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Abstract

The problem of classifying, up to isometry, the orientable spherical and hyperbolic 3-manifolds
that arise by identifying the faces of a Platonic solid is formulated in the language of Coxeter groups.
This allows us to complete the classification begun by Best [Canad. J. Math. 23 (1971) 451], Lorimer
[Pacific J. Math. 156 (1992) 329], Richardson and Rubinstein [Hyperbolic manifolds from a regular
polyhedron, Preprint].
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1. Introduction

One of the first examples of a compact orientable hyperbolic 3-manifold arose from
the identification of the faces of a solid hyperbolic dodecahedron [31]. In the intervening
years, much more has been said about such manifolds. Yet the classical question of which
spherical or hyperbolic manifolds arise by identifying the faces of a Platonic solid has a
surprisingly incomplete solution.

In this paper the problem is formulated in terms of classifying certain subgroups of
rank four Coxeter groups. This approach is implicit in [16,26] and follows an earlier, oft
quoted but flawed attempt in [4]. The manifolds we obtain can be found scattered in the
literature, arising from various constructions. The reformulation here has two advantages:
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it provides a unified construction, and more importantly, completely answers for the first
time the question of whether the manifolds are distinct.

2. Platonic solids and Coxeter groups

Let X = 53, E® or H3, and supposa C X is a finite volume Coxeter simplex (see [14])
with symbol,

ol o9, " 5 1)
Each node of the symbol corresponds to a facetpfvhich in turn has a vertex oft
opposite it. Call this the vertex corresponding to the nodellLet{p, g, r} be the Coxeter
group generated by reflectionsX¥fin the faces ofA, and for any vertex, edge or face of
sayx, let I'y be its stabiliser irf”". In particular, ifv is a vertex ofA, thenr, is also Coxeter
group, its symbol obtained from (1) by deleting the node correspondingdgether with
its incident edges.

Let v be the vertex ofA corresponding to the left-most node of (1). Then,

= r. )

yely

is a solid withr-gonal facesg meeting at each vertex, and dihedral angle (that is, angle
subtended by adjacent faces)/3. Similarly for the last node of (1), from which we obtain
a solid X’ with p-gonal facesq meeting at each vertex and dihedral angte 2 The two
tessellations o& by congruent copies af and X’ that result from successive reflections
in their faces are dual to one another, and both have automorphism Group

On the other hand, suppose we have a Platonic solii.iBy this we mean a finite
volume polytopeP with the combinatorial type of a Platonic solid, and all side lengths
equal, as well as interior face angles and dihedral angles. For face identificatidhs of
to yield an X-manifold, the dihedral angle must be a submultiple af, 3ay 2r/p.
Barycentric subdivision o then gives a Coxeter simplex with symbol (1), aRdcan
be recovered in the form (2) using the vertexf the simplex lying at the center af.
Thus, the problem of obtaining manifolds from a general Platonic sBliceduces to
consideration of theZ obtained at (2).

All Coxeter simplices inX of the form (1) are known and listed in Sections 2.4 and 6.9
of [14]. For X = $° we have,

o o, o o, o o,

o——o—o0—o0;
for X = E3 we get
o——O0——0—0;

and forX = H3,

o 0, o 0, o 0,
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o o, o o, o o,
6 6 4 4 4
o 0, o o, o o,
6 6

In the spherical case, the tessellation§ by copies ofZ or X’ give the six 4-dimensional
regular solids [12]. In another incarnation, the first three divthat are the Weyl groups
of the simple Lie algebras of typgés = sl5(C), B4 = s09(C) and F4. The hyperbolic”
give X and X’ of finite volume: the first three compact, the others non-compact, with their
vertices lying on the boundagy® of hyperbolic space.

We get a total of six spherical, one Euclidean and eight hyperbolic Platonic solids
from these groups: spherical tetrahedra with dihedral angie$3,27/4 and 2r/5,
a cube with angle 2/3, an octahedron with anglen23 and a dodecahedron with
angle Zr/3; a compact hyperbolic cube, icosahedron and two dodecahedra with angles
2n /5, 27 /3, 2r /4 and Zr/5; finally, a non-compact but finite volume hyperbolic cube,
octahedron, dodecahedron and tetrahedron with dihedral anglé 27 /4, 27 /6 and
27 /6, respectively. The Euclidean solid is of course the familiar cube.

3. Constructing the manifolds

Any X-manifold (see [28, 83.3]) arises as a quotiEik by a groupK acting properly
discontinuously and without fixed points dfh. When X = E" or H", the isometries of
X with fixed points are precisely those of finite order, and this allows a simple algebraic
formulation of the problem (Theorem 1 below). Alternatively, recourse to a more geometric
view yields Theorem 2, which holds for all geometries, and is classical (see, for instance,
[25, 810.1]). The statements in the remainder of the paper will be given in terms of the
solid ¥, those forX’ being entirely analogous.

Establishing first some notation, I€t,, be the symmetric group of degree If A is a
subgroup of5,,, let A; be the stabiliser afin the action ofA on{1, ..., m}. For any group
G, let7 (G) be a subset that contaiatsleast ongepresentative from each conjugacy class
in G of elements of finite prime order.

Theorem 1. Let X =E" or H” for n > 2; I" a group acting properly discontinuously by
isometries orX with fundamental regio®; F a finite subgroup of” of orderm and

=Jro.

yeF

An X-manifold M arises from the identification of points on the boundaryaf and only
if there is a homomorphise: I' — &,,, such that

(1) if A=e(I"), thenA acts transitively o{1, ..., m}, and
(2) forall y € 7(I"), the permutatiorz(y) fixes no point ofl, ..., m}.

Moreover, ifi € {1, ..., m}, thenti(M) Z e~ 1(A)).
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Proof. An X-manifold M arises by identifying points 08X if and only if M = X/K
for some torsion free groufi having X' as a fundamental region (and then(M) = K).
Firstly, K has fundamental regian if and only if it is a subgroup of” with F a transversal
(that is, a complete and non-redundant set of coset representatives). EquivalenHy—
{1} andK F = I'. SinceF is a finite subgroup the first will hold whek is torsion free,
and thus the second as well if and only if the index&fin I equals the order of the
subgroupF. Thus ifK is torsion free, we require only that it has indexn I".
Certainly, K is a subgroup of index: in I" if and only if there is a homomorphism
e:I' - &, with transitive imageA (so that for any € {1, ..., m} we then have —1(4;)
is conjugate inl" to K). The subgroup is torsion free if and only if it intersects trivially
the conjugacy class of eaghe 7 (I"), which in turns happens precisely whefy) has no
fixed points among thél, ..., m}. O

We will be applying Theorem 1 withF the stabiliserl’,. In an arbitrary Coxeter
group I, any torsion element is conjugate to an element of a finite parabolic subgroup
(see [6, Exercise V.4.2] or [10, Theorem 4], [13]). This subgroup is a finite reflection group
whose conjugacy classes can be enumerated (including representatives) by the results of
[8]. For the group with symbol (1), or in fact for any 3-dimensional hyperbolic Coxeter
group, it is particularly easy to find&(I"): one need only take the generating reflections
and the powers of their pairwise products that have prime order. To see this, conjugate the
fixed point of the torsion element so that it lies on the boundary of the Coxeter simplex

A more geometric version of Theorem 1 can be formulated. To simplify notation we
do so only forn = 3. Suppose we have a subgrokipof I for which I, is a transversal.

Let S be a face ofY. In the tessellation ok by congruent copies af’ there is a unique
copy X5 of X with ¥ N ¥y = §. Since X forms a fundamental region fak, there is

a unigue elemenys € K sendingX to X, and hence there is a unique fageof X

with y5(S8") = S. The collection of isometrie$ys}scs yield a side-pairing ofY as in

[25, Section 10.1]. The following follows immediately from Theorems 10.1.2 and 10.1.3
of [25].

Theorem 2. Let X = $3, E3 or H3. An X-manifold M arises from the identification of the
faces of(2) if and only if I has a subgrouX of orientation preserving isometries such
that

(1) I, forms a transversal ii” for K;

(2) if {ys} are the resulting side pairings &, theny; fixes no point of’; and

(3) for x € X, let [x] denote the points af identified with it under the side pairing. if
lies in the interior of an edge af’, then[x] has cardinalityp.

So we merely require that the facesXfare identified in pairs and the edges in groups
of p. The identifications can be described algebraically as follows: dinaets transitively
on thek-cells k =0, 1, 2, 3) of the tessellation ok by X, the faces of2 are in one to
one correspondence with the cos@ly)y , wheref is the common face aF andA, and
y € I,. Two faces(I'y)y1 and(I'y)y are identified byK exactly when(I's)y1k = (I'f)y2
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for somek € K. Similarly for the edge identifications, where one takes cosefs &br e
the common edge oft and X

WhenX = §" or H", two X-manifoldsM1 and M> are the same if and only if there is
an X-isometry between them (wheh=E" similarities are also allowed). Equivalently, if
M; = X/K;, then theK; are conjugate in the group of isometriesXfln some cases this
can be considerably strengthened:

Theorem 3. Let I be a maximal, non-arithmetic, irreducible lattice ¢h= IsomH", and
K;, i =1, 2, torsion-free subgroups of finite indexihsuch thaty ~1K1y # K> for every
y € I'. Then the manifold8/; = H" /K; are non-isometric.

For basic definitions and results regarding lattices in semisimple Lie groups, see [30].
Arithmetic is meant here in the sense of [29].

Proof. I is a non-arithmetic irreducible lattice in the semisimple Lie graGp=
PO1.,(R), hence so ig”° = I N G° in the connected compone@f of the identity. By a
theorem of Margulis ([18], see [30, Theorem 6.17]), the commensurator egirf) =
{g e G°:g~1I°g, I'° are commensurablés not dense, hence discreteifi ([5], see [30,
Lemma 6.14]). Thus, Comg(I") is discrete inG, and by maximality, Come(I") = I".
For theM; to be isometric we would requiregac G with g~1K1g = K». But then such a
g € Comny (") henceg € I', and no such exists by assumptiort

In particular, the hyperbolic Coxeter group with symbol,
oio—oio y (3)

is non-arithmetic by the results of [29]. In [1] the six cofinite discrete subgroups of
G = POy 3(R) having the smallest covolume are enumerated: they are all commensurable
with the Bianchi groups?GL>0O1 or PGL203, whereO,; is the ring of integers in the
number fieldQ(+~/—d ). Thus the groug™ with symbol (3) is maximal, for if not, then by
comparing volumes it is contained as a subgroup of finite index in one of the six above.
This cannot be, for these six are arithmetic. We will thus be able to apply Theoreifi 3 to

in Section 4.

4. The manifolds

Of the fourteen Platonic solids listed at the end of Section 2, four can immediately
be removed from consideration using Theorem 2: the number of edges af thenot
divisible by p, so they will never give manifolds. Of those that remain, the spherical
dodecahedron with dihedral angle & was handled in [16] with results listed in Table 1
(the notation is described below). The first of the two manifolds is the Poincaré homology
sphere. The compact hyperbolic dodecahedron and icosahedron with anglead
27/3 were investigated in [26] with the results in Table 2. The first eight manifolds



258 B. Everitt / Topology and its Applications 138 (2004) 253-263

Table 1

The spherical manifolds arising from a dodecahedron with dihedral angi@, 216]

N F E 1 Hy

1 abcdef ef bcda a(-+)b(-+)c(-+)d(-+)e(-+)f(-+)g(-+) 120 0
h(-+)i(-+)j(-+)idjefagbhcghijfeabcd

2 abcdef bdcf ea a(-+)b(-+)c(-+)d(-+)e(-+)f(++)g(++) 120 0(15)

h(++)i (++)j (++) aj cgbf ei dhf hgj i eabcd

come from the dodecahedron, the others from the icosah&dFbe. first is the Weber—
Seifert space [31]. This leaves the spherial3, 3}, {4, 3, 3}, {3, 4, 3} and hyperbolic
{4,4,3}, {4, 3,6}, {5, 3,6}, {3, 3, 6}.

As the reader may have gathered by now, the only practical way the techniques of
the previous section can be implemented is computationally. We use Sims’s low index
subgroups algorithm as implemented in Magma [7] to find the homomorphisms required
by Theorem 1 wheiX = H2. For the spherical manifolds, we use Theorem 2. In any case,
we obtain a complete list of thE, subgroups of the various, satisfying the conditions
of the two theorems. We only seek orientable manifolds, so require that the generators
of K are words of even length in the generators foalthough it is worth noting that
all spherical 3-manifolds are orientable, and a computer search has determined that all
closed hyperbolic Platonic manifolds are orientable [23]). It is a consequence of the low
index subgroups algorithm that tti& we obtain will benon-conjugate i, although not
necessarily so iid;, the full isometry group o¥X.

The results are listed in Tables 3-5 which we will discuss in some detail presently.
First we describe the notation for Tables 1-5. The column heAdiedexes the manifolds
M; carrying the indicated geometric structure. The columinand E give the face and
edge identifications in the form of an encoded string of letterssarsigns to be read in
conjunction with Figs. 1 and 2. Thi¢gh and jth faces are paired when thth and jth
positions of the string in columA' are occupied by the same letter. Similarly for the edge
identifications, where a string éf’s after a letter indicates whether the corresponding edge
is identified with subsequent ones with the orientations matching or reversed. For example,
the manifoldM1g arising from the dodecahedr¢®, 3, 6} has edge identifications

a(+- - -+)b(+- -++) bec(++- -++)d(- - -+-)
bcae( +- +- -) ceadddbeacedcaabecbed,

where thee’s indicate that edges,21,17 20,26 and 29 are identified, and the

e( +- +- -) says how edge 9 is identified with edges 117, 20, 26 and 29: namely, with

edge 11 so that the identifications match, with edge 17 so they are reversed, with edge 20
so they match, and so on. From the data in these two columns one may reconstruct the side

2 While there are pairs in Table 2 with the same first homology, algebraic arguments are provided in [26] that
show that the list is non-redundant (this is to be contrasted with the list in [4] which contains isometric pairs).
Generally this involves consideration of quotients of terms in the derived serids$ fotr1 (M), for instance,
K'/K".
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Table 2

The compact hyperbolic manifolds arising from a dodecahedron with dihedral amgleahd an icosahedron
with angle 2r/3 [26]

N F E Hy
1 abcdef ef bcda a(-+-+)b(-+-+)c(-+-+)d(-+-+)e(-+-+) 0555
cdeabf ( ++++) af bf cf df ecdeabdeabc
2 abcdef def bca a( ++++) b( ++++) c(++++) d( ++++) e( ++++) 0555
abcdebf (++++) cf df ef af cdeabbcdea
3 abcdef def bca a(+-++)b(-+++)c(- - - +)d(++- +) e(+- ++) 033
debaf (+- ++) bcf af ef cdcf edabeabcd
4 abccadeef bf d a(++- -)ab(-+++)ac(-+-+)d(-+++)bab 057
e(+++-)ef (- - +-) bf dcaecdf f f ddcbece
5 abcdef ebf dca a(-+-+)b(-+-+)c(-+-+)d(-+-+)e(-+-+) 0355
edacbf ( ++++) cf ef bf af dbdaeceabcd
6 abcdef f bdeca a( ++++) b( ++++) c(++++) d( ++++) e( ++++) 03355
adbcecf ( ++++) ef df bf af eacdbdeabc
7 abcdebedf f ca a(+-++)b(+-++)c(- - -+)d(-+-+) e(-+++) 03(16)
cedaef (- - +-) af df bf cf ebdcbacdeab
8 abbcadef ecfd a(+++-)b(++-+)c(- -++)ad(-++)a 0(29)
e(+- +-) dbbeaecf (+- - +) acf cef f dedbdbf c
9 abcbdaef ghi hdefjgcji a(-+)b(+-)c(--)d(-+)e(-+)deabf(++) 0(11)(11)
g(+-)h(-+)i(+-)iaccj(++)]hdebfgf ghi|
10 abcdebfceghhiijjfgda a(-+)b(-+)c(-+)d(--)e(++)cf(--)ea 09
g(--)ebh(+-)gi(++)dj(+)fghhdiifjjabc
11  abcdef bdgehiijj hfgca a(++)b(++)c(++)d(++)e(+-)cdf (+)ad 0229
g(+-)bfh(-+)gi (+-)ej(-+)ijgjhehifabc
12  abcdaef dgf hi hcj j bi ge a(++)b(+-)bc(+-)d(--)e(+-)baf(--) 057
g(+-)efgh(++)ghci (+-)dj (-+)jjdeiicahf
13 abcdabef ghcijidfjghe a(++)ab(-+)c(++)d(++)e(--)bacf(+-) 0(29)
g(+-)h(+-)ei (-+)j(++)djfidhgi hebgjfc
14 abcdaebdf ghi cj ehj f gi a(++)b(+-)bc(--)d(-+)e(++)bacdef (+-) 0(29)

g(--)h(+-)di(-+)aj(--)ijfehgcighjf

Table 3
The spherical manifolds arising from a tetrahedron with dihedral ang)@,2a cube with angles2/3, and an
octahedron with angler2/3

N F E 1 Hq
1 abab a(- -)b(--)aabb 5 05
2 ababcc a(++) b(+-)aac(+-)bcd(+-)bcdd 8 08
3 abcbca a(++)b(--)c(+-)cd(--)bdabdac 8 022
4 abcacbhdd a(++) b(+-)c(+-)ad(++)cbdacdb 24 026
5 abcacdbd a(++) b(-+)c(++)ad(-+)cbcaddb 24 08
6 abcdcdab a( ++) b(++) c(++) d(++) bcdadabc 24 03

pairing transformatior’s{ys}se > of Theorem 2. In particular, the vertex identifications can
be obtained in the spherical case; in the hyperbolic there are no vertices! (They lie on the
boundary of hyperbolic space in these non-compact examples.)

3 Itis traditional to provide just these, with the vertices labelled rather than the faces and edges. The advantage
of our more cumbersome notation, is that it can be presented using less space.
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Fig. 1.

The next column in Tables 1 and 3 gives the orders of the fundamental groups. By
Theorem 2, part 1, each has order the index irof I, which in turn is equal tqr"|
divided by the number of symmetries of the c&ll The orders of the spherical Coxeter
groups listed in Section 2 are, from left to right, 120, 384, 1152 and 14400. Table 5 also
has a columr€ that gives the number of cusps of the manifold. The final column gives the
first homologyZ*® & Zy & Z. ® Z4 ® Z. (obtained by abelianising th&;) in the form of a
sequencabcde. Any of b to e that are zero are omitted, and brackets are used in Tables 1
and 2 to distinguish double digits.

Table 3 gives the spherical results, which can also be found in [9]. Mangldomes
from the tetrahedrofi3, 3, 3}, M>, M3 from the cube{4, 3, 3} and M4, M5, Mg from the
octahedror3, 4, 3}. Manifold M3 is Montesinos’s quaternionic space [22, page 120] and
Ms is his octahedral space [22, page 117]. No two of the manifolds are isometric, as can
be seen by comparing tmg and H1 columns.

For completeness we have included the results arising from the Euclideadc8bé}
in Table 4. Unfortunately, our methods are not able to distinguish between the manifolds
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Table 4
The Euclidean manifolds arising from a cube with dihedral angl2
N F E H
7 abachc a( +++) b( +++) aac(+++) bccbcha 13
8 abbcca a(-+-)ab(--+)c(-+-)bacbbacc 122
9 abccba a(-+-)ab(--+)c(+--)bccbbcaa 044
10 abcbca a( +++) b( +++) c( +++) bcaaccbba 3
11 abcbca a( +++) b(+++) c(- +-) cbaacbbca 12
12 abcbca a(-+-)b(+- -)c(+++)bcaaccbba 122
Table 5

The non-compact, finite volume hyperbolic manifolds arising from an octahedron with dihedral anglea2
cube with angle 2/6, and a dodecahedron with angte/8

N F E c Hq
13 ababcdcd a(- - -)aaab(---)c(+-+)bccbcb 2 2
14 abacbdcd a(-+-)b(+- -)babbaac(---)ccc 2 2
15 ababcc a(++- - -)b(-+-+-)aabbbbaaba 2 22
16 ababcc a( ++- - +) b(+++- - ) aabbbabbaa 1 124
17 abcbca a(+-+-+)b(- - - - +) bbabaabaab 2 22
18 abacbddceef f a(+- - -+)b(+- -++) bc(++- - ++)d(- - - +-) 1 12
bcae( +- +- -) ceadddbeacedcaabeched
19 abacdcdbef ef a(- -+ +)b(++--)bc(+----)d(--++) 2 22
bcacdcadddae( - - - - +) badcaceeeebeb
20 abacdbdcef ef a(-+-++)b(+- -++)bc(+ -+ )d(+- - -+) 2 22
bcaadcadddce( - - - - +) bcdacaeeeebeb
21 abcacdedeffb a(++- - -)b(- -+++) abbc(+- ++-) bbc 1 122
d(- - ++-) dadbadde( - - - +-) ceecceeadedc
22 abcacdedf ebf a(+- - ++) b(- - +++) abbc( +- +++) bbc 1 222
d(-+++-)e(+-+- -)edbadedeadcceeaedac
23 abcacdedf ef b a(+-++-)b(- - +++)abbc(++++-) bbc 1 226
d(- +-+-)e(+-+++) edbadecdacdceeaecad
24 abcacdedeffb a(+----)b(--+++)abbc(++-+-)bbc 2 222
d(-++-+)ae(- - - +-)dbadecdecdceeeacad
25 abcacbdeedf f a(+-+- -)b(+ +++)ac(+- - ++)d(- ++-+) 2 26
e(- - +- +) dbdedbccaebeadceecbabacd
26 abcacdebdef f a(+- - ++) b(+ +++)ac(-+-+-)d(-++- -) 2 22
e( +- +- -)dbdecbccaebeacdeedbabadc
27 abchdef dcf ae a(-++- -)b(- -+++)ac(+++--)d(- -+- -) 1 122

ccbdbdae( +++- +) daeeebaceccadebbd

Mg and M12. Indeed, by [24], there is a similarity between the two. Manifblgy is the
3-torus.

Table 5 gives the hyperbolic results. Manifoldigs and M4 come from the octahedron
{4,4, 3}, M15, M1 and M17 from the cube{4, 3,6} and M;, i = 18 to 27, from the
dodecahedrofb, 3, 6}. Manifold M14 is the Whitehead link complement [28, Section 3.3]
and M5 the complement inRP3 of a two component link [3] (there is a small
typographical error in Fig. 9 of [3], where the orientation on the bottom right-most
a labelled edge should be reversed). The tetrahedrofB,8, 6} gave no orientable
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manifolds, although the non-orientable Gieseking manifold of 1911 is known to arise from
it (as indeed do non-orientable examples frofn4, 3}, {4, 3, 6} and {5, 3, 6}, see [23].)
There are also a number of examples in the literature of knot and link complements arising
from the identification of the faces okoregular solids, see [2,11,15,19,27,28,32].

Manifolds M13 and M14 are non-isometric, despite having the same first homology, for,
using low index subgroups in Magma agaity3 has five conjugacy classes of index 3
subgroups whilek14 has six, so these two groups cannot be conjugafe iRor the same
reasonM1s and M7 are distinct! Now the groupl” = {4, 3, 6} is arithmetic by [29], and
thus the subgroupk1s and K17 are too. On the other hand, by the comments at the end of
Section 3,K19, K20 and K21 are non-arithmetic, so cannot be conjugat&tg and K17.
HenceMis and M17 are not isometric to any aff19, M2g or M2e. This conclusion can
also be reached via a volume argument.

Finally, there are a number of pairs with the same first homology among/thier
i =1810 27. ClearlyM16 and M1g must be non-isometric, for they have a different number
of cusps. In factall ten are distinct: that the correspondik are non-conjugate in the
I with symbol (3) is a consequence of the low index subgroups algorithm; now apply
Theorem 3.

These manifolds have also been constructed by non-algebraic methods in [21,23,24],
but the techniques there do not show th&ls—M>7 are non-isometric.

As a final note, the results summarised in this paper allow us to fill-in some of the
blanks in the table on page 202 of Milnor's paper [20]. The ten Coxeter simplices in
H? listed in Section 2 are given, together with the smallest index of a torsion free
subgroup of the corresponding (and hence the volume of the resulting manifold).
There are fourl” for which the index of this subgroup is stated as unknown, namely
I' =1{3,5,3}, {4, 3,5}, {5, 3,6} and {6, 3, 6} (our notation). Milnor also states that, “I do
not know whether this subgroup is essentially unique”. (He also conjectures that there are
exactly six commensurability classes of hyperbolic groups with the symbol (1). This is
indeed the case—see, for example, Sections 13.1 and 13.2 of [17].)

For I' = {3,5, 3} and {5, 3, 6} the index of this subgroup, by [26] and this paper, is
120. Moreover, Tables 2 and 5 give that there are at least six and ten conjugacy classes, in
Isonmt™ (H"), of index 120 torsion free subgroups in these respective groups.
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