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Last time...

Magnetic mirror effect leads to particle trapping in toroidal
machines

Trapped particles have “banana” orbits which lead to
neoclassical transport

This gives the minimum possible transport in a given
configuration

How is this magnetic configuration determined?
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Self-consistent solution

Up until now, we have considered the motion of individual
particles in confinement devices, and assumed a background
magnetic field

In a tokamak, this field is produced in a large part by the
plasma itself. We therefore need to find a self-consistent way
to solve for both the magnetic field and the particles

The particles are in a 6-dimensional phase space f (x , v)
(Note: even getting to here involves approximations)

∂f

∂t
+ v · ∂f

∂x
+ q (E + v × B) · ∂f

∂v
= C (f )

plus the equations of electromagnetism (minus displacement
current)

∇ · E = ρ/ε0 ∇ · B = 0

∇× E = −∂B
∂t

∇× B = µ0J
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Fluid equations

Unfortunately, solving this is impossible for most problems

This equation can be solved for simple systems (e.g. 1D)

By averaging over Larmor orbits, gyro-kinetic equations can
be derived which are (just) solvable on supercomputers

Another approach useful for many situations is to take
velocity moments

〈f 〉n =

∫
vnfdv

The zeroth moment (n = 0) is density, first the average
velocity, second the energy, third the heat flux, ...

Unfortunately, each moment depends on the next one so
assumptions need to be made to solve the equations

By assuming the plasma is adiabatic (which links pressure and
density) and adding the equations for electrons and ions we
get a particularly useful set of equations: ideal MHD
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Ideal MHD

Ideal MagnetoHydroDynamics (MHD) is a set of equations for the
mass density ρ, velocity v and pressure P of a conducting fluid

∂ρ

∂t
+∇ · (ρv) = 0 (1)

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇P + J × B (2)

∂P

∂t
+ v · ∇P = −γP∇ · v (3)

∂B

∂t
= ∇× (v × B) (4)
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Assumptions of ideal MHD

The main assumptions made in deriving ideal MHD are

Quasineutrality ni ' ne

Length scales � Larmor radius

Frequencies � Cyclotron frequency

No electron inertia (me = 0)

Hall current neglected (no j × B term in Ohm’s law)

High collision rate (so nearly maxwellian)

No dissipation: zero viscosity and resistivity

No trapped particles, so no neoclassical effects
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MHD equilibrium

Find plasma configurations which are in equilibrium

⇒ ∂

∂t
= 0

To simplify things, also assume a stationary equilibrium so
v = 0. This is reasonable if flow velocities are much less than
the sound speed

This leaves us with just one expression which must be satisfied:

J × B = ∇P

This equation has a few implications:

B · ∇P = B · (J × B) = 0
Magnetic field ⊥ to pressure gradient

J · ∇P = J · (J × B) = 0
Current also ⊥ to the pressure gradient
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Pressure contours

We want a configuration in which the pressure is high in the
middle of the plasma, and low at the edge.

Imagine a contour plot of the pressure:

High pressure

Low pressureZ

R

B · ∇P = 0 says that B must also lie on these surfaces

These are of course the flux surfaces we saw in lecture 2
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Magnetic pressure and tension

How does the magnetic field balance the plasma pressure? Use
Ampére’s law to eliminate J

1

µ0
(∇× B)× B = ∇P

The following vector identity

B × (∇× B) =
1

2
∇B2 − (B · ∇)B

then gives

∇
(
P +

B2

2µ0

)
− 1

µ0
(B · ∇)B = 0
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Magnetic pressure and tension

After a bit of manipulation, this can be re-written as

∇⊥

(
P +

B2

2µ0

)
− B2

µ0
(b · ∇) b = 0

where b = B/B is the unit B vector, and ∇⊥ = ∇− b (b · ∇) is
the gradient perpendicular to B.

This last term is the gradient of b
in the direction of b. This is the curvature

κ ≡ (b · ∇) b = −RC/R
2
C

where RC is the radius of curvature
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Magnetic pressure and tension

∇⊥

(
P +

B2

2µ0

)
− B2

µ0
(b · ∇) b = 0

Magnetic fields exert a pressure on the plasma

They also have a tension which tries to straighten them

Figure : Θ-pinch. J.Friedberg, Plasma Physics and Fusion Energy
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Calculating tokamak equilibria

How do we calculate a solution to J × B = ∇P in a tokamak?

First we need to introduce a way to label our flux surfaces

r

?

What we can do is take a cut through the tokamak from the
middle to the edge and count the field-lines it crosses

Integrate the magnetic flux ψ =

∫
B · dS

As B lies on flux-surfaces, it doesn’t matter which path our
cut takes. ⇒ ψ is a flux-surface label
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Magnetic field representation

Using ψ, we can write the poloidal field in a nice way:

dψ = B · dS = Bθ · Rdl ⇒ ∇ψ ∝ BθR

Note: Area dS is 2πR × dl but the 2π is usually dropped from
definition of ψ

Bθ ∇ψ

R

eφ

The poloidal magnetic field is perpendicular to ∇ψ and eφ and can
be written as

Bθ =
1

R
∇ψ × eφ = ∇ψ ×∇φ
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Magnetic field representation

The toroidal magnetic field has two sources:

external coils producing the vacuum field

the poloidal current induced in the plasma which partly
confines the plasma and acts to reduce the toroidal field

For a tokamak then it will be some function of R and Z :

Bφ = f (R,Z )∇φ

Using Ampére’s law to get the poloidal current gives:

µ0jθ = ∇× (f (R,Z )∇φ) = −∇φ×∇f (R,Z )

Since j · ∇ψ = 0, we get

∇ψ · (−∇φ×∇f (R,Z )) = −∇φ · (∇f (R,Z )×∇ψ) = 0

Hence ∇f (R,Z )×∇ψ = 0. The only way this can be true is if f
is constant on flux surface i.e. f = f (ψ)
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Grad-Shafranov equation

Combining the poloidal and toroidal components, we can write the
total magnetic field as

B = f (ψ)∇φ+∇ψ ×∇φ

This means that to describe our magnetic field everywhere we just

need ψ (R,Z ) and f (ψ) = RBφ

Taking the ∇ψ component of the force balance J × B = ∇p and
some manipulation gives the Grad-Shafranov equation:

R
∂

∂R

1

R

∂ψ

∂R
+
∂ψ

∂Z
= −µ0R

2∂p (ψ)

∂ψ
− µ2

0f (ψ)
∂f (ψ)

∂ψ

This is a nonlinear PDE involving ψ (R,Z ), f (ψ) and p (ψ), and is
used to design and interpret tokamak experiments
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Solving the Grad-Shafranov equation

This equation is a non-linear partial differential equation, and
in general can’t be solved analytically

Instead, we need to find solutions numerically. Two main
types of code

Forward codes, which calculate an equilibrium from p (ψ) and
f (ψ) (or q (ψ) or j|| (ψ)) and either the plasma boundary
shape or coil currents
Examples: SCENE, CORSICA, TEQ
⇒ Primarily used by theorists or tokamak designers

Interpretive codes, which take experimental measurements and
work out the equilibrium
Examples: EFIT, CLISTE
⇒ Used by experimentalists to analyse experimental data
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Typical MAST results

A typical contour plot of ψ from MAST (calculated using EFIT)
looks something like:

Contours of ψ in black

Simplified boundary in red

Dense contours towards the right side are
the poloidal field coils for plasma shaping
and vertical stability

Outside the core, plasma has a double
null x-point configuration
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X-point equilibria

Poloidal field due to the
plasma current

Add another coil carrying a
current in the same direction

At some point the poloidal
field cancels, and forms an
x-point

The field line through the
x-point is called a separatrix
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X-point equilibria

All large tokamaks use additional coils to produce one or two
x-points where the poloidal field cancels out
There are several reasons for this:

Plasma which escapes the core is channelled along the
divertor legs to specially armored regions which can handle
the high heat load

Separating the plasma from the surfaces reduces
contamination of the plasma

For reasons which aren’t clear, turbulence can be suppressed
near the edge of x-point configurations (H-mode).
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Plasma shaping

a = 1,κ = 1

One common parameterisation of plasma
shape isa:

R = R0 − b + (a + b cos θ) cos (θ + δ sin θ)

Z = κa sin θ

Major radius R0

Minor radius a

Ellipticity κ, which is 1 for a circle.
Often see elongation = ellipticity - 1
so zero for a circle

Triangularity δ (’D’ shape)

Indentation b (’bean’ shape)

aJ. Manickam, Nucl. Fusion 24 595 (1984)
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Summary

Ideal MHD is a simplified description of a plasma which
describes many phenomena in plasmas

Equilibrium is given by solutions to J × B = ∇P
In axisymmetric configurations with flux surfaces, this can be
simplified to the Grad-Shafranov equation

Realistic configurations have x-points where the poloidal field
goes to zero (but the toroidal field is not zero)

Poloidal field coils are used to shape the plasma into
configurations characterised by elongation and triangularity.
This affects plasma performance and stability.
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