
Introduction to programming - Fortran 90 1

Basics of Fortran programming Notes

• Fortran is not case sensitive, but for
clarity built-in commands are upper-
case, and variable names in lowercase

• File names should end in .f90 to
make it clear that you’re using mod-
ern Fortran 90, not Fortran 77

Programs

All Fortran codes must have one PROGRAM

block where execution will begin:

PROGRAM myprogram

IMPLICIT NONE

<commands>

END PROGRAM myprogram

The IMPLICIT NONE is optional, but rec-
ommended. To compile a program:

$ gfortran mycode.f90 -o mycode

will produce an executable called mycode.
To run the compiled program:

$ ./mycode

Comments

Comments start with ’!’

! What the program does

PROGRAM myprogram

IMPLICIT NONE

! What this step means

<commands>

END PROGRAM myprogram

Variables

Before using a variable, you need to de-
clare it by giving it a type e.g.

REAL :: r

creates a variable r which is a REAL type,
i.e. a number with decimal places like a
FLOAT or DOUBLE in IDL.

Type Explanation
INTEGER Whole numbers Z

REAL Numbers with decimal point R
COMPLEX Complex numbers C

with real and imaginary part
CHARACTER Letters of the alphabet

Printing and input

The PRINT command is followed by a
comma-separated list of values or expres-
sions:

PRINT *, "Hello world"

PRINT *, "Result: ", r

To get input from the user, there is the
READ command:

READ *, r

Arrays

Array sizes can either be fixed

REAL, DIMENSION(3) :: a

creates an array ’a’ with 3 elements. In
Fortran these are numbered 1 . . . n i.e.
a(1) to a(3). If an input to a function
is an array, but could be any size, use e.g.

REAL, DIMENSION(:), INTENT(IN) :: val



Introduction to programming - Fortran 90 2

If you want to change the size of the array,
it needs to be ALLOCATABLE:

REAL, DIMENSION(:), ALLOCATABLE :: x

INTEGER :: n

n = 10 ! Could be input from user

ALLOCATE(x(n)) ! X now has n elements

! Use x for some calculations

DEALLOCATE(x) ! X now has no elements

You can also create arrays with more than
one dimension in a very similar way

Subroutines

Subroutines take zero or more inputs, per-
form calculations on them, and produce
(return) zero or more outputs.

! Sets intitial values of x and y

SUBROUTINE initial(x, y)

REAL, INTENT(OUT) :: x, y

READ *, x

READ *, y

END SUBROUTINE initial

The INTENT for each parameter (x and y
here) specifies whether it’s an input (IN),
an output (OUT), or both (INOUT). To use
a subroutine, you need to CALL it:

PROGRAM myprogram

IMPLICIT NONE

REAL :: a, b

CALL initial(a, b)

PRINT *, "a = ", a, " b = ", b

END PROGRAM myprogram

The name of the variables in the brackets
can be different inside the subroutine and
where it’s called; only the position mat-
ters.

Conditionals

The IF construct has the following syntax:

IF (<condition>) THEN

END IF

where condition can use either old or new
style comparisons:

Old style New style Meaning
a .eq. b a == b ’a’ equal to ’b’?
a .ne. b a /= b ’a’ not equal ’b’?
a .lt. b a < b ’a’ less than ’b’?
a .gt. b a > b ’a’ greater than ’b’?

Loops

DO loops repeat a set of commands, each
time using a different value of a variable
(in this case i):

PROGRAM myprogram

INTEGER :: i

DO i=1,100

PRINT *, i

END DO

END PROGRAM myprogram

Another way is to keep looping until you
EXIT

PROGRAM myprogram

INTEGER :: i

i = 1

DO

PRINT *, i

IF (i .EQ. 100) THEN

EXIT

END IF

i = i + 1

END DO

END PROGRAM


