitting this model, we will, instead, compare rolling likelihoods, where a rolling
likelihood is simply the product of one-period likelihoods over the period of estimation.

3.4 Fitting the model to FTSE 100 index futures

The lazy—or impatient—statistician has a natural inclination to aggregate temporal data to some
fixed time interval. However, Engle and Russell (1998, pp. 1127-1128) warns that choosing too short
an interval may introduce heteroskedasticity into the data; on the other hand, choosing too long an
interval risks losing the microstructure features of the data, mitigating the advantages of moving to
high frequency data in the first place.

Having experimented with various bin sizes, our eventual choice of the bin size At as 60 seconds
was not so much influenced by statistical and economical as by practical considerations. Using a very
computer-intensive estimation procedure on a huge data set (cf. Table 2.2), we found, as could be
expected, that small values of At resulted in the estimation process taking agonisingly slow, often
without any noticeable benefit in accuracy. On the other hand, choosing At too big often brought
perils of a different kind, namely having to numerically deal with infinity; more often than not, this
was caused by the difficulty of calculating the Poisson probability mass function (3.8) accurately for
large intensities (we were reluctant to use the normal approximation).

For the implementation of the estimation procedure, we use Scilab 2.6 (INRIA Meta2 Project and
ENPC Cergrene, 2001), an open source scientific software package developed by the French National
Institute for Research in Computer Science and Control (INRIA) and the National School of Civil
Engineering (ENPC) (Scilab Consortium, 2003). The heart of the estimation procedure is an optimi-
sation routine; for this we chose the Feasible Sequential Quadratic Programming (FSQP) algorithm
by Lawrence, Zhou and Tits (1997); we accessed this from Scilab using the interface by Delebecque
(2000).

We concentrate on testing the model on the data, rather than obtaining exact values for the
estimates. To this end, we split the data into subsets of manageable size, and experiment with different
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flavours of the model on these subsets. Given such a subset, we first aggregate observations into bins
of At seconds, and then proceed in the following way.

We set all the off-diagonal entries of the transition rate matrix ) to the same convenient constant,
namely one hour. We are free to do this, as estimation has proven fairly insensitive to the initial
estimates for the transition rates of the Markov chain. The initial law po of the Markov chain is then
calculated as its equilibrium distribution; this turns out to be the uniform distribution on {1,2,..., N}.
Likewise, the initial value Sy of the Hessian does not influence the estimation procedure noticeably
beyond the first few iterations; for convenience, we set it equal to the identity matrix. Through (3.12),
this naturally extends to taking the initial distribution of # as normal with identity covariance, centered
around the initial estimate of 6.

In contrast, care is needed in choosing reasonable initial estimates for the Poisson intensities for each
of the M transaction sequences. For transaction sequence [, we first find the intraday and intraweek
indices chl, JZQ, R czl510 and !, b, ... ,uié; together, they constitute the seasonal index. Deseasonalising
and rearranging each sequence, we find the N equispaced percentiles p 00, D200 .. P1ooN after

dividing by At, they become the initial frequency estimates f{, fé, ey f]lv

Having found initial values for the estimates, we follow the steps outlined in Section 3.3. However,
we need to make some minor adjustments to ease the fitting exercise.

The normal approximation (3.12) is highly accurate whenever our parameter estimate is close to
the true value. However, far out in its tail, its gradient often fails to provide information about the
whereabouts of the true mean. This problem is aggravated by our use of central finite difference
approximations for derivatives. In situations where this may occur (for instance, in the initial stages
of the iteration), we address this problem by first performing the optimisation with, instead of (3.12),
the rather more heavy-tailed Cauchy density

1+ (oék)l- S (0-01)

¢k (9|nk) X

We then substitute the optimising value of 6 for 0, and proceed as usual.
In updating the law of X, we also approximate (3.15) by assuming that the posterior distribution
of # is the point mass at 61, i.e. substituting

N
Pt (2, [Dggr) o< Zuk (Ung) pro (A1) f (nrg1 | A e+1AL)
=1

for (3.15). In this way, we avoid repeatedly integrating over a large number of dimensions.

Finding the most efficient way of keeping the Hessian updated remains a moot point; apart from the
optimisation itself, this is the singularly most expensive calculation in the whole estimation process.
Several methods for approximating the Hessian exist, most of which involve diagonal matrices. Rogers
and Zane (1998, p. 11) suggests using the diagonal matrix of squares of the parameter estimates; this
method is not suitable to our case, since the difference in magnitude of our parameters (typically, the
Poisson intensities will be much larger than the Markov transition rates) may occasionally lead to a
badly scaled matrix. Likewise, the fact that our parameter estimates are typically highly correlated
prohibits us from following Rogers and Yousaf (2002, p. 383) in ounly calculating the diagonal entries.

We obtain a slight speed improvement by requiring, at first, that the Hessian be updated at every
iteration; as estimation continues, we update the Hessian less and less frequently. The motivation for
this is that, once the basic structure of the Hessian has been established, we expect that its entries will
stabilise to growing approximately linearly with time. Our situation is analogous to the estimation
of the mean of a distribution using a sequence of noisy observations of the mean; having seen n — 1
observations, the n'" observation carries a weight of % in the estimation. In calculating the Hessian in
a conditional-independence calibration setting, the most recent observations tend to carry relatively
little weight in comparison to the average over earlier times (Rogers and Yousaf, 2002, p. 384).

Finally, to enable comparison between different models, we integrate the total likelihood (3.14) by
Monte Carlo methods, adopting a simple example by Brooks and King (2003, p. 60).

We present two examples. In the first instance, we fit our model to trades in FT'SE 100 futures (with
maturity data March 2002) during February 2002. As an example of what happens during estimation,
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we first take a graphical tour of the estimation of one model—a Markov chain with four states—on
23 February, the 16" day of our estimation period. The observed 60-second transaction counts for
this day are given in Figure 3.2, as are the 510 estimates of the long-term intensities fl, fg, fg, f4.
In comparison, Figure 3.3 contains the seasonally adjusted trade intensities; notice how close these
estimates follow the development of trades over the course of the day.
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Figure 3.2: Transaction counts and estimated intensities for trades in FTSE 100 futures (maturing
March 2002) on 23 February 2002

Figures 3.4 and 3.5 depict, respectively, the estimated law u of the Markov chain and the estimated
transition rates. The colouring of these graphs are consistent with Figure 3.3; in Figure 3.5, the
graph of each transition rate is coloured according to the destination state. Studying these two graphs
closely, we notice an inconsistency which has proven difficult to explain. Even though the estimated
transition rates are quite low, Figure 3.4 leads us to believe that the Markov chain changes states very
often. Many factors may cause this effect; most probably, our estimation procedure either finds it
difficult to distinguish the present state of the Markov chain, or a great number of the transition rates
are indeterminate. Future research will attempt to provide an explanation for this problem, if not a
solution.

Having fitted several Markov models, we now turn to the evaluation thereof. Table 3.1 summarises
rolling likelihood values for four different times in the month of February, for a number of different
Markov models. As we would expect, the rolling likelihood increases with the number of states used.
Choosing the best model entails weighing the increase in the rolling likelihood against the number of
parameters to be estimated. Clearly, a three-state model fits the data much better than a model with
two states; balancing cost against our measure of fit, we opt for a four-state Markov chain.

Although rolling likelihoods do not provide absolute measures of how well the models describe our
data, Figure 3.6 is reassuring; the four-state model’s one-step predictions are, on average, reasonably
accurate. Note the heavy tails: this is almost certainly due to outlier bursts of trades.

In our second example, we attempt to model bids, asks and trades during May 2002 pertaining to
futures maturing in June 2002. We treat these three sequences of transactions as if they were trades on
different assets. The results of a number of different models are given in Table 3.2. Even at a first glance,
the patterns in Table 3.2 differ fundamentally from the patterns we saw in Table 3.1. The estimation of
chains with too few states have proven numerically unstable (if not downright impossible); estimation
of three assets with only two possible arrangements of intensities, for instance, cannot possibly return
positive probabilities when one or more of the sequences of transactions deviates from the expected
pattern. As a consequence, zero Poisson probabilities are returned, a feasible estimate of the law of
the Markov chain becomes impossible and the process derails.
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Figure 3.3: Transaction counts and estimated intensities for trades in FTSE 100 futures (maturing

March 2002) on 23 February 2002
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Figure 3.4: Estimated law of four-state Markov chain fitted to trade counts in FTSE 100 futures
(maturing March 2002) on 23 February 2002
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Figure 3.5: Estimated transition rates of four-state Markov chain fitted to trade counts in FTSE 100
futures (maturing March 2002) on 23 February 2002

Number of | Number of Rolling likelihood

states parameters | 1 Feb, 10:51 | 4 Feb, 11:51 | 6 Feb, 15:51 | 26 Feb, 16:30
2 4 -157.904 -776.928 -3 646.925 -13 373.978
3 9 -120.462 -565.280 -2 631.432 -9 631.049
4 16 -94.502 -452.923 -2 021.057 -7 001.032
5 25 -83.659 -390.319 -1 733.944 -5 837.117
6 36 -82.280 -400.784 -1 609.711 -5 574.074
7 49 -82.758 -372.249 -1 473.718 -5 029.464
8 64 -77.552 -347.037 -1 377.439 -
9 81 -73.843 -323.613 -
10 100 -70.746 -

“Missing values are due to the estimation process being stopped: no additional benefit could be derived from these
time-consuming calculations.

Table 3.1: Comparison between Markov-Cox models of trades in February 2002

Number of | Number of Rolling likelihood
states parameters | 7 May, 15:51 | 8 May, 11:40 | 28 May, 15:17 | 31 May, 16:30
2 8 -7 906.231 -9 708.793 -105 725.565 -
3 15 -5 905.276 -6 576.533 -63 142.731 -b
4 24 -5 160.894 -5 743.364 -¢ -
5 35 -4 584.647 -5 129.131 -19 447.203 -24 811.603
6 48 -4 091.453 -4 575.658 -17 564.977 -22 583.834
7 63 -3 693.891 -4 133.671 -15 634.816 -18 653.703
8 80 -3 366.553 -d - -

%Estimation of a two-state chain crashes repeatedly, due to inability to calculate Poisson probabilities.

bEstimation of a three-state chain crashes repeatedly, due to inability to calculate Poisson probabilities.
¢Estimation process was stopped in view of the results of two- and three-state estimation.
dEstimation process was stopped, for reasons of economy.

Table 3.2: Comparison between Cox-Markov models of trades in May 2002
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Figure 3.6: Histograms of absolute and percentage deviation, fitting a four-state model to trades in
February

Since the rolling likelihoods for the models that were able to complete the month successfully
are actually very close to each other, choosing the best model reduces to the availability and cost of
computing power. Figure 3.7 is a histogram of the mean percentage deviation from one-step predicted
values; once again, we observe a number of huge outliers.

We conclude this chapter with a number of snapshots from the estimation of the six-state Markov
chain.
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Figure 3.7: Histogram of average percentage deviation of a six-state model, fitted to bids, asks and

trades in May 2002
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Figure 3.8: Estimated seasonally adjusted ask intensity for a six-state Markov chain, 1 May 2002

31



3.4 Fitting the model

Markov-Cox model

120

1007

807

607

800 900 1000 1100 1200 1300 1400
State 1 State 4
State 2 State 5
State 3 State 6

1500

1600

1700

Figure 3.9: Estimated seasonally adjusted bid intensity for a six-state Markov chain, 1 May 2002
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Figure 3.10: Estimated seasonally adjusted trade intensity for a six-state Markov chain, 1 May 2002
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Figure 3.11: Estimated transition rates of a six-state Markov chain, 1 May 2002

33



Chapter 4

Conclusion

Our study was concerned with modelling the distinguishing features of high frequency transactions
data. To this end, we investigated the salient features of transaction counts in FTSE 100 index futures.
Several interesting patterns have emerged, most notably the changes in cluster patterns brought about
by the technological development of market trading structures.

Several exciting research opportunities remain. For instance, given that activity levels on Amer-
ican markets reach their peak in the morning and the indication is that London derivatives markets
reach their peak in the afternoon, the period 15:00-19:00 GMT must be the the busiest part of the
international trading day. It would be interesting to study the influence these markets on opposite
sides of the globe have on each other.

We have also suggested a new framework for the modelling of times of transactions on financial
markets, using mutually independent Cox processes for the modelling of individual trade processes.
In this framework, temporal dependence as well as interdependence between assets are completely
explained by a latent independent Markov chain. This Markov chain represents the state of the
market; it also drives the individual Cox intensities.

Having fitted models to several subsets of our data, they seem to perform satisfactorily. How-
ever, evaluation of the performance of this class of models is hampered by the absence of suitable
representative measures of fit. Although we are able to compare the merits of models with different
numbers of states, we are as yet unable to quantify the extent to which our model explains movement
in transaction counts.

In addition, although other studies have found a clear connection between the number and times of
trades and price movements, we are not clear on the best way of extending our modelling framework to
allow for price movements. Further research into application of the theory of marked Poisson processes
may yet yield fruitful results.

As is evident from Chapter 2, we are in the extraordinary position that, instead of having the
usual problem with too little data, we are at risk of being overwhelmed by the sheer volume of
information. Fortunately, continuous development in computing power will alleviate this problem, if
not completely solve it. As it is, a computationally intensive estimation procedure such as ours is simply
not economically viable, at least not on the high-frequency timescale that we expect these results will
be required. Some benefit may be derived from porting our implementation from an interpreted to a
compiled platform; we are also looking forward to experimenting with a number of new optimisation
and utility algorithms.
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