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Plasma stability

The early history of Magnetic Confinement Fusion was the
search for configurations which are stable on a large scale

Last lecture we looked at instabilities driven by plasma
currents (kinks)

One of the important parameters for achieving economical

fusion power is plasma beta β =
2µ0p

B2
, the ratio of plasma to

magnetic pressure

Pressure-driven instabilities often set the limits on
performance, so understanding and avoiding or mitigating
them is important

First we’ll look in more detail at magnetic mirrors...
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Magnetic mirrors

Magnetic mirrors confine
particles by exploiting the
conservation of magnetic
moment µ = mv2

⊥/ (2B).

If the particle’s kinetic
energy is also conserved
then v2

|| + v2
⊥ =const

This leads to a condition
that particles are reflected if

v⊥
v
>

√
Bmin

Bmax
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Cucumber (or “Q-cumber”), built
around 1954. UCRL / LLNL.
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Magnetic mirror instability

[ W. A. Perkins and R. F. Post, Physics of Fluids 6 (1963) 1537 ]
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Interchange instability

In a curved magnetic field particles drift. Since Ω = qB/m,
the sign is different for electrons and ions.

If there is a perturbation to the plasma, then this leads to
charge separation and an electric field

Depending on the direction of the curvature, the resulting
E× B drift can either reduce or enhance the original
perturbation

[J.B.Taylor “Plasma Containment and Stability Theory” Proc. Royal Soc. A Vol 304, No. 1478 (1968) pp 335-360]
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Interchange instability in a Z-pinch

The same process occurs in Z-pinches

Most unstable mode has m = 0

Known as a sausage instability
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Interchange instability

Configurations where the magnetic field curves towards the
plasma are unstable to interchange modes. This is known as
bad curvature.

If we can reverse the sign of the curvature, then the drift
reverses:

vR =
v2
||

Ω

RC × B

R2
CB

= −
v2
||

Ω
κ× b

Configurations where magnetic fields curve away from the
plasma have good curvature, and are stable to interchange
modes.

Configurations with good curvature also have the property
that the magnetic field increases in all directions from the
plasma: a minimum B or magnetic well.

[J.D.Jukes “Plasma stability in magnetic traps I” Rep. Prog. Phys. 30 (1967) 333]
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Minimum B configurations: Cusps

Configurations which have good curvature everywhere are possible,
but only with open magnetic field-lines.

Coils carrying current in opposite directions produce a null
region where the fields cancel, with |B| increasing in all
directions
By combining with a mirror field, these “Ioffe bars”1 can
create a trap with a minimum in |B|

1Proposed by M.S.Ioffe, Kurchatov Institute, 1962
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Stabilised magnetic mirrors

One disadvantage of
these coils is that the
magnetic field is not
axisymmetric, which
leads to poorer
particle confinement

Better performance
can be achieved by
using minimum B
“anchors” at the end
of axisymmetric
straight sections

Configurations known
as Baseball and
Yin-Yang coils

[ D.D. Ryutov et al Phys. Plasmas 18, 092301 (2011) ]
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MFTF-B under construction, ca. 1985

[ D.D. Ryutov et al Phys. Plasmas 18, 092301 (2011) ]
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Tokamak stability

In a tokamak, the toroidal field is curved and the pressure is
highest in the core
⇒ on the outboard side (large R) the curvature is bad,
whilst on the inboard side (small R) the curvature is good
Many tokamak instabilities have maximum amplitudes on the
outboard side, called ballooning type modes

κ

High pressure

Low pressure

Low pressure

∇p

B
ad

curvature

Bφ
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Edge Localised Modes

In a tokamak the field is on average minimum B, so flute
interchange is stable if q > 1 (Mercier criterion).
Unfortunately this doesn’t mean that tokamaks are immune
from pressure-driven instabilities
During high-performance mode (H-mode), steep gradients
form close to the plasma edge.

These collapse
quasi-periodically in
eruptions called Edge
Localised Modes (ELMs).

Leading theory is
peeling-ballooning modes
(Connor, Hastie, Wilson)

Pressure-driven (ballooning)
and edge current (peeling)
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Energy and plasma stability

To calculate whether a plasma is unstable we need to consider
both sources of instability such as pressure gradients, but also
stabilising effects

Last lecture we saw that bending field-lines produced a force
F which opposed the motion i.e F · v < 0

This means that the instability is having to do work to bend
the field-lines

To be unstable, the energy available has to be greater than
the energy needed to overcome this force

Analogous to a ball on a hill

Unstable

Stable
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Energy and plasma stability

The difference between stable and unstable situations is the change
in potential energy δW due to a small perturbation

δW < 0 Unstable: potential energy converted to kinetic
energy

δW > 0 Stable: kinetic to potential, then oscillates

δW = 0 Marginal: Like a ball on a flat surface

A plasma is stable if δW > 0 for all possible perturbations,
and unstable if any perturbation results in δW < 0

To calculate δW we’ll use the ideal MHD equations...
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Ideal MHD linearisation

To calculate the change in energy from a small perturbation we
need to first linearise the equations:

n = n0 + εn1 v = v0 + εv1 . . .

which after substituting into the ideal MHD equations, and
assuming a stationary equilibrium v0 = 0 gives:

∂

∂t
n1 = −n0∇ · v1 − v1 · ∇n0

∂

∂t
v1 =

1

min0

[
−∇p1 +

1

µ0
(∇× B1)× B0 +

1

µ0
(∇× B0)× B1

]
∂

∂t
p1 = −γp0∇ · v1 − v1 · ∇p0

∂

∂t
B1 = ∇× (v1 × B0)
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Ideal MHD dispacement

In ideal MHD all perturbed quantities n1, v1, p1, and B1 can be
written in terms of a single displacement ξ (x) which is the
distance the fluid has moved from equilibrium.

The velocity is v1 =
∂ξ

∂t
Substitute this into the other equations:

∂

∂t
n1 = −n0∇ ·

∂ξ

∂t
−
∂ξ

∂t
· ∇n0

Since the equilibrium quantities do not depend on time, this
can be integrated trivially:

⇒ n1 = −n0∇ · ξ − ξ · ∇n0

Similarly:

p1 = −p0∇ · ξ − ξ · ∇p0

B1 = ∇×
(
ξ

1
× B0

)
Note: This only works for ideal MHD: resistivity breaks this
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Ideal MHD normal modes

Substituting into the equation for velocity gives:

min0

∂2ξ

∂t2
= ∇

(
ξ · ∇p0 + γp0∇ · ξ

)︸ ︷︷ ︸
−p1

+
1

µ0
(∇× B1)×B0+

1

µ0
(∇× B0)×B1

This is a linear operator

min0

∂2ξ

∂t2
= F

(
ξ
)

Fancy form of ma = F

Solutions are linear ξ (x , t) = ξ (x) e−iωt and include the shear
Alfvén and magnetosonic waves.
Hence we can write an eigenvalue equation with eigenfunction ξ

−min0ω
2ξ = F

(
ξ
)
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Ideal MHD energy principle

To calculate the work done on the plasma, we need force times
distance

When ξ = 0, F (ξ) = 0 (an
equilibrium)

F (ξ) is linear in ξ by
construction

A more formal proof can be
made. See handout and
textbook e.g. Freidberg
“Ideal MHD”.

ξ

F (ξ)

Work done

δW = −1

2

∫
d3xF

(
ξ
)
· ξ
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Ideal MHD energy equation (intuitive form)

The plasma contribution δWp can be rearranged:

δWp =

1

2

∫
d3x

[
|B1|2
µ0

Field-line bending ≥ 0

+
B2

µ0

∣∣∣∇ · ξ⊥ + 2ξ⊥ · κ
∣∣∣2 Magnetic compression ≥ 0

+γp0

∣∣∇ · ξ∣∣2 Plasma compression ≥ 0

−2
(
ξ⊥ · ∇p

)(
κ · ξ∗⊥

)
Pressure/curvature drive, + or −

−B1 ·
(
ξ⊥ × b

)
j||

]
Parallel current drive, + or −

This is a very useful form of the energy equation because it makes
clear the balance between destabilising and stabilising effects
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Instability drives

The first three terms in this equation are always ≥ 0 and so are
stabilising, but the last two can be positive (stabilising) or negative
(destabilising):

−2
(
ξ⊥ · ∇p

)(
κ · ξ∗⊥

)
depends on ∇p and κ: if ∇p · κ > 0

then this is destabilising. Instabilities driven by this term are
often called pressure-driven
→ This is the interchange instability drive we saw earlier.

−B1 ·
(
ξ⊥ × b

)
j|| depends on the parallel current j|| and

leads to parallel current-driven kink modes
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Compression

The term γp0

∣∣∇ · ξ∣∣2 represents compression of plasma

The only place in this equation where the parallel
displacement ξ|| ≡ b · ξ enters explicitly is this term

Therefore, we can choose ε|| to minimise ∇ · ξ
For a fluid or plasma motion parallel to B,

|∇ · v | ∼ M2
S

v

L

close to marginal stability where L is a typical length and MS

is the Mach number

Perpendicular to the field, a similar expression applies, but
with the Alfvénic Mach number:

|∇ · v | ∼ M2
A

v

L

⇒ Close to marginal stability, plasma instabilities
tend to be incompressible
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Field-line bending

|B1|2
µ0

is the energy which goes into bending field-lines, and is

always stabilising. The perturbed magnetic field B1 is given by

B1 = ∇×
(
ξ

1
× B0

)
= ξ (∇ · B0)︸ ︷︷ ︸

=0

−B0

(
∇ · ξ

)
+(B0 · ∇) ξ−

(
ξ · ∇

)
B0

Assuming we’re already minimising the compression, neglect the
∇ · ξ term.

⇒ look for modes which minimise (B0 · ∇) ξ −
(
ξ · ∇

)
B0
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Field-line bending

Trying to minimise (B0 · ∇) ξ −
(
ξ · ∇

)
B0

Consider a perturbation of the form

ξ (r , θ, φ) = ξ̂ (r) e i(mθ−nφ)

The first of these terms (B0 · ∇) ξ can be written in a cylinder
(large aspect-ratio tokamak) as:

(B0 · ∇) ξ =

[
Bθ
r

∂

∂θ
+

Bφ
R

∂

∂φ

]
ξ = i

[
m
Bθ
r
− n

Bφ
R

]
ξ

rearranging:

(B0 · ∇) ξ = i
Bφ
R

(
m

q
− n

)
where q =

rBφ
RBθ

This is minimised when q ' m/n so instabilities tend
to localise around resonant surfaces
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Ballooning modes

Using the ideal MHD energy equation, we can estimate the
pressure limit for a ballooning mode:

ξr

H
ei
gh
t

Major radius R

L|| ' πRq

In
b
oa
rd

O
u
tb
oa
rd

θ

φ

Field-line bending so mode is
maximum on the outboard side,
minimum on inboard side.
Consider case when parallel
bending dominates:

|B1|2
2µ0

' |B0 · ∇ξr |2
2µ0

Using the length along field-lines,

|B1|2
2µ0

∼
∣∣B0ξr/L||

∣∣2
2µ0

=
B2

0

2µ0

ξ2
r

π2q2R2

This gives the energy (density) needed to bend field-lines
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Ballooning modes

For ballooning modes to be stable, the energy available from the
pressure gradient has to be less than this field-line bending i.e.

(ξ · ∇p) (κ · ξ∗⊥) <
B2

0

2µ0

ξ2
r

π2q2R2

Taking ξ at the outboard midplane (maximum perturbation), ∇p
and κ are both in the direction of ξ

r
. Therefore,

(ξ · ∇p) (κ · ξ∗⊥) ' ξ2
r κ

dp

dr

For stability then:

ξ2
r κ

dp

dr
<

B2
0

2µ0

ξ2
r

π2q2R2

Since κ ∼ −1/R, this becomes

−dp

dr
<

B2
0

2µ0

1

π2q2R
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Beta limits: Ballooning modes

We can use this to get a beta limit by setting
dp

dr
∼ −p0/r where

p0 is the core pressure and r the minor radius.

µ0p0

B2
0

= β <
1

2π2

r

qR

If q ' 2, r/R = ε ' 1/3 this gives a limit of β ∼ 0.5%

This is in the right ballpark for conventional tokamaks: a
couple of percent is quite typical

More important than a global beta limit is the effect ELMs
have on divertor power loads

A “natural” ELM on ITER is predicted to produce 20MW/m2,
and must be reduced by a factor of ∼ 20 for acceptable
component lifetimes

Research ongoing into means of controlling these events
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Summary

Pressure driven instabilities can be destabilised when
κ · ∇p > 0 (bad curvature regions)

Plasma compression is always stabilising, so tends to be
minimised close to marginal stability

To minimise parallel field bending, modes tend to be localised
around resonant surfaces q = m/n

Interchange modes are constant along B to minimise field-line
bending, but are usually stable in tokamaks. Exceptions are in
the SOL and if q < 1.

In tokamaks, ballooning modes have some variation along B
so that they can maximise their amplitude in the bad
curvature region
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