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Introduction
The notion of entanglement was introduced in discussions of the founda-tions of quantum mechanics, but in recent years it has been realised that itcan have great practical power. The �rst part of this talk is a review of theconcept of entanglement and some of its potential practical applications. Inthe second part I will describe recent joint work (with Lieven Clarisse, Si-mone Severini and Sibasish Ghosh) [7] on the power of quantum operationsto generate entanglement.

Part I: Powerful Entanglement
Entanglement is Schr�odinger's term for the physical consequences of themathematical fact that the the tensor product VA 
 VB of two vector spacesVA and VB is larger than their Cartesian product VA � VB, and the same istrue of the corresponding projective spaces. Not every element of the tensorproduct can be factorised as vA 
 vB with vX 2 VX . The physical interestlies in taking VA and VB to be the state spaces of quantum objects A and B.A pure state j	i 2 VA 
 VB of the combined system is separable if it can befactorised as j	i = j Aij Bi. By the principle of superposition there are also
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states of the form aj�Aij�Bi+ bj Aij Bi, which in general are not separable.When the combined system is in such a state the individual objects cannotbe assigned independent pure states, and are said to be entangled with eachother.A familiar example of an entangled state is the singlet state
j	i = 1p2�j "ij #i � j #ij "i�

of two (distinguishable) spin-12 particles. In a singlet each individual particlehas no de�nite direction of spin; the state of the particle A is the mixed state
�A = trB j	ih	j = 12(j "ih" j+ j #ih# j) (1)

representing total ignorance of the spin state.
Entanglement and locality

Einstein argued that spatially separated objects must have separate de-scriptions; the quantum-mechanical description of objects in an entangledstate must therefore be incomplete. This is the content of the famous paperby Einstein, Podolsky and Rosen [8], which brought out the fundamental na-ture of entanglement (indeed, Schr�odinger introduced the term in the courseof a commentary on the EPR paper [17]). The EPR argument is that inthe state (1), a measurement of sz for one of the particles reveals the valueof sz for the other particle; if the particles are separated, this, by a princi-ple of locality which was axiomatic for Einstein, implies that the value of szfor the second particle must already exist. Such a value is not contained inthe quantum-mechanical state, which must therefore be completed by some\hidden variables". Thus
entanglement + locality =) hidden variables: (2)

On the other hand, John Bell, looking more thoroughly at the measure-ments that can be made on two particles in an entangled state, showed thatthe predictions of quantum mechanics were incompatible with the existenceof such hidden variables [1]. He considered the possible results of spin mea-surements in two di�erent directions for each particle. Let Pij(a; b) be theprobability that if the spin of A is measured in direction i and the spin ofB is measured in direction j, then the results are a and b respectively. Ifthe particles have independent states, as required by the EPR argument,then, even if the underlying theory is indeterministic, the probabilities mustfactorise as Pij(a; b) = Qi(a)Rj(b):
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Even if we don't know what the individual states are, there will be a dis-tribution over various possibilities and the joint probabilities will be of theform Pij(ai; bj) =X
� p(�)Q(�)i (ai)R(�)j (bj): (3)

Bell showed that in the singlet state there are measurements for which theprobabilities predicted by quantum mechanics cannot be written in this form.Later, Gisin showed that this is true in any entangled state [12]. Thus
Entanglement =) nonlocality.

There is a useful geometrical representation of Bell's proof [15, 16]. Thesixteen probabilities Pij(a; b) can be taken as coordinates of a vector in R16.Bell's inequalities are the conditions for this vector to lie in the convex hullof the vectors of the form Pij(a; b) = Qi(a)Rj(b), which is a polytope whosevertices are obtained by taking the functions Qi and Rj to be (0; 1) functions.Points inside this polytope satisfy inequalities which become equations on thefaces of the polytope; the Bell inequalities are therefore linear in Pij(a; b).This condition on the probabilities is equivalent [11] to the statement that thefour two-variable probability distributions Pij are marginals of a four-variabledistribution P (a1; a2; b1; b2) (for example,
P12(a; b) = X

a2;b1 P (a; a2; b1; b)):
This is an example of a problem in probability theory; given probabilitydistributions on subsets of a set of binary variables, what are the conditionsfor them to be the marginals of distribution on the full set of variables? Thegeneral case appears to be open. Other particular cases, and some examplesof the corresponding problem for quantum states of a set of qubits, are studiedin [6].

Entanglement killed the cat
The concept of entanglement can be used to solve a notorious problem inthe interpretation of quantum mechanics which was graphically illustratedin the same paper by Schr�odinger [17]. This is the problem of Schr�odinger'scat, often stated as follows: \Quantum mechanics predicts that, since a catcan be alive and it can be dead, it can also be in a superposition stateajalivei + bjdeadi. Why, then, do we never see such superposition states?"The answer [10, 20] is that if we are to determine what the theory predictsabout what we see, then we must put ourselves into the theory. We know
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that the laws of physics will evolve a state of a live cat and an inquisitiveobserver into a state of a live cat and a happy observer seeing a live cat;similarly, they will evolve a state of a dead cat and an inquisitive observerinto a state of a dead cat and an unhappy observer seeing a dead cat. A stateof a cat in the superposition ajalivei + bjdeadi, together with an inquisitiveobserver, will therefore evolve to
ajaliveicatj\I see a live cat"iobserver + bjdeadicatj\I see a dead cat"iobserver:

The cat becomes entangled with the observer. Nowhere in this entangledstate is there a state of an observer seeing a superposition state of the cat;the theory tells us that the only states that the observer can experience arethose of seeing a live cat and seeing a dead cat.
Quantum Cryptography

The context in which entanglement was �rst introduced and exploredwas purely theoretical, not to say philosophical. It is only in the last �fteenyears that it has been realised that the ideas described above have practicalapplications. I will now describe three examples of the practical power ofentanglement.The �rst is a novel solution to the cryptographic problem of key distri-bution [9]. It is well known [18] that the only perfectly secure method ofencoding a message is to use a key as long as the message, and to use a dif-ferent key for each message. A message can always be written in an alphabetof two symbols (say 0 and 1), when it becomes a string of binary digits, i.e.a vector m in ZN2 for some N . A key is another vector k 2 ZN2 . The codedmessage is the vector (or bitwise) sum c = m + k (mod 2); knowing k, onecan recover m from c. But one wants to be sure that nobody else can readthe message, so one is faced with the problem of distributing the key so thatnobody can intercept it, or keeping it so that nobody can steal it. The so-lution o�ered by entanglement is often called \quantum key distribution",but it is in fact a process of quantum key generation. The key is safe fromburglary because it does not exist until the moment of use.The sender Alice and the receiver Bob obtain the digits of their key froman ordered collection of pairs of qubits. Each qubit is a quantum object witha two-dimensional state space (e.g. a spin-12 particle), so that it has an or-thonormal \computational" basis which can be labelled j0i and j1i. Measur-ing an observable which has these states as eigenstates is called \measuringin the computational basis". Each pair of qubits, one held by Alice and oneby Bob, is in the entangled state j	+i = 1p2(j0ij0i + j1ij1i). When theywant to generate their key, Alice and Bob both measure their qubits in the
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computational basis. The result (0 or 1) is unpredictable, but the entangle-ment of each pair guarantees that Alice and Bob will get the same result forcorresponding qubits. These results are the digits of their key.
Quantum codebreaking

In practice we already have secure cryptography; commercial commu-nication generally uses encryption based on the RSA system which can inprinciple be broken, but only by solving the problem of �nding the primefactors of a large integer. In theory this can be done, and there is no proofthat it cannot be done quickly; but in practice it appears to be impossible.The key for the RSA code consists of a pair of large primes p; q (having, say,N binary digits each). Encoding a message uses the integer pq, which canbe found by performing about N2 multiplications and additions. Decoding,however, requires �nding p and q given the 2N -digit number pq, which re-quires dividing by all candidate factors up to ppq, therefore doing about 2Ndivisions. There are faster methods, but they are still exponential in N1=3,and it is easy to make N large enough that the time required on the fastestcomputer is comparable to the age of the universe.So the description of quantum key generation by Ekert in 1991 was a so-lution to a non-existent problem.1 But it became a potentially real problemin 1994, when Peter Shor showed that the basis of RSA coding could be un-dermined by a quantum computer. He discovered an algorithm which couldfactorise a 2N -digit number using less than N3 quantum operations, runningon a quantum computer | which makes essential use of entanglement.
Quantum computing

In essence, a quantum computer harnesses the power of superposition(of which entanglement is just one example). A highly stylised picture ofa quantum computer can be obtained by thinking of a classical computerin a superposition of a number Q of orthogonal states, in each of which itis performing a di�erent calculation. One could then say that in the timeneeded for a classical computer to do one calculation, the quantum computeris performing Q calculations. But this speed-up is only apparent, since weonly have access to the result of one of these calculations | in fact thequantum computer performs worse, since we have no control over which
1The history of quantum cryptography is actually a little more complicated than this.

The entanglement-based quantum key described here was �rst devised by Wiesner in the
1960s, before the RSA system, but it was not accepted for publication. A di�erent quantum
scheme, not using entanglement, was published by Bennett and Brassard in 1984.
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calculation we learn the answer to. The power of quantum computationresults from the possibility of asking di�erent questions. For example, bymaking a di�erent measurement we could obtain the answer to the question\Are the results of the calculations all the same?" To answer this questionon a classical computer, we would have to run all Q calculations, taking Qunits of time. On a quantum computer we could obtain the answer in oneunit.Shor's factorisation algorithm uses quantum superposition to �nd theperiod of a function by evaluating the function just once, but applying thisevaluation to a superposition of all input states. This results in a state inwhich the input system (or \register") is entangled with the output register.It has been shown that this entanglement is essential for the exponentialspeed-up over classical algorithms.
Superdense coding

Entanglement makes it possible to transmit two bits of information bysending one qubit. Thus it doubles the classical capacity of a channel: abit (in the sense of an object which can be in just one of two states) cancarry only one bit of information (in the sense of an answer to a yes/noquestion, e.g. 0 or 1?) But suppose Alice and Bob share a pair of qubitsin the entangled state j	+i = 1p2(j0ij0i + j1ij1i). Alice encodes two bits ofinformation by specifying one of the four operators
U� = j0ih0j � j1ih1j; V� = j0ih1j � j1ih0j: (4)

When one of these operators is applied to Alice's qubit, the two-qubit statebecomes
(U� 
 1)j	+i = 1p2(j0ij0i � j1ij1i) = j	�i (5)

or (V� 
 1)j	+i = 1p2(j0ij1i � j1ij0i) = j��i: (6)
She transmits the message by sending her single qubit to Bob, who now holdsone of the four states j	�i; j��i. A single measurement then tells him whichmessage Alice sent.

Quantum teleportation
The idea of teleportation is to transmit a material object by transmittingthe information needed to assemble the object. In a favourite science �ctioncomic strip of my boyhood [13], Dan Dare is transported from the northern
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to the southern hemisphere of Venus by stepping into a box where the con-stitution of his body is precisely measured. The measurements are sent byradio to his destination, where there is a supply of body parts which are re-assembled according to the information in the radio transmission. Althoughthe idea arose in science �ction, there is nothing remarkable about this pro-cess for classical objects. In fact we already have teleportation devices | wecall them fax machines. But for quantum objects the process is blocked atthe measurement stage: it is impossible to obtain the full information aboutthe quantum state of an object by measuring it. The discovery of quantumteleportation in 1993 [4] was therefore a great surprise.In quantum teleportation the channel for the transmission of informationis not radio but entanglement. In order for Alice to transmit Dan Dareto Bob, both Alice and Bob must have stores of body parts, with the twostores in an entangled state. Alice makes a joint measurement of Dan Dareand her store; this has an immediate e�ect on Bob's supply of body parts,assembling them into something related to Dan Dare. But in order to convertthis preliminary version into a precise copy of Dan Dare, Bob needs moreinformation which Alice can only transmit to him by radio or some othermethod of classical communication.To show exactly how this works, let us replace Dan Dare by a qubit.Alice and Bob share a pair of qubits in the standard entangled state j	+i =1p2(j0ij0i+j1ij1i); Alice also holds the message qubit (Dan Dare) in the state
jDDi = aj0i+ bj1i

which is to be transmitted. Thus the initial state of the three qubits is
j�iAj	iAB = 1p2�aj0iA + bj1iA��j0iAj0iB + j1iAj1iB�

= 12 j	+iA�aj0i+ bj1i�B + 12 j	�iA�aj0i � bj1i�B+ 12 j�+iA�aj1i+ bj0i�B + 12 j��iB�aj1i � bj0i�B
= 12�j	+iU+jDDi+ j	�iU�jDDi+ j�+iV+jDDi+ j��iV�jDDi

where the states j��i and j	�i and the operators U� and V� are as de�nedin (4) and (5). Alice measures her two qubits in the basis fj	�i; j��ig. Thisprojects Bob's qubit into one of the four states U�jDDi; V�jDDi. In orderto recover the state jDDi, he must apply one of the \Bell rotations" U�1�or V �1� , depending on the projection caused by Alice's measurement; he willonly know what this was when Alice tells him the result of the measurement.
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It is amusing to note that the authors of the Dan Dare story already,in 1950, realised the part played by the �nal Bell rotation in the telepor-tation procedure: by a technical hitch, the Bell rotation is omitted in theteleportation of Dan Dare's companion Digby, who arrives at the destinationupside-down.
Part II: The Power to Entangle

Quantifying Entanglement
If entanglement is so useful, we want to know how to create it, and asmuch of it as possible. In this part of the talk we will examine the question\What operations on two quantum objects are best at entangling them?" Inorder to answer this, we need to quantify the entanglement in a state of thetwo objects.The mark of an entangled state of two objects A and B is that eachindividual object does not have a de�nite (pure) state, but is in a mixed state.Consider a pure state j	iAB of two qubits. By the Schmidt decompositionwe can always �nd orthonormal bases j0iA;B; j1iA;B such that

j	iAB = aj0iAj0iB + bj1iAj1iB:
The entanglement of this state can be equated with the lack of knowledge ofAlice's state, or the lack of purity in her density matrix

�A = jaj2j0ih0j+ jbj2j1ih1j:
Such lack of knowledge (the information needed to specify the state j0i orj1i when they occur with probabilities jaj2 and jbj2) is measured by the vonNeumann entropy of �A, which is equal to the von Neumann entropy of �Band also called the entanglement entropy of j	iAB,

E(j	iAB) = SvN(�A) = � tr(�A log2 �A) = � tr(�B log2 �B)
= �jaj2 log2 jaj2 � jbj2 log2 jbj2:

This has its maximum value when jaj2 = jbj2 = 12 , e.g. for the state1p2(j0ij0i+ j1ij1i), often called a \singlet" because
1p2(j0ij0i+ j1ij1i) = �1
 i�y� 1p2(j0ij1i � j1ij0i)i.e. it di�ers from the usual singlet only by an operation on Bob's qubit. Theentanglement of the state, being a joint property, is una�ected by such localoperations U 
 V .
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A more �nancial approach to quantifying the amount of entanglement ina state is to regard this maximally entangled state as a gold standard and toask how much the state j	iAB is worth in gold units. If Alice and Bob haveN copies of j	i, how many singlets can they make using local operations andclassical communication? The answer [3] is at most M , where
MN ! E(j	i) as N !1:

It can also be shown that this is the cost of j	i, in the sense that at leastM singlets are needed to make N copies of j	i. However, this equality holdsonly for pure states.Thus the entanglement entropy, based on the von Neumann entropy, isa natural measure of entanglement. But the log functions make it di�cultto work with, and for qualitative purposes (such as �nding the maximum)we can equivalently work with any monotonic function of it. A convenientalternative is the \linear entropy"
SL(j	i) = 2 tr ��A � �2A� = 4jaj2jbj2

which clearly measures the departure of �A from purity (when �2A = �A).Generalising to the case where A and B are not qubits but have state spacesHA and HB of equal dimension d, we de�ne
SL(j	i) = dd� 1 �1� tr �2A� : (7)

This is normalised to lie in [0; 1].
Entangling power

We can now quantify the entangling power of a joint operation on A andB, in the form of a unitary operator U : HA 
 HB ! HA 
 HB, by asking\How much entanglement does U create when acting on an unentangledpure state (on average)?" Measuring the entanglement of a pure state j	i 2HA 
HB by the linear entropy (7), this gives the entangling power of U as
E(U) = Z

S(HA)�S(HB) SL
�U(j�ij i�dj�idj i (8)

where S(H) is the unit sphere of normalised vectors in the Hilbert space H,and dj i is the unitary-invariant measure on S(H), normalised so that themeasure of the whole sphere is 1.
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Calculation of entangling power
The integral in (8) has been calculated by Zanardi [19], using a correspon-dence between operators X : H ! H and pure bipartite states jXi 2 H
H,de�ned relative to an orthonormal basis jii for any Hilbert space H:

Xjji =X
j xijjii  ! jXi =X

ij xijjiijji (9)
We are interested in operators U : HA 
 HB ! HA 
 HB, for which wede�ne a slightly di�erent correspondence: such an operator can be expandedas U = PmXm 
 Ym where the Xm and Ym are operators on HA and HBrespectively, and we de�ne the corresponding (non-normalised) state to be

jUi =X
m jXmijYmi 2 (HA 
HA)
 (HB 
HB)

where the states jXmi and jYmi are given by (9). Then, for example, theidentity operator I =Pij jijihijj on HA 
HB corresponds to
jIi = j	+iAj	+iB where j	+iA =X

i jiijii:
If HA = HB, we also have the swap operator S = Pij jijihjij, which corre-sponds to jSi = j	+iAB =X

ij jijijiji:Zanardi [19] gives the entangling power of a bipartite operator U in termsof the entanglement entropies of the corresponding state, as follows:
E(U) = dd+ 1�SL(jUi) + SL(jUSi)� SL(jSi)� (10)

where S is the swap operator, as above.
The most entangling

It follows fairly immediately from Zanardi's formula (10) that
E(U) � dd+ 1 (11)

and
E(U) = dd+ 1 () jUi and jUSi are both maximally entangled

() trA jUihU j = trA jUSihUSj = 1:
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Here jUi =X
ijkl uij;kljijijjliand jUSi =X
ijkl uij;kljilijjkiwhere U =X

ijkl uij;kljijihklj:Is the bound (11) attained? The above shows that this is equivalent tothe existence of a four-party state which is maximally entangled as a stateof two pairs, for each of the splits 12j34; 13j24; 14j23. This can be expressedas a matrix problem: given a d2 � d2 matrix U whose matrix elements forma 4-index tensor uij;kl, de�ne the d2 � d2 matrices V and W by
vij;kl = uik;jl; wij;kl = uil;jk:

Can the three matrices U; V;W all be unitary? It is known [14] that for d = 2the answer is No. However, we will show that for all other d except possiblyd = 6, the answer is Yes.
Permutations

A convenient class of unitary operators in which to search for maximal en-tanglers is the class of permutation operators relative to a given orthonormalbasis, which permute elements of the basis:
U�jii = j�(i)i (� 2 Sn; n = dimH)

where Sn is the set of permutations of N = f1; : : : ; ng. We are interested inthe case H = HA 
 HB with dimHA = dimHB = d, so n = d2; then N isthe set of pairs (i; j) with 1 � i; j � d, a permutation � 2 Sd2 is given by�(i; j) = (kij; lij, and the corresponding operator P = U� acts as
P jiijji = jkijijliji (12)

with kij; lij 2 f1; : : : ; dg. It is known that such an operator is non-entanglingif and only if it is of one of the forms U 
V or (U 
V )S where U and V arepermutation operators on HA and HB respectively. It follows that for larged, most permutations create entanglement: the probability that a randomlychosen permutation is non-entangling is
2(d!)2(d2)! ! 0 as d!1:
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Entangling power of permutations
Zanardi's formula gives the entangling formula of a permutation P as

E(P ) = d2(d2 + 1)�QP �QPSd(d� 1)(d+ 1)2
where QP = X

ijmn aijmaijnbimnbjmn;
aijm = hlimjljni= 1 only if P takes the vertical pair (jimi; jjmi)to another vertical pair,
bimn = hkimjkini= 1 only if P takes the horizontal pair (jimi; jini)to another horizontal pair.

(Here the terms \horizontal" and \vertical" refer to position in the d � dsquare of basis elements jiji.) Hence the summand rijmn = aijmaijnbimnbjmnin QP satis�es
rijmn = 1 only if P takes the rectangle (jimi; jini; jjmi; jjni)to another rectangle in the same orientation.

Similarly, QPS = X
ijmn r0ijmn

where rijmn = 1 only if P takes the rectangle (jimi; jini; jjmi; jjni)to a rectangle in the opposite orientation.
Maximally entangling permutations

To maximise the entangling power E(P ), we have to minimise QP andQPS. Now the summands rijmn and r0ijmn, each 0 or 1, are certainly equal to1 when i = j and m = n; minimum values of QP and QPS will be attainedif P is such that rijmn = r0ijmn = 0 for all other values of i; j;m; n. If this isthe case, QP = QPS = d2 and so E(P ) takes its maximum value d=(d+ 1).
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Thus P should not take any rectangle to a rectangle, i.e. it should not takeany pair of elements in the same row or column to elements in the same rowor column. This implies that the matrix of row numbers kij is a latin square,as is the matrix of column numbers lij. Finally, the map (i; j) 7! (kij; lij)must be a permutation; this means that the kij and lij are orthogonal latinsquares.Orthogonal latin squares were �rst considered by Euler, who gave con-structions for d� d squares when d � 0; 1 or 3 (mod 4) but, being unable todo so for d � 2( mod 4), conjectured that orthogonal latin squares of thesesizes did not exist. However, he was wrong; in 1960 it was proved [5] thatorthogonal d � d latin squares exist for all d except d = 2 and d = 6. Itfollows that there exist permutation operators attaining Zanardi's bound forthe entangling power of bipartite unitary operators, in all dimensions exceptthese two. For d = 2 we have already seen that the bound is not attained; infact the maximum entangling power of a two-qubit unitary operator is notd=(d + 1) = 2=3 but 4/9, which is attained by the permutation cnot. For
d = 6 the greatest entangling power of a permutation is 628735 [7]. We do not
know whether Zanardi's bound of 67 is attained by some non-permutationoperator.
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