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Previously...

We’ve looked at Ohmic heating and current drive, and their
limitations

Neutral beams can be used to supply heating power and drive
current

Last lecture we studied waves in plasmas, finding 3 basic
waves in ideal MHD: Shear Alfvén, fast and slow magnetosonic

In non-homogenous plasmas, the shear Alfvén wave gives rise
to Alfvén eigenmodes. These can couple together to form
“gap” modes called TAEs, EAEs, ...

This lecture we’ll look at higher frequency modes, which can
be coupled to inject power using radio frequency methods
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Radio Frequency heating

The general principle is to fire radio frequency waves with a
frequency ω into the plasma

These must be engineered so that they travel through the
outer edge of the plasma, but are absorbed at a chosen
location inside the plasma

As a wave passes through a plasma it accelerates electrons
which then collide and dissipate energy. This collisional
absorption decreases with temperature like T−3/2 so not
effective at high temperatures

Instead, resonant absorption where the frequency of the
wave matches a frequency in the plasma is used. This is a
collisionless process so works in high temperature plasmas
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Resonant absorption

Variations in density and temperature lead to changes in the
wavevector k and so changes in the refractive index
N = ck/ω

N2 → 0 implies reflection (cut off)
N2 < 0 implies evanescence (decaying not oscillating)
N2 →∞ implies absorption (resonance)

For an RF heating scheme to work, waves must be able to
propagate from the antenna through the plasma without
significant loss, before reaching a resonance location and
giving up their energy to the plasma

To study this process, we can use the cold plasma dispersion
relations except near the resonance where thermal corrections
can become important.
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RF plasma waves

Maxwell’s equations

∇× E = −∂B
∂t

∇× B = µ0J +
1

c2

∂E

∂t

Assuming uniform B0 so ∇ → ik and
∂

∂t
→ −iω

k × E 1 = ωB1

k × B1 = −iµ0J1 −
ω

c2
E 1

= − ω
c2
ε · E 1

where the electric permittivity tensor is ε = I +
i

ε0ω
σ and σ is the

conductivity tensor defined by

J1 = σ · E 1
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RF plasma waves

k × E 1 = ωB1

k × B1 = − ω
c2
ε · E 1

Substitute the first equation into the second

k ×
(

1

ω
k × E 1

)
= − ω

c2
ε · E 1

using A× (B × C ) = B (A · C )− C (A · B) this becomes

1

ω
[k (k · E 1)− E 1 (k · k)] = − ω

c2
ε · E 1

which can be written as[
kk − k2I +

ω2

c2
ε

]
E 1 = 0

Need to calculate the conductivity tensor...
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Conductivity tensor

Recall the equations of motion for electrons and ions

Min
∂v i
∂t

= +en (E + v i × B)−∇pi + Pie

men
∂v e
∂t

= −en (E + v e × B)−∇pe + Pei

Define mass density ρ, fluid velocity v and current J

ρ = n (Mi + me)

v =
Miv i + mev e
Mi + me

J = ne (v i − v e)
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Conductivity tensor

Adding the equations of motion gives the MHD momentum
equation

ρ
∂v

∂t
= J × B −∇p

Multiply the ion equation by me , the electron equation by Mi and
subtract:

Mimen
∂

∂t

(
J

n

)
=eρE + en (mev i + Miv e)× B

−me∇pi + Mi∇pe − (Mi + me)Pei
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Ohm’s law

The exchange of momentum between electrons and ions due to
collisions Pei is given by the resistivity:

Pei = ηe2n2 (v i − v e) = ηenJ

and we can write

mev i + Miv e =
ρ

n
v − (Mi −me)

J

ne

to obtain Ohm’s law for plasmas:

E + v × B =ηJ Resistivity

+
1

eρ

[
Mimen

e

∂

∂t

(
J

n

)
Electron inertia

+ (Mi −me) J × B Hall term

+ me∇pi −Mi∇pe ]
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Cold plasma T → 0

When studying RF waves in plasma, thermal corrections can
be neglected except when the phase velocity becomes
comparable to the thermal speed near resonant surfaces.
⇒ T → 0

Neglecting collisional damping, we can consider ideal plasma
⇒ η → 0

This simplifies Ohms law to:

E + v × B =
1

eρ

[
Mimen

e

∂

∂t

(
J

n

)
+ (Mi −me) J × B

]

Linearising the velocity equation and this Ohm’s law gives:

Mino
∂v1

∂t
= J1 × B0

E 1 = −v1 × B0 +
1

n0e
J1 × B0 +

me

n0e2

∂J1

∂t
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Cold plasma T → 0

Using
∂

∂t
→ −iω gives

v1 =
i

ωMin0
J1 × B0

E 1 = −v1 × B0 +
1

n0e
J1 × B0 −

iωme

n0e2
J1

and eliminating v1 gives

E 1 = − i

ωMin0
(J1 × B0)× B0 +

1

n0e
J1 × B0 −

iωme

n0e2
J1

which then gives us the conductivity tensor J1 = σ · E 1
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Cold plasma dispersion relation

This conductivity tensor can be put back into our expression for
the linearised electric field:[

kk − k2I +
ω2

c2
ε

]
E 1 = 0

w.l.o.g. take B0 to be in the z direction, and k to be in the x-z
plane i.e.

k =

 kx
0
kz

 =

 k⊥
0
k||

 =

 k sin θ
0

k cos θ


where θ is the angle between k and B0
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Cold plasma dispersion relation

All this gives the following expression: S − N2
|| −iD N||N⊥

iD S − N2 0

N||N⊥ 0 P − N2
⊥

 E1x

E1y

E1z

 = 0

where N = ck/ω is the refractive index, N|| and N⊥ are the

components parallel and perpendicular to B0 respectively.
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Cold plasma dispersion relation

All this gives the following expression: S − N2
|| −iD N||N⊥

iD S − N2 0

N||N⊥ 0 P − N2
⊥

 E1x

E1y

E1z

 = 0

This equation contains the plasma frequency for electrons and
ions (s = i , e) normalised to the wave frequency ω

Πs =

√
n0q2

s

εms
Xs =

Πs

ω

and the electron and ion cyclotron frequencies

Ωs =
qsB0

ms
Ys =

Ωs

ω
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Cold plasma dispersion relation

All this gives the following expression: S − N2
|| −iD N||N⊥

iD S − N2 0

N||N⊥ 0 P − N2
⊥

 E1x

E1y

E1z

 = 0

These then form the permittivities (ε components) for Right and
Left handed circularly polarised waves and Parallel permittivity

R = 1− X 2
e

1 + Ye
−

X 2
i

1 + Yi
' 1− X 2

e

1 + Ye + YeYi

L = 1− X 2
e

1− Ye
−

X 2
i

1− Yi
' 1− X 2

e

1− Ye + YeYi

P = 1− X 2
e − X 2

i ' 1− X 2
e

which in cartesian coordinates appear as the Sum and Difference

S =
R + L

2
D =

R − L

2
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Parallel propagation (N⊥ = 0)

To find solutions, we’re looking for where the determinant of this
matrix is zero. For parallel propagation, k = k||b and the
dispersion equation becomes S − N2

|| −iD 0

iD S − N2 0
0 0 P

 E1x

E1y

E1z

 = 0

The determinant of this is(
S − N2

||

) (
S − N2

)
P − (−iD) (iD)P = 0

⇒
[(

S − N2
||

)2
− D2

]
P = 0

Either P ' 1− X 2
e = 0 or

(
R + L

2
− N2

||

)2

=

(
R − L

2

)2
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Parallel propagation (N⊥ = 0)

Therefore three solutions:

Electrostatic plasma wave ω2 ' Π2
e (no dispersion)

Right handed circularly polarised wave

N2
|| = R ' 1− Π2

e

(ω + Ωe) (ω + Ωi )
Electron cyclotron resonance (absorption) at ω = −Ωe

Left handed circularly polarised wave

N2
|| = L ' 1− Π2

e

(ω − Ωe) (ω − Ωi )
Ion cyclotron resonance (absorption) at ω = Ωi

Cut-offs (reflections) at R = 0 and L = 0
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Perpendicular propagation (N|| = 0)

For propagation perpendicular to B0, set N|| = 0 to get: S −iD 0

iD S − N2 0

0 0 P − N2
⊥

 E1x

E1y

E1z

 = 0

which has a determinant

S
(
S − N2

) (
P − N2

⊥
)
− (−iD) (iD)

(
P − N2

⊥
)

= 0

⇒
[
S
(
S − N2

⊥
)
− D2

] (
P − N2

⊥
)

= 0

so either N2
⊥ = P ' 1− X 2

e or SN2
⊥ = D2 − S2
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Perpendicular propagation (N|| = 0)

These two solutions correspond to:

Ordinary O-mode ω2 = Π2
e + k2

⊥c
2 (light like)

Electric field parallel to B0

Density cut-off (reflection) at ω = Πe

Extraordinary X-mode SN2
⊥ = D2 − S2

Electric field perpendicular to B0

Resonances at:
Upper hybrid frequency ωUH =

√
Π2

e + Ω2
e

Lower hybrid frequency ωLH = Ωe

√
Ω2

i + Π2
i

Ω2
e + Π2

e

Cut-offs (reflections) at R = 0 and L = 0
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RF injection in tokamaks

Three resonances are commonly used to inject RF power into
tokamak plasmas

Ion Cyclotron Resonance Heating (ICRH) ω ∼ Ωi

Resonance only occurs when two or more ion species are
present at an ion-ion hybrid, or Buchsbaum, resonance.
Typical frequencies ∼ 30− 120MHz

Lower Hybrid (LH). Lies between the electron and ion
cyclotron frequencies
Typical frequencies ∼ 1− 8Ghz

Electron Cyclotron Resonance Heating (ECRH) ω ∼ Ωe

For perpendicular propagation this resonates at the Upper
Hybrid frequency
Typical frequencies ∼ 100− 200GHz

These need to be efficiently coupled into the plasma
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Wave propagation

Away from resonant surfaces, we can use the cold plasma relations
to calculate wave propagation through the plasma from the
antenna to the resonant location.

In regions where N2 < 0, the wave cannot propagate

E1
N2 > 0 N2 < 0

Where N2 goes through 0 defines a cut-off location beyond
which the wave becomes evanescent

If the region with N2 < 0 is thin, some wave energy can leak
or “tunnel” through
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Wave absorption at resonant layers

At resonant surfaces, the phase velocity slows and can become
comparable to the particle thermal speeds. At this point there are
two (collisionless) ways for a wave to lose energy:

Some energy can be transferred to another wave which is
resonant in the same region. This is called mode conversion

Collisionless resonant wave-particle interactions transfers
energy from the wave to the particles with a resonance
condition

ω − k||v||j − l |Ωj | = 0

where l = 0, 1, 2, 3, . . .

l = 0 is the Landau damping resonance
l 6= 0 are the electron or ion cyclotron resonances

Only a small population of particles are affected by the wave

Collisions tend to drive back to a Maxwellian
Strong heating can produce high energy “tail” of energetic
particles e.g. ICRH can lead to ∼ 1MeV ions
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Electron cyclotron propagation

For an X-mode wave with ω ∼ Ωe the refractive index varies across
the plasma:

Figure : electron cyclotron X-mode wave with n|| = 0. [Wesson fig 5.7.1]

There is a cut-off on the low field side so the wave must
tunnel through to reach the resonance on the high field side
The higher the density (or lower the field) the further apart
the cut-off and resonance are
This poses a problem for spherical tokamaks
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Bernstein wave heating

In spherical tokamaks, the magnetic field is low compared to
conventional tokamaks. In this case the density cut-off can
prevent RF waves from reaching the plasma core.

For cold plasmas we found that the electrostatic plasma wave
does not propagate as ω ' Πe and so the group velocity
∂ω

∂k
= 0

When thermal effects are taken into account, electrostatic
waves can propagate at harmonics of the plasma frequency.
These are called Bernstein waves

Only exist in a hot plasma, so cannot propagate in vacuum

Injection requires mode conversion O→X→B
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Lower hybrid current drive

The most effective current drive presently is LH current drive.

A phased array antenna couples energy to Lower Hybrid
(X-mode) waves with phase velocity parallel to the magnetic
field

These waves resonate with electrons and transfer energy
through Landau damping (ω − k||v||j = 0)

The phased array couples preferentially to waves travelling in
one toroidal direction so electrons are driven in one direction

The accelerated electrons become less collisional, so electrons
travelling in one toroidal direction are preferentially heated.

The effective resistivity is lowered for these electrons, and this
“asymmetric resistivity” accounts for around 75% of the
driven current.
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Ray tracing

How do we follow an EM wave through a plasma?
Assume plasma equilibrium quantities vary on long lengthscales
(relative to the wavelength); then the wave phase Φ is well defined

Frequency ω =
∂Φ

∂t
Wavevector k = ∇Φ

Suppose we have a dispersion relation ω = ω (x , k) then along a
ray:

Phase is constant i.e.
dΦ

dt
=
∂Φ

∂t
+

dx

dt
· ∇Φ = 0

Therefore
dx

dt
· k = −ω (x , k)
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Additional issues

Electron Cyclotron RF waves can also be used to drive
currents (ECCD). Current research topic on controlling
instabilities (NTMs) using this

Wave orientation is never quite parallel or perpendicular

Finite temperature complicates the dispersion relations

Particle response can be relativistic
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Summary

The cold plasma dispersion relation with T → 0 and η → 0
gives an approximation for wave propagation away from
resonant regions

Parallel waves are the electrostatic plasma wave, the right and
left circularly polarised waves

Perpendicular waves are the O-mode (light like) and the
X-mode Upper and Lower hybrid waves

At resonant surfaces wave-particle interactions lead to
damping. Landau damping resonance can lead to current drive

In tokamaks, RF waves propagating from the low field side
must tunnel through a cut-off to get to the resonant surface.
This is prohibitive in Spherical Tokamaks (STs)

At finite temperatures, Electrostatic Bernstein Waves (EBW)
propagate and can be used to inject energy into STs
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