

Introduction to
Programming

Dr Ben Dudson
University of York

Programming course (this term)

● Learn how to use Linux, IDL and either C or FORTRAN

● IDL needed in experimental labs (ICF and MCF)

● C or FORTRAN needed next term for computational lab

Aim

Programming course (this term)

● Learn how to use Linux, IDL and either C or FORTRAN

● IDL needed in experimental labs (ICF and MCF)

● C or FORTRAN needed next term for computational lab

● Weekly problems

– 10 credits total. Part of Fusion Lab
● Office hour to discuss problems

– Wednesday 13:15 – 14:15, room A019

● Online forum to discuss issues:
 http://plasmaforum.york.ac.uk

Aim

The course

http://plasmaforum.york.ac.uk/

Why programming?

● Computers do not get bored, and don't make mistakes

● Perform calculations phenomenally quickly: A typical desktop
performs nearly a billion additions/multiplications per second.
Fastest supercomputers perform about a million times more.

Why write code? Why not use existing tools like spreadsheets?

Why programming?

● Computers do not get bored, and don't make mistakes

● Perform calculations phenomenally quickly: A typical desktop
performs nearly a billion additions/multiplications per second.
Fastest supercomputers perform about a million times more.

Why write code? Why not use existing tools like spreadsheets?

● Hard to extend: Try handling 4D arrays in Excel.

● For large problems these tools become too slow and/or
cumbersome

● Research is often about doing something new. Often no
program exists which will do exactly what you need.

Why programming?

● Programming is hard, and will take an effort to learn

● Requires attention to detail, creativity and abstract thought

● Can actually be very satisfying, even enjoyable!

– Problem-solving (like crossword, sudoku etc.)

– Get to see results of your work quickly

● A very “marketable” skill

– Widens your choice of projects and careers

– Shows general problem-solving ability

Programming Languages

● Way to specify computations and express algorithms precisely

● A human-readable language which can be automatically
translated into processor operation codes (op-codes)

Programming Languages

● Way to specify computations and express algorithms precisely

● A human-readable language which can be automatically
translated into processor operation codes (op-codes)

● Many different languages

– Approach problem solving in different ways so good to
learn several

– Have evolved as different approaches have been tried,
and technology has improved

– Each language has it's advantages and disadvantages
for a particular application

Interactive Data Language

● Installed on your laptops (under Linux)

● A proprietary system created by Research Systems Inc

● Designed with scientists and engineers in mind, so very
similar to FORTRAN. First version released 1979.

● Provides ways to visualise large amounts of data relatively
easily, and create publication-quality plots.

● Used widely in space and plasma science: Culham, RAL,
ESA, NASA, ...

IDL on your laptops

Start up IDL on your laptops. In a terminal window:

IDL expressions

● IDL can be used as a glorified calculator

IDL expressions

● IDL can be used as a glorified calculator

● Watch out for missing commas!

Variables

labels for values, similar to x, y, z in maths

● Have a “type”:
String “Hello World!”
Integer 16-bit number (-32,767 to +32,767)
Long 32-bit number (+/- 2 billion)
Float Single precision (about 7 digits)
Double Double precision (about 16 digits)
Complex Single precision complex number
Dcomplex Double precision complex

● Names can be descriptive names

● Can be given (assigned) a value

● In most languages this value can be changed

Variables in IDL

● To create a variable in IDL, just give it a value

Variable names are case insensitive
“myVar” is the same as “MyvAr”

This is also true for FORTRAN, but not C

Variables in IDL

● To create a variable in IDL, just give it a value

● The “help” command tells you which variables are defined

Using variables

● Variables can be combined using operators (+ - * / ^)

● To print several quantities, separate with commas

Built-in IDL functions

● IDL comes with lots of built-in functions for things like sin(),
cos() and tan()

IDL procedures and functions

● IDL makes a distinction between “procedures” like PRINT
PRINT, var1, var2, …
These don't give (return) a result, so you couldn't have
a = PRINT, var1, var2, ...

● IDL functions do return a result, and need brackets
a = SIN(x)
If you don't do something with the result (e.g. store in a
variable or print it) then IDL will complain

● If you're unsure, check the help pages....

Getting help

Typing '?' gets to the help
system. Reference guide
with all built-in commands

Making decisions

● Often want run different commands depending on some
criterion. Statements to do this are called conditionals

A < 10
yes

no

Condition can be a combination of

● Numerical comparisons: Equal
(EQ), greater than (GT), less
than (LT), greater than or equal
(GE) and less than or equal (LE)

● Boolean operators (AND, OR,
NOT, XOR)Note: Also called branching

Conditionals in IDL

● Compare variables and values: EQ, GT, LT, GE, LE

● Used in IF statements to decide what code to run

Going round in circles

● Repeat operations, either a fixed number of times...

Going round in circles

● Repeat operations, either a fixed number of times or until a
condition is met

Arrays

● When performing operations on lots of data, one way is to
use loops. The (better) way is to use arrays

● Collection of variables of the same type

● Each component is labelled with a number (an index)

Arrays

● When performing operations on lots of data, one way is to
use loops. The (better) way is to use arrays

● Collection of variables of the same type

● Each component is labelled with a number (an index)

Array creation:
INDGEN An array of integers
FINDGEN Floating point numbers
DINDGEN Double precision floats

INTARR Integers, all zero
LONARR Long integers, all zero
FLTARR Floats, all zero

In IDL, operations on arrays apply to each element in the array:

IDL> a = findgen(5)

IDL> print, a

0.0 1.0 2.0 3.0 4.0

IDL> a = a + 1

IDL> print, a

1.0 2.0 3.0 4.0 5.0

This is also true in FORTRAN, but not in C. There are ways to
do this in C++.

Array operations

Extending arrays

● Arrays can also be joined together (concatenated) and
extended

Indexing and slicing arrays

● Array elements or ranges can be extracted

● Individual variables can also be changed

Missing brackets result in error

WHERE command

● Allows you to select and manipulate parts of an array,
depending on some criterion. Like IF for arrays

More complicated conditions
using AND, OR, XOR and NOT

Programming components

Several components are found in (almost) all languages

● Variables: Storage locations for values

● Expressions: Perform a calculation using variables

● Branching: Check if a condition is true, and if so perform
some operation

● Loops: Repeat a set of operations until some condition is
true

● Functions: A group of operations which can be applied to
input variables and produce some result

Summary

● Programming requires thinking about algorithms, and is
something best learnt through practice

– This week you have lectures and classes on IDL

– Problem sheets this term in IDL and C or FORTRAN
● IDL is a relatively easy language to learn, and will be vital

for your experimental labs later this term and next.

● We have covered the basic building blocks of programming

● Go through programming handout

● Make a start at the IDL exercises

 http://www-users.york.ac.uk/~bd512/teaching.shtml
for course information and links

http://www-users.york.ac.uk/~bd512/teaching.shtml

