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Previously...

In the last few lectures we’ve covered the basics of plasma
instabilities, the factors which determine their growth, and some of
the tools use in their analysis

Growing solutions to linearised equations of motion

Potential energy (δW ) considerations. Instabilities stabilised
by compression and field-line bending

Pressure driven instabilities

Stability depends on sign of κ ·∇p : Good and bad curvature
Tend to localise around q = m/n to minimise field-line bending

Current driven instabilities

Ideal MHD m = 1 internal kink, m > 1 external kink with
q = m/n surface outside the plasma
Resistivity allows magnetic islands to form (tearing modes).
In MHD these are governed by ∆′

Islands flatten the pressure profile, change the Bootstrap
current: Neoclassical Tearing Mode
Critical threshold width wc due to incomplete flattening
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Current limits

We have already seen that there is a limit to the current in a
tokamak:

If the total current becomes high enough so that q < 1 outside
the plasma then the whole plasma becomes kink unstable

If q = 1 appears inside the plasma then the m,n = 1,1
internal kink can be unstable (e.g. sawteeth, fishbone)

If q = 2 appears then 2,1 NTMs can appear (see later)

It’s for this reason that advanced tokamak scenarios keep
current out of the core to keep q high
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Beta limits

What we’ll concentrate on here is limits to the plasma beta

β ≡ µ0p

B2

This is a useful quantity because it quantifies
the efficiency of plasma confinement:

Fusion power output increases with
pressure.

In a power plant, magnetic field
costs money: B is generated either
in expensive toroidal field coils, or
driven using expensive
current-drive systems.

To make commercial fusion power
viable, β must be maximised Figure :

R.A.Krakowski,J.G.Delene
J.Fusion Energy 7(1), 1988
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Beta limits: Ballooning modes

In lecture 11, we looked at pressure-driven instabilities where the
key terms in the Energy equation are

δWp =
1

2

∫
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q = m/n

Displacement

Interchange modes minimise
field-line bending by
localising around their
resonant surface q = m/n

Stabilised by magnetic shear
(twisting of field-lines)

The Mercier condition says
that interchange modes are
stable in tokamaks provided
that q > 1.
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Beta limits: Ballooning modes

Unfortunately this doesn’t mean that tokamaks are immune
from pressure-driven instabilities

During high-performance mode (H-mode), steep gradients
form close to the plasma edge.

These collapse
quasi-periodically in
eruptions called Edge
Localised Modes (ELMs).

Leading theory is
peeling-ballooning modes
(Connor, Hastie, Wilson)

Pressure-driven (ballooning)
and edge current (peeling)
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Beta limits: Ballooning modes

Using the ideal MHD energy equation, we can estimate the
pressure limit for a ballooning mode:

ξr

H
ei
gh
t

Major radius R

L|| ' πRq

In
b
oa
rd

O
u
tb
oa
rd

θ

φ

Field-line bending so mode is
maximum on the outboard side,
minimum on inboard side.
Consider case when parallel
bending dominates:

|B1|2
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' |B0 · ∇ξr |2
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Using the length along field-lines,
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This gives the energy (density) needed to bend field-lines
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Beta limits: Ballooning modes

For ballooning modes to be stable, the energy available from the
pressure gradient has to be less than this field-line bending i.e.

(ξ · ∇p) (κ · ξ∗⊥) <
B2

0

2µ0

ξ2
r

π2q2R2

Taking ξ at the outboard midplane (maximum perturbation), ∇p
and κ are both in the direction of ξ

r
. Therefore,

(ξ · ∇p) (κ · ξ∗⊥) ' ξ2
r κ

dp

dr

For stability then:
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r κ
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Since κ ∼ −1/R, this becomes

−dp

dr
<

B2
0

2µ0

1

π2q2R
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Beta limits: Ballooning modes

We can use this to get a beta limit by setting
dp

dr
∼ −p0/r where

p0 is the core pressure and r the minor radius.

µ0p0

B2
0

= β <
1

2π2

r

qR

If q ' 2, r/R = ε ' 1/3 this gives a limit of β ∼ 0.5%

This is in the right ballpark for conventional tokamaks: a
couple of percent is quite typical

More important than a global beta limit is the effect ELMs
have on divertor power loads

A “natural” ELM on ITER is predicted to produce 20MW/m2,
and must be reduced by a factor of ∼ 20 for acceptable
component lifetimes

Research ongoing into means of controlling these events
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Beta limits: Normalised beta and the Troyon limit

From ballooning, we have the beta limit β ∼ r/
(
q2R

)
. Using

q =
rBφ
RBθ

and Bθ ∼ Iφ/r where Iφ is the toroidal current this

becomes:

β ∼ r

R

R2 (Iφ/r)2

r2B2
φ

=

(
Iφ
rBφ

)2 R

r

Experiments and more careful
calculations find a linear
dependence on Iφ/ (rBφ)

The quantity βN ≡
β (%)

Iφ/ (rBφ)
is

called the Normalised Beta

Based on simulations, the limit
βN < 2.8 is called the Troyon limit

Further optimisation of current
profile (li ) Figure : Wesson 16.6.4
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Beta limits: Neoclassical Tearing Modes

Last lecture we looked at tearing modes (magnetic islands).
Modification of the pressure profile leads to changes in the
bootstrap current. This gives a modified Rutherford equation
for the width w ∼ B2

r of the island:

dw

dt
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∆′ tearing

At small w stability is determined
by ∆′ (usually stable)

Above wc profiles are flattened,
mode grows

At some amplitute the mode
saturates

Called Neoclassical Tearing Modes because they are driven
unstable by the bootstrap current
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Beta limits: Neoclassical Tearing Modes

As the pressure (beta) is increased, the critical size for an NTM to
grow gets smaller. At some point a sufficient “kick” will occur to
start the mode

First observed on TFTR
(“supershot” scenarios),
now observed in all
high-performance
tokamaks

Common triggers are
sawteeth, fishbones, and
ELMs

Tend to be what limits β

Figure : MAST shot 2952
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Wall stabilisation

In the last lecture we saw that tearing and kink modes are
governed by the Cylindrical Tearing Mode equation:

∇2δψ − µ0
dJφ
dr

Bθ [1− qn/m]
δψ = 0

The solutions to this equation (and so ∆′) depends on the
boundary conditions.

No wall is a situation where the wall is far away and the
perturbation goes like δψ ∼ r−m. This is the most unstable
situation

An ideal wall is a perfectly conducting boundary where the
perturbation is forced to zero

If an ideal wall could be put at the plasma boundary, all
external modes would be fully stabilised

In practice, vessel walls are not ideal
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Resistive walls
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If there is no wall (wall is far away) then the

An ideal wall is a superconductor which forces the
perturbation to zero at the boundary. This corresponds to a
current sheet which pushes back on the mode.

In real machines, the vessel walls always have some finite
resistivity. The current and hence radial magnetic field can
diffuse into the wall
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Resistive walls
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Skin current pushes back on mode

If there is no wall (wall is far away) then the

An ideal wall is a superconductor which forces the
perturbation to zero at the boundary. This corresponds to a
current sheet which pushes back on the mode.

In real machines, the vessel walls always have some finite
resistivity. The current and hence radial magnetic field can
diffuse into the wall
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Resistive walls

The resistive diffusion is the same as we’ve seen before

∂B

∂t
=

η

µ0
∇2B

and since we’re interested in diffusion into the wall:

∂B

∂t
=

η

µ0
∇2B

If the thickness of the wall is L and the time for diffusion into the
wall is τW then

B

τw
' η

µ0

1

L2
w

B

and so the wall time is τw '
L2
wµ0

η
. This is typically ∼ 10ms.
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Rotation stabilisation

If an instability is rotating at
a frequency Ω then the B
field at the wall will reverse
direction on a timescale
τ = 2π/Ω

If this is much faster than τw
then the field doesn’t have
time to diffuse into the wall

Hence if Ω� 1/τw then the
wall appears ideal Figure : R.Buttery, IAEA 2008
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Mode locking

If a current is being driven in a resistive wall then there must

be some heating Wη =

∫
ηj2d3x

This energy must come from plasma rotation. Currents in the
wall produce a torque on the plasma which brakes the rotation

Rotational energy ∝ Ω2 so

Ω
dΩ

dt
∝
∫
ηj2d3x ∝ −τw (ΩBr ,wall)

2

The magnetic field at the island and wall are approximately:
B2
r ,island ∝

(
1 + Ω2τ2

w

)
B2
r ,wall

Therefore,
dΩ

dt
= − aΩτwb

2
r

1 + Ω2τ2
w

For large tokamaks Ωτw << 1 and Ω ∝ et
√
τwBr
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Mode locking

Interaction between instability and the wall slows the mode

Rotation slows and wall stabilisation becomes less effective

A simple model is that an island rotation is driven by drag
with the rest of the plasma, and braked by the wall

dΩ

dt
∝ ν (Ω0 − Ω)− ΩτwB

2
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Ω
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Final braking caused by error fields:
non-axisymmetric fields caused by
finite number of coils or
manufacturing imperfections

Sudden braking of the plasma,
often leading to a disruption
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Mode locking
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Stabilising NTMs

There are several schemes being investigated to control NTMs.

The most successful one so far has been to use Electron
Cyclotron Current Drive (ECCD).
Idea is to restore the missing bootstrap current in the island

Localised current drive: ECCD, LHCD, ...
Localised heating: changes resistivity and so current profile
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Stabilising NTMs

The absorption location of RF waves can be varied by
changing the launcher angle, plasma major radius or toroidal
field

Suppression methods typically use magnetics signals to find
start of an NTM

“Search and suppress” methods scan the alignment, stopping
when the island shows a response

Active tracking uses experimental measurements to
reconstruct the location of the q = 3/2 and q = 2 surfaces,
then targets these with the launcher. Very complicated and
needs fast calculations

If the q surface location is known, preemptive suppression can
be used to prevent NTMs from starting

Active suppression of 3,2 and 2,1 modes on ITER using upper
ECRH launcher under development
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Stabilising NTMs: alternatives

In addition to active suppression, other things can be done to
reduce NTMs

The source of seed islands should be reduced. Suppressing
sawteeth or making them smaller

Driving plasma rotation or rotation shear helps suppress
NTMs, but not so applicable to ITER

Kinetic effects (fast particles) have been found to have an
effect on mode stability, and being investigated
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Disruptions

So what happens when a tokamak hits one of these limits?

In a tokamak the position of the plasma is controlled using a
feedback system (see this week’s problem sheet)

If an event is violent enough it can move the plasma too
quickly for the system to respond. Distortions to the plasma
can also confuse the system so that it makes things worse

At this point the control system may fail and give up
(“FA cutout”)

The plasma then typically hits either the top or bottom of the
vessel. This is called a disruption.

These must be avoided in large tokamaks, so ways to arrange
a “soft landing” are being developed e.g. Massive Gas
Injection.
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Summary

Ballooning modes provide a limit β ∼ r/
(
q2R

)
∼
(

Iφ
rBφ

)2 R

r
Experimentally the beta limit is found to vary linearly with
Iφ/ (rBφ) and so the normalised beta is defined as

βN ≡
β (%)

Iφ/ (rBφ)

Because Neoclassical Tearing Modes are destabilised by the
bootstrap current, they appear at high β, and tend to limit
tokamak performance

The vessel wall influences the growth-rate of NTMs and
external kinks, and rotation makes a resistive wall appear ideal

External kink modes which would be unstable without a wall,
but stable with an ideal wall are called Resistive Wall Modes
(RWMs)

Mode locking brakes the plasma rotation and allows the mode
to grow rapidly. This can then lead to violent disruptions
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