MHD equilibrium

Dr Ben Dudson

Department of Physics, University of York, Heslington, York YO10 5DD, UK

31st Jan 2014

- Magnetic mirror effect leads to particle trapping in toroidal machines
- Trapped particles have "banana" orbits which lead to neoclassical transport
- This gives the minimum possible transport in a given configuration
- How is this magnetic configuration determined?

Self-consistent solution

• Up until now, we have considered the motion of individual particles in confinement devices, and assumed a background magnetic field

Self-consistent solution

- Up until now, we have considered the motion of individual particles in confinement devices, and assumed a background magnetic field
- In a tokamak, this field is produced in a large part by the plasma itself. We therefore need to find a self-consistent way to solve for both the magnetic field and the particles
- The particles are in a 6-dimensional phase space $f(\underline{x}, \underline{v})$ (**Note:** even getting to here involves approximations)

$$\frac{\partial f}{\partial t} + \underline{v} \cdot \frac{\partial f}{\partial \underline{x}} + q\left(\underline{E} + \underline{v} \times \underline{B}\right) \cdot \frac{\partial f}{\partial \underline{v}} = C(f)$$

plus the equations of electromagnetism (minus displacement current)

$$\nabla \cdot \underline{\underline{E}} = \rho/\epsilon_0 \qquad \nabla \cdot \underline{\underline{B}} = 0$$
$$\nabla \times \underline{\underline{E}} = -\frac{\partial \underline{\underline{B}}}{\partial t} \qquad \nabla \times \underline{\underline{B}} = \mu_0 \underline{J}$$

Unfortunately, solving this is impossible for most problems

• This equation can be solved for simple systems (e.g. 1D)

Unfortunately, solving this is impossible for most problems

- This equation can be solved for simple systems (e.g. 1D)
- By averaging over Larmor orbits, gyro-kinetic equations can be derived which are (just) solvable on supercomputers

Unfortunately, solving this is impossible for most problems

- This equation can be solved for simple systems (e.g. 1D)
- By averaging over Larmor orbits, gyro-kinetic equations can be derived which are (just) solvable on supercomputers
- Another approach useful for many situations is to take velocity moments

$$\langle f \rangle_n = \int \underline{v}^n f d\underline{v}$$

- The zeroth moment (*n* = 0) is density, first the average velocity, second the energy, third the heat flux, ...
- Unfortunately, each moment depends on the next one so assumptions need to be made to solve the equations

Unfortunately, solving this is impossible for most problems

- This equation can be solved for simple systems (e.g. 1D)
- By averaging over Larmor orbits, gyro-kinetic equations can be derived which are (just) solvable on supercomputers
- Another approach useful for many situations is to take velocity moments

$$\langle f \rangle_n = \int \underline{v}^n f d\underline{v}$$

- The zeroth moment (n = 0) is density, first the average velocity, second the energy, third the heat flux, ...
- Unfortunately, each moment depends on the next one so assumptions need to be made to solve the equations
- By assuming the plasma is adiabatic (which links pressure and density) and adding the equations for electrons and ions we get a particularly useful set of equations: **ideal MHD**

Ideal MagnetoHydroDynamics (MHD) is a set of equations for the mass density ρ , velocity \underline{v} and pressure P of a conducting fluid

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \underline{v}) = 0 \tag{1}$$

$$\rho\left(\frac{\partial \underline{v}}{\partial t} + \underline{v} \cdot \nabla \underline{v}\right) = -\nabla P + \underline{J} \times \underline{B}$$
(2)

$$\frac{\partial P}{\partial t} + \underline{v} \cdot \nabla P = -\gamma P \nabla \cdot \underline{v}$$
(3)

$$\frac{\partial B}{\partial t} = \nabla \times (\underline{v} \times \underline{B}) \tag{4}$$

The main assumptions made in deriving ideal MHD are

- Quasineutrality $n_i \simeq n_e$
- Length scales \gg Larmor radius
- Frequencies \ll Cyclotron frequency
- No electron inertia $(m_e = 0)$
- Hall current neglected (no $j \times \underline{B}$ term in Ohm's law)
- High collision rate (so nearly maxwellian)
- No dissipation: zero viscosity and resistivity
- No trapped particles, so no neoclassical effects

MHD equilibrium

- Find plasma configurations which are in **equilibrium** $\Rightarrow \frac{\partial}{\partial t} = 0$
- To simplify things, also assume a stationary equilibrium so $\underline{v} = 0$. This is reasonable if flow velocities are much less than the sound speed

This leaves us with just one expression which must be satisfied:

$$\underline{J} \times \underline{B} = \nabla P$$

- Find plasma configurations which are in **equilibrium** $\Rightarrow \frac{\partial}{\partial t} = 0$
- To simplify things, also assume a stationary equilibrium so $\underline{v} = 0$. This is reasonable if flow velocities are much less than the sound speed

This leaves us with just one expression which must be satisfied:

$$\underline{J} \times \underline{B} = \nabla P$$

This equation has a few implications:

• $\underline{B} \cdot \nabla P = \underline{B} \cdot (\underline{J} \times \underline{B}) = 0$ Magnetic field \perp to pressure gradient

•
$$\underline{J} \cdot \nabla P = \underline{J} \cdot (\underline{J} \times \underline{B}) = 0$$

Current also \bot to the pressure gradient

Pressure contours

- We want a configuration in which the pressure is high in the middle of the plasma, and low at the edge.
- Imagine a contour plot of the pressure:

Pressure contours

- We want a configuration in which the pressure is high in the middle of the plasma, and low at the edge.
- Imagine a contour plot of the pressure:

- $\underline{B} \cdot \nabla P = 0$ says that \underline{B} must also lie on these surfaces
- These are of course the flux surfaces we saw in lecture 2

How does the magnetic field balance the plasma pressure? Use Ampére's law to eliminate \underline{J}

$$\frac{1}{\mu_0} \left(\nabla \times \underline{B} \right) \times \underline{B} = \nabla P$$

The following vector identity

$$\underline{B} \times (\nabla \times \underline{B}) = \frac{1}{2} \nabla B^2 - (\underline{B} \cdot \nabla) \underline{B}$$

then gives

$$abla \left(P + rac{B^2}{2\mu_0}
ight) - rac{1}{\mu_0} \left(\underline{B} \cdot \nabla \right) \underline{B} = 0$$

After a bit of manipulation, this can be re-written as

$$abla_{\perp}\left(P+rac{B^2}{2\mu_0}
ight)-rac{B^2}{\mu_0}\left(\underline{b}\cdot
abla
ight)\underline{b}=0$$

where $\underline{b} = \underline{B}/B$ is the unit *B* vector, and $\nabla_{\perp} = \nabla - \underline{b} (\underline{b} \cdot \nabla)$ is the gradient perpendicular to \underline{B} .

After a bit of manipulation, this can be re-written as

$$abla_{\perp}\left(P+rac{B^2}{2\mu_0}
ight)-rac{B^2}{\mu_0}\left(\underline{b}\cdot
abla
ight)\underline{b}=0$$

where $\underline{b} = \underline{B}/B$ is the unit *B* vector, and $\nabla_{\perp} = \nabla - \underline{b} (\underline{b} \cdot \nabla)$ is the gradient perpendicular to \underline{B} . This last term is the gradient of \underline{b} in the direction of \underline{b} . This is the **curvature**

$$\underline{\kappa} \equiv (\underline{b} \cdot \nabla) \, \underline{b} = -\underline{R}_C / R_C^2$$

where \underline{R}_{C} is the radius of curvature

Magnetic pressure and tension

$$\nabla_{\perp} \left(P + \frac{B^2}{2\mu_0} \right) - \frac{B^2}{\mu_0} \left(\underline{b} \cdot \nabla \right) \underline{b} = 0$$

• Magnetic fields exert a pressure on the plasma

Figure : Θ -pinch. J.Friedberg, Plasma Physics and Fusion Energy

Magnetic pressure and tension

$$\nabla_{\perp} \left(P + \frac{B^2}{2\mu_0} \right) - \frac{B^2}{\mu_0} (\underline{b} \cdot \nabla) \underline{b} = 0$$

- Magnetic fields exert a pressure on the plasma
- They also have a tension which tries to straighten them

Figure : Z-pinch. J.Friedberg, Plasma Physics and Fusion Energy

How do we calculate a solution to $\underline{J} \times \underline{B} = \nabla P$ in a tokamak?

How do we calculate a solution to $\underline{J} \times \underline{B} = \nabla P$ in a tokamak?

- What we can do is take a cut through the tokamak from the middle to the edge and count the field-lines it crosses
- Integrate the magnetic flux $\psi = \int \underline{B} \cdot d\underline{S}$

How do we calculate a solution to $\underline{J} \times \underline{B} = \nabla P$ in a tokamak?

- What we can do is take a cut through the tokamak from the middle to the edge and count the field-lines it crosses
- Integrate the magnetic flux $\psi = \int \underline{B} \cdot d\underline{S}$
- As <u>B</u> lies on flux-surfaces, it doesn't matter which path our cut takes. ⇒ ψ is a flux-surface label

How do we calculate a solution to $\underline{J} \times \underline{B} = \nabla P$ in a tokamak?

- What we can do is take a cut through the tokamak from the middle to the edge and count the field-lines it crosses
- Integrate the magnetic flux $\psi = \int \underline{B} \cdot d\underline{S}$
- As <u>B</u> lies on flux-surfaces, it doesn't matter which path our cut takes. ⇒ ψ is a flux-surface label

Magnetic field representation

Using ψ , we can write the poloidal field in a nice way:

$$d\psi = \underline{B} \cdot d\underline{S} = B_{\theta} \cdot Rdl \quad \Rightarrow \nabla \psi \propto B_{\theta}R$$

Note: Area $d\underline{S}$ is $2\pi R \times dl$ but the 2π is usually dropped from definition of ψ

The poloidal magnetic field is perpendicular to $\nabla\psi$ and \underline{e}_{ϕ} and can be written as

$$\underline{B}_{\theta} = \frac{1}{R} \nabla \psi \times \underline{e}_{\phi} = \nabla \psi \times \nabla \phi$$

Magnetic field representation

The toroidal magnetic field has two sources:

- external coils producing the vacuum field
- the poloidal current induced in the plasma which partly confines the plasma and acts to reduce the toroidal field

For a tokamak then it will be some function of R and Z:

$$\underline{B}_{\phi} = f(R, Z) \nabla \phi$$

Using Ampére's law to get the poloidal current gives:

$$\mu_{0}\underline{j}_{\theta} = \nabla \times (f(R,Z)\nabla\phi) = -\nabla\phi \times \nabla f(R,Z)$$

Since $\underline{j}\cdot\nabla\psi=$ 0, we get

$$\nabla \psi \cdot (-\nabla \phi \times \nabla f(R, Z)) = -\nabla \phi \cdot (\nabla f(R, Z) \times \nabla \psi) = 0$$

Hence $\nabla f(R, Z) \times \nabla \psi = 0$. The only way this can be true is if f is constant on flux surface i.e. $f = f(\psi)$

Combining the poloidal and toroidal components, we can write the total magnetic field as

$$\underline{B} = f(\psi) \nabla \phi + \nabla \psi \times \nabla \phi$$

This means that to describe our magnetic field everywhere we just need $\psi(R, Z)$ and $f(\psi) = RB_{\phi}$

Combining the poloidal and toroidal components, we can write the total magnetic field as

$$\underline{B} = f(\psi) \nabla \phi + \nabla \psi \times \nabla \phi$$

This means that to describe our magnetic field everywhere we just need $\psi(R, Z)$ and $f(\psi) = RB_{\phi}$ Taking the $\nabla \psi$ component of the force balance $\underline{J} \times \underline{B} = \nabla p$ and some manipulation gives the Grad-Shafranov equation:

$$R\frac{\partial}{\partial R}\frac{1}{R}\frac{\partial\psi}{\partial R} + \frac{\partial\psi}{\partial Z} = -\mu_0 R^2 \frac{\partial p(\psi)}{\partial\psi} - \mu_0^2 f(\psi) \frac{\partial f(\psi)}{\partial\psi}$$

This is a nonlinear PDE involving $\psi(R, Z)$, $f(\psi)$ and $p(\psi)$, and is used to design and interpret tokamak experiments

- This equation is a non-linear partial differential equation, and in general can't be solved analytically
- Instead, we need to find solutions numerically. Two main types of code
 - Forward codes, which calculate an equilibrium from $p(\psi)$ and $f(\psi)$ (or $q(\psi)$ or $j_{||}(\psi)$) and either the plasma boundary shape or coil currents **Examples**: SCENE, CORSICA, TEQ \Rightarrow Primarily used by theorists or tokamak designers

- This equation is a non-linear partial differential equation, and in general can't be solved analytically
- Instead, we need to find solutions numerically. Two main types of code
 - Forward codes, which calculate an equilibrium from $p(\psi)$ and $f(\psi)$ (or $q(\psi)$ or $j_{||}(\psi)$) and either the plasma boundary shape or coil currents **Examples**: SCENE, CORSICA, TEQ

Examples: SCEIVE, CORSICA, TEQ

 \Rightarrow Primarily used by theorists or tokamak designers

• Interpretive codes, which take experimental measurements and work out the equilibrium

Examples: EFIT, CLISTE

 \Rightarrow Used by experimentalists to analyse experimental data

A typical contour plot of ψ from MAST (calculated using EFIT) looks something like:

- \bullet Contours of ψ in black
- Simplified boundary in red
- Dense contours towards the right side are the poloidal field coils for plasma shaping and vertical stability
- Outside the core, plasma has a double null x-point configuration

X-point equilibria

 Poloidal field due to the plasma current

X-point equilibria

- Poloidal field due to the plasma current
- Add another coil carrying a current in the same direction

X-point equilibria

- Poloidal field due to the plasma current
- Add another coil carrying a current in the same direction
- At some point the poloidal field cancels, and forms an x-point
- The field line through the x-point is called a **separatrix**

All large tokamaks use additional coils to produce one or two x-points where the poloidal field cancels out There are several reasons for this:

- Plasma which escapes the core is channelled along the divertor legs to specially armored regions which can handle the high heat load
- Separating the plasma from the surfaces reduces contamination of the plasma
- For reasons which aren't clear, turbulence can be suppressed near the edge of x-point configurations (H-mode).

- Ideal MHD is a simplified description of a plasma which describes many phenomena in plasmas
- Equilibrium is given by solutions to $\underline{J} \times \underline{B} = \nabla P$
- In axisymmetric configurations with flux surfaces, this can be simplified to the **Grad-Shafranov equation**
- Realistic configurations have x-points where the poloidal field goes to zero (but the toroidal field is not zero)
- Poloidal field coils are used to shape the plasma into configurations characterised by elongation and triangularity. This affects plasma performance and stability.