

Programming

Dr Ben Dudson
University of York

Outline

● Last lecture covered the basics of programming and IDL

● This lecture will cover

– More advanced IDL and plotting

– Fortran and C++

– Programming techniques

● After this you can work on the IDL exercises, and get
started with Fortran or C/C++

Plotting data

Optional arguments

● IDL commands usually have some mandatory arguments

● Often also have many optional parameters, called keywords

● Allows a command to have a “simple” form, which can be
made more complicated as needed

● An example is the PLOT command, which has lots of
keywords...

Adding titles

Plot options

● Plot has many different options, but some of the most
useful are:

– Title=”Some title” Set plot title

– Xtitle=”X axis label”

– Ytitle=”Y axis label”

– Linestyle=<number> Change the line style
(solid, dashed, dotted etc.)

– Psym=<number> Plot symbols not lines

– Charsize=<number> Font size for labels

– Xrange=[min, max] X-axis range

– Yrange=[min, max] Y-axis range

OPLOT

Overlays a plot on top of
the existing one.

Doesn't change the axes

XYOUTS

Adds labels to a graph

2D surface plots

SURFACE takes a 2D
array, in this case a Sinc

function

Arithmetic error caused
by divide-by-zero in the

centre of the plot

2D surface plots

Animation of moving
sinc function

Removed singularity

ZRANGE keyword to
SURFACE forces the

range to be the same for
all plots

Keyword argument “d”

2D contour plots

Simplest way to use
contour

2D contour plots

Nlevel keyword sets the
number of levels

2D contour plots

/fill keyword switch creates
a filled contour plot

Default colors are not very
nice...

Colour tables

LOADCT loads a numbered
color table (here 39)

NB: Often need to do this to
get colours to work properly

Saving your plots

At some point you will probably want to save a graph for
putting into a presentation or paper.

The best way to do this is to save as a PostScript

IDL> SET_PLOT, 'PS'

IDL> DEVICE, file=' myresult.ps'

… Plotting commands here …

IDL> DEVICE, /close

IDL> SET_PLOT, 'X'

Saving your plots

$ symbol at beginning of line
runs an external command

Automating IDL

● Typing commands into IDL is useful to get a quick result,
but is tedious if you need more complicated programs, or
to do things several times

● But IDL is more than a glorified calculator...

● You can write commands to a text file to create quite
complicated codes to analyse data and plot results

PRO test

 ...

 Commands here

 ...

END

Procedures and Functions

Helps if you name the file the
same as the routine (but

with .pro extension)

Create a file “test.pro”

Running “test” looks for a file
called “test.pro”

Remember to re-compile

Changes to a file don't have
an effect until it's recompiled

Re-running doesn't print “And again...”

Changes to a file don't have
an effect until it's recompiled

Force IDL to recompile the code

Running now uses the updated code

One of the little quirks that IDL has...

Conditionals II

IF statements can have
several clauses, optionally
ending in an 'ELSE' section

Loops
Using several loops to solve

the Logistic chaotic map

Breaking up your code

If you are doing something
several times in a code, it's

usually good to create a
separate function

Using functions

● To make your code understandable, break your problem
up into smaller problems and solve separately

● If a function gets beyond ~50 lines long then try to split

● Each function should have a well defined set of inputs and
outputs. The aim is to hide the details of what's inside

● A good start is to separate the parts of your code which
deal with the user (input and output) from the parts which
perform calculations

● Think about which bits are specific to your problem, and
what parts are more general and can be used elsewhere

Function

Principles of programming

● Computers are very very stupid. They have absolutely no
common sense, and will do precisely what you tell them to do.

● Details matter. Programming languages are designed to
remove ambiguity and redundancy, so you can't be vague.

● Abstraction is vital. Large programs have millions of lines of
code, and trying to understand all this at once is impossible.
The solution is to build up large programs in layers, each one
using the layer below and hiding details from the layer above.

FORTRAN

● FORmula TRANslator was developed in the 1950s

● Designed for scientific users and number-crunching

● FORTRAN 77 was the standard scientific language for a
long time

● FORTRAN 90, 95 and 2003 added extra features such as
objects

PROGRAM HELLO_WORLD
 IMPLICIT NONE
 PRINT *, "Hello, World!"
END PROGRAM

C / C++

● C was developed in the 1970s as a systems programming
language (UNIX was written in it, used for essentially all
modern operating systems)

● C++ developed in 1980. A superset of C which includes
features such as objects and templates (STL) *.

● Has directly influenced many popular languages: C++,
Java, JavaScript, PHP, Perl, C#, Objective-C, ...

#include <stdio.h>

int main(void)
{
 printf("Hello, World!\n");
 return 0;
} * Some features not

compatible from C to C++

FORTRAN vs. C/C++

● Lots of scientific software
written in FORTRAN

● Modern versions include
Object-Oriented
extensions

● Automates many details
for the programmer

● Tends to have highest
performance for number
crunching

● C/C++ family of languages
(e.g. Java, JavaScript,
C#, ...) widely used outside
academia

● Good compilers,
debugging tools etc. freely
available

● Allows fine control over
memory access (pointers)

● C++ becoming more
common for scientific use

Writing good code

● Write comments as you go. Helps others work out what
your code is doing, and yourself when you come back to it.

● Fail quickly. Test your code as early as possible. Don't just
write a huge code then expect it to work first time: You will
spend much longer fixing bugs than writing code.

● Write less code. Number of bugs tends to increase faster
than linearly with lines of code. Don't repeat yourself, and
split big codes into smaller pieces which can be reused.

● Don't re-invent the wheel. Unless you have a really good
reason, use library routines rather than write your own.

● Takes lots of practice. Look at others' code, and see what
works and what doesn't

Weekly problems

● Due on Fridays most weeks this term

● Problems given in programming handbook

● Email your answers to me at bd512@york.ac.uk by 5:00pm

● FORTRAN. I will compile your code using gfortran:
$ gfortran -o test yourfile
$./test

● C/C++. Compile using g++, so you can use C++ features.
$ g++ -o test yourfile
$./test

● Marks and comments will be emailed back to you by the
following friday

 http://www-users.york.ac.uk/~bd512/teaching.shtml
for course information and links

mailto:bd512@york.ac.uk
http://www-users.york.ac.uk/~bd512/teaching.shtml

Weekly problems

Programming mark scheme

 http://www-users.york.ac.uk/~bd512/teaching.shtml
for course information and links

Category Criteria Percentage

Results ●Code compiles and runs
●Produces correct output
●Figures well presented

40%

Structure ●Code is readable, has logical layout
●Appropriate use of functions
●Use of comments

40%

Efficiency ●Code is concise but clear
●Solves the problem quickly

20%

See the programming handout

http://www-users.york.ac.uk/~bd512/teaching.shtml

Resources

Course information, links

 http://www-users.york.ac.uk/~bd512/teaching.shtml

IDL introduction on the wiki

http://wilson5/mediawiki/index.php/IDL

Richard Martin's IDL slides (linked from IDL wiki page)

More tutorials, exercises linked to from my Links page

See
http://www.dfanning.com

for IDL tips and tricks

http://www-users.york.ac.uk/~bd512/teaching.shtml
http://wilson5/mediawiki/index.php/IDL
http://www.dfanning.com/

