Pressure-driven instabilities

Ben Dudson

Department of Physics, University of York, Heslington, York YO10 5DD, UK

20th February 2014

Previously

In the last lecture we looked at the basics of plasma instabilities

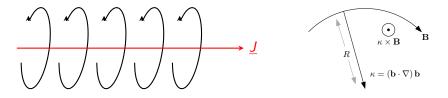
- Analysed in the same way as waves:
 - Expand equations into equilibrium and perturbed quantities
 - Linearise by keeping only terms linear in a perturbed quantity
 - Linear equations of the form $\frac{\partial y}{\partial t} \not{\underline{E}} \cdot \underline{y}$ have solutions $\propto \exp(-i\omega t)$
 - For instabilities, ω has an imaginary component usually called γ which is the growth rate.
- Examples are the Sausage and Kink instabilities in z-pinches
- Driven unstable by plasma pressure and current
- Can be stabilised by introducing additional magnetic fields as bending field-lines act to restore the equilibrium
- An application is the Kruskal-Shafranov condition and q > 1 for stability in tokamaks.

There are usually several ways to study a plasma instability:

- Linearising fluid equations
- Sometimes just considering particle orbits and drifts is enough
- Calculate the energy available and the energy needed to overcome stabilising effects

Single-particle picture of sausage instability

In a Z-pinch the magnetic field is curved around the axis:



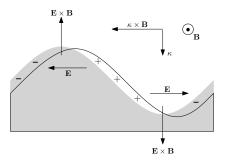
In curved magnetic fields particles drift:

$$\underline{v}_{R} = \frac{v_{||}^{2}}{\Omega} \frac{\underline{R}_{C} \times \underline{B}}{R_{C}^{2} B} = -\frac{v_{||}^{2}}{\Omega} \underline{\kappa} \times \underline{b}$$

Since $\Omega = qB/m$, the sign is different for electrons and ions. For a z-pinch the drift is along the axis.

Single-particle picture of sausage instability

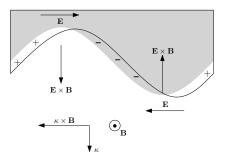
- The curvature drift is in opposite directions for electrons and ions along the axis of the plasma (z or φ direction)
- If there is a perturbation to the plasma, then this leads to charge separation and electric field in the *z* direction
- $\underline{E} \times \underline{B}$ drift is then in the radial direction



For a z-pinch, this $\underline{E} \times \underline{B}$ drift is such that it enhances the original perturbation \Rightarrow instability.

Good and bad curvature

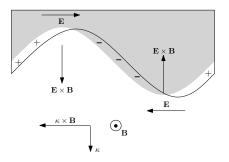
If we reverse the direction of the curvature, so put the plasma on the outside of the z-pinch (reverse pressure gradient), then we get:



Here the $\underline{E} \times \underline{B}$ acts to reduce the perturbation \Rightarrow stable.

Good and bad curvature

If we reverse the direction of the curvature, so put the plasma on the outside of the z-pinch (reverse pressure gradient), then we get:



Here the $\underline{E} \times \underline{B}$ acts to reduce the perturbation \Rightarrow stable.

Plasma stability depends on the relative directions of the magnetic field curvature and the pressure gradient. These are known as **good curvature** and **bad curvature**.

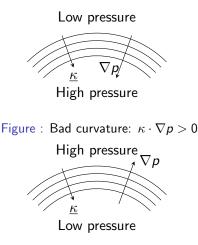


Figure : Good curvature: $\kappa \cdot \nabla p < 0$

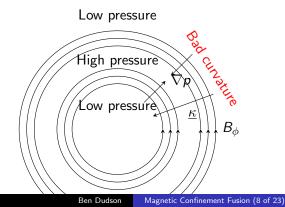
- The relative directions of curvature κ and pressure gradient has an important effect on plasma stability
- Instabilities driven by bad curvature are analogous to Rayleigh-Taylor fluid instability and are called Interchange instabilities

Good and bad curvature in tokamaks

• In a tokamak, the toroidal field is curved and the pressure is highest in the core

 \Rightarrow on the **outboard side** (large *R*) the curvature is bad, whilst on the **inboard side** (small *R*) the curvature is good

• Many tokamak instabilities have maximum amplitudes on the outboard side, called **ballooning** type modes



Energy and plasma stability

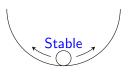
- To calculate whether a plasma is unstable we need to consider both sources of instability such as pressure gradients, but also stabilising effects
- Last lecture we saw that bending field-lines produced a force \underline{F} which opposed the motion i.e $\underline{F} \cdot \underline{v} < 0$
- This means that the instability is having to do work to bend the field-lines
- To be unstable, the energy available has to be greater than the energy needed to overcome this force

Energy and plasma stability

- To calculate whether a plasma is unstable we need to consider both sources of instability such as pressure gradients, but also stabilising effects
- Last lecture we saw that bending field-lines produced a force \underline{F} which opposed the motion i.e $\underline{F} \cdot \underline{v} < 0$
- This means that the instability is having to do work to bend the field-lines
- To be unstable, the energy available has to be greater than the energy needed to overcome this force

Analogous to a ball on a hill





The difference between stable and unstable situations is the change in potential energy δW due to a small perturbation

- δW < 0 Unstable: potential energy converted to kinetic energy
- $\delta W > 0$ **Stable**: kinetic to potential, then oscillates
- $\delta W = 0$ Marginal: Like a ball on a flat surface

A plasma is stable if $\delta W > 0$ for all possible perturbations, and unstable if any perturbation results in $\delta W < 0$

To calculate δW we'll use the ideal MHD equations...

Ideal MHD linearisation

To calculate the change in energy from a small perturbation we need to first linearise the equations:

$$n = n_0 + \epsilon n_1$$
 $\underline{v} = \underline{v}_0 + \epsilon \underline{v}_1$...

which after substituting into the ideal MHD equations, and assuming a stationary equilibrium $\underline{v}_0 = 0$ gives:

$$\begin{aligned} \frac{\partial}{\partial t} n_1 &= -n_0 \nabla \cdot \underline{v}_1 - \underline{v}_1 \cdot \nabla n_0 \\ \frac{\partial}{\partial t} \underline{v}_1 &= \frac{1}{m_i n_0} \left[-\nabla p_1 + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_1 \right) \times \underline{B}_0 + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_0 \right) \times \underline{B}_1 \right] \\ \frac{\partial}{\partial t} p_1 &= -\gamma p_0 \nabla \cdot \underline{v}_1 - \underline{v}_1 \cdot \nabla p_0 \\ \frac{\partial}{\partial t} \underline{B}_1 &= \nabla \times \left(\underline{v}_1 \times \underline{B}_0 \right) \end{aligned}$$

Ideal MHD dispacement

In ideal MHD all perturbed quantities n_1 , \underline{v}_1 , p_1 , and \underline{B}_1 can be written in terms of a single **displacement** $\underline{\xi}(\underline{x})$ which is the distance the fluid has moved from equilibrium.

- The velocity is $\underline{v}_1 = \frac{\partial \underline{\xi}}{\partial t}$
- Substitute this into the other equations:

$$\frac{\partial}{\partial t}n_1 = -n_0\nabla\cdot\frac{\partial\xi}{\partial t} - \frac{\partial\xi}{\partial t}\cdot\nabla n_0$$

Since the equilibrium quantities do not depend on time, this can be integrated trivially:

$$\Rightarrow n_1 = -n_0 \nabla \cdot \underline{\xi} - \underline{\xi} \cdot \nabla n_0$$

• Similarly:

$$p_1 = -p_0 \nabla \cdot \underline{\xi} - \underline{\xi} \cdot \nabla p_0$$

$$\underline{B}_1 = \nabla \times \left(\underline{\xi}_1 \times \underline{B}_0\right)$$

Note: This only works for ideal MHD: resistivity breaks this

Ideal MHD normal modes

Substituting into the equation for velocity gives:

$$m_i n_0 \frac{\partial^2 \underline{\xi}}{\partial t^2} = \nabla \underbrace{\left(\underline{\xi} \cdot \nabla p_0 + \gamma p_0 \nabla \cdot \underline{\xi}\right)}_{-p_1} + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_1\right) \times \underline{B}_0 + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_0\right) \times \underline{B}_0 + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_0\right$$

This is a linear operator

$$m_i n_0 \frac{\partial^2 \xi}{\partial t^2} = F\left(\underline{\xi}\right)$$
 Fancy form of $m\underline{a} = \underline{F}$

Solutions are linear $\underline{\xi}(\underline{x},t) = \underline{\xi}(\underline{x}) e^{-i\omega t}$ and include the shear Alfvén and magnetosonic waves.

Hence we can write an eigenvalue equation with eigenfunction ξ

$$-m_i n_0 \omega^2 \underline{\xi} = F\left(\underline{\xi}\right)$$

Ideal MHD energy principle

To calculate the work done on the plasma, we can start with the power: force \times velocity

$$\frac{d}{dt}\delta W = -\int d^{3}x F\left(\underline{\xi}\right) \cdot \frac{\partial \underline{\xi}}{\partial t}$$

Integrate this by parts: $u = F(\underline{\xi}), \ \frac{d\underline{V}}{dt} = \frac{\partial \underline{\xi}}{\partial t}$

$$\Rightarrow \delta W = -\left[\int d^3 x F\left(\underline{\xi}\right) \cdot \underline{\xi}\right]_{t=0}^t + \int dt \int d^3 x \underline{\xi} \cdot \frac{\partial F\left(\underline{\xi}\right)}{\partial t}$$

By writing $\frac{\partial F(\underline{\xi})}{\partial t} = \frac{\partial F(\underline{\xi})}{\partial \underline{\xi}} \cdot \frac{\partial \underline{\xi}}{\partial t}$, this becomes:

$$\delta W = -\left[\int d^3 x F\left(\underline{\xi}\right) \cdot \underline{\xi}\right]_{t=0}^t + \int dt \int d^3 x \underline{\xi} \cdot \left(\frac{\partial F\left(\underline{\xi}\right)}{\partial \underline{\xi}} \cdot \frac{\partial \underline{\xi}}{\partial t}\right)$$

Because ideal MHD is Hermitian,

$$\underline{\xi} \cdot \left(\frac{\partial F\left(\underline{\xi}\right)}{\partial \underline{\xi}} \cdot \frac{\partial \underline{\xi}}{\partial t}\right) = \left(\underline{\xi} \cdot \frac{\partial F\left(\underline{\xi}\right)}{\partial \underline{\xi}}\right) \cdot \frac{\partial \underline{\xi}}{\partial t} = F\left(\underline{\xi}\right) \cdot \frac{\partial \underline{\xi}}{\partial t}$$

and so this becomes:

$$\delta W = -\left[\int d^3 x F\left(\underline{\xi}\right) \cdot \underline{\xi}\right]_{t=0}^t + \underbrace{\int dt \int d^3 x F\left(\underline{\xi}\right) \cdot \frac{\partial \underline{\xi}}{\partial t}}_{=-\delta W}$$

Hence

$$\delta W = -\frac{1}{2} \int d^3 x F\left(\underline{\xi}\right) \cdot \underline{\xi}$$

Ideal MHD energy equation (standard form)

Substituting the expression for $F(\underline{\xi})$ from earlier:

$$F\left(\underline{\xi}\right) = \nabla\left(\underline{\xi} \cdot \nabla p_0 + \gamma p_0 \nabla \cdot \underline{\xi}\right) + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_1\right) \times \underline{B}_0 + \frac{1}{\mu_0} \left(\nabla \times \underline{B}_0\right) \times \underline{B}_1$$

then integrating over plasma and vacuum regions gives the following **standard form** of the **ideal MHD energy equation**:

$$\begin{split} \delta W_{p} &= \frac{1}{2} \int d^{3}x \left[\frac{|\underline{B}_{1}|^{2}}{\mu_{0}} + \gamma p \left| \nabla \cdot \underline{\xi} \right|^{2} - \underline{\xi}^{*} \cdot (\underline{J}_{0} \times \underline{B}_{1}) \\ &+ \left(\underline{\xi}_{\perp} \cdot \nabla p \right) \left(\nabla \cdot \underline{\xi}_{\perp}^{*} \right) \right] \quad \text{Plasma terms} \\ \delta W_{V} &= \frac{1}{2} \int d^{3}x \frac{|\underline{B}_{1}|^{2}}{\mu_{0}} \quad \text{Vacuum (always stabilising)} \\ \delta W_{S} &= -\frac{1}{2} \oint \left[\gamma p \nabla \cdot \underline{\xi} - \frac{\underline{B}_{0} \cdot \underline{B}_{1}}{\mu_{0}} \right] \underline{\xi}^{*} \cdot d\underline{S} \quad \text{Surface terms} \end{split}$$

Ideal MHD energy equation (intuitive form)

The plasma contribution δW_p can be rearranged:

$$\begin{split} \delta \mathcal{W}_{p} &= \\ \frac{1}{2} \int d^{3}x \Bigg[& \frac{|\underline{B}_{1}|^{2}}{\mu_{0}} \quad \text{Field-line bending} \geq 0 \\ & + \frac{B^{2}}{\mu_{0}} \left| \nabla \cdot \underline{\xi}_{\perp} + 2 \underline{\xi}_{\perp} \cdot \kappa \right|^{2} \quad \text{Magnetic compression} \geq 0 \\ & + \gamma p_{0} \left| \nabla \cdot \underline{\xi} \right|^{2} \quad \text{Plasma compression} \geq 0 \\ & -2 \left(\underline{\xi}_{\perp} \cdot \nabla p \right) \left(\underline{\kappa} \cdot \underline{\xi}_{\perp}^{*} \right) \quad \text{Pressure/curvature drive, } + \text{ or } - \\ & -\underline{B}_{1} \cdot \left(\underline{\xi}_{\perp} \times \underline{b} \right) j_{||} \Bigg] \quad \text{Parallel current drive, } + \text{ or } - \end{split}$$

This is a very useful form of the energy equation because it makes clear the balance between destabilising and stabilising effects

The first three terms in this equation are always ≥ 0 and so are stabilising, but the last two can be positive (stabilising) or negative (destabilising):

• $-2\left(\underline{\xi}_{\perp}\cdot\nabla p\right)\left(\underline{\kappa}\cdot\underline{\xi}_{\perp}^{*}\right)$ depends on ∇p and κ : if $\nabla p\cdot\kappa > 0$ then this is destabilising. Instabilities driven by this term are often called pressure-driven

 \rightarrow This is the interchange instability drive we saw earlier.

• $-\underline{B}_1 \cdot (\underline{\xi}_{\perp} \times \underline{b}) j_{||}$ depends on the parallel current $j_{||}$ and leads to parallel current-driven kink modes

Compression

The term $\gamma p_0 \left| \nabla \cdot \underline{\xi} \right|^2$ represents compression of plasma

- The only place in this equation where the parallel displacement $\xi_{||} \equiv \underline{b} \cdot \underline{\xi}$ enters explicitly is this term
- Therefore, we can choose $\epsilon_{||}$ to minimise $abla \cdot \xi$
- For a fluid or plasma motion parallel to <u>B</u>,

$$|
abla \cdot \underline{v}| \sim M_S^2 rac{v}{L}$$

close to marginal stability where L is a typical length and ${\cal M}_S$ is the Mach number

• Perpendicular to the field, a similar expression applies, but with the Alfvénic Mach number:

$$|\nabla \cdot \underline{v}| \sim M_A^2 \frac{v}{L}$$

 \Rightarrow Close to marginal stability, plasma instabilities tend to be incompressible

 $\frac{|\underline{B}_1|^2}{\mu_0}$ is the energy which goes into bending field-lines, and is always stabilising. The perturbed magnetic field \underline{B}_1 is given by

$$\underline{B}_{1} = \nabla \times \left(\underline{\xi}_{1} \times \underline{B}_{0}\right) = \underline{\xi} \underbrace{\left(\nabla \cdot \underline{B}_{0}\right)}_{=0} - \underline{B}_{0} \left(\nabla \cdot \underline{\xi}\right) + \underbrace{\left(\underline{B}_{0} \cdot \nabla\right)}_{\underline{\xi}} - \underbrace{\left(\underline{\xi} \cdot \nabla\right)}_{\underline{B}_{0}} \underline{B}_{0}$$

Assuming we're already minimising the compression, neglect the $\nabla\cdot\underline{\xi}$ term.

 \Rightarrow look for modes which minimise $(\underline{B}_0 \cdot \nabla) \xi - (\xi \cdot \nabla) \underline{B}_0$

Field-line bending

Trying to minimise $(\underline{B}_0 \cdot \nabla) \underline{\xi} - (\underline{\xi} \cdot \nabla) \underline{B}_0$ Consider a perturbation of the form

$$\underline{\xi}(\mathbf{r},\theta,\phi) = \hat{\underline{\xi}}(\mathbf{r}) e^{i(m\theta - n\phi)}$$

The first of these terms $(\underline{B}_0 \cdot \nabla) \underline{\xi}$ can be written in a cylinder (large aspect-ratio tokamak) as:

$$(\underline{B}_0 \cdot \nabla) \underline{\xi} = \left[\frac{B_\theta}{r} \frac{\partial}{\partial \theta} + \frac{B_\phi}{R} \frac{\partial}{\partial \phi} \right] \underline{\xi} = i \left[m \frac{B_\theta}{r} - n \frac{B_\phi}{R} \right] \underline{\xi}$$

rearranging:

$$(\underline{B}_0 \cdot \nabla) \underline{\xi} = i \frac{B_{\phi}}{R} \left(\frac{m}{q} - n \right) \quad \text{where} \quad \boxed{q = \frac{rB_{\phi}}{RB_{\theta}}}$$

This is minimised when $q \simeq m/n$ so instabilities tend to localise around resonant surfaces

In cylindical plasmas, pressure-driven modes which are constant along <u>B</u>₀ are stabilised by magnetic shear $s = \frac{r}{q} \frac{dq}{dr}$. The **Suydam** criterion says that they are stable if

$$\mu_0 \frac{2r^2}{B_\theta^2} \frac{1}{s^2} \kappa \cdot \nabla p < 1/4$$

In tokamaks the equivalent is the Mercier criterion

$$D = -\mu_0 \frac{2r}{B^2} \frac{1}{s^2} \frac{dp}{dr} \left(1 - q^2\right) < 1/4$$

If q > 1 then the good curvature region tends to win and interchange modes are stable

Summary

- Pressure driven instabilities can be destabilised when $\kappa \cdot \nabla p > 0$ (bad curvature regions)
- Plasma compression is always stabilising, so tends to be minimised close to marginal stability
- To minimise parallel field bending, modes tend to be localised around resonant surfaces q = m/n
- Interchange modes are constant along B to minimise field-line bending, but are usually stable in tokamaks. Exceptions are in the SOL and if q < 1.
- In tokamaks, ballooning modes have some variation along B so that they can maximise their amplitude in the bad curvature region
- We'll cover these in more detail later when considering performance limits...