Symmetry and partial symmetry

Contents: 1. Motivation
2. Reflection groups
3. Hyperplane arrangements
4. Inverse monoids
5. Reflection monoids

Lecture 1: Motivation

(i) Symmetry: \(X \) set, \(G \) symmetric group on \(X \)

\(\sigma \): group of all bijections \(X \to X \)

(under composition)

"measures symmetry" of \(X \).

\(X = \{e, \ldots, n\} \), write \(G_n \) for \(G_X \).

recall: any \(\pi \in G_n \) is a product of transpositions,

\(\sigma \): permutations \((i, j) \).

\(G_n \) generated by the transpositions

(ii). Another version: \(V = \mathbb{R}^n \) with usual basis \(\{e_1, \ldots, e_n\} \).

\(GL(V) = \) group of invertible linear maps \(V \to V \).

\(\pi \in G_n \) maps \(x_i \mapsto x_{\pi(i)} \)

embeds \(G_n \subseteq GL(V) \) (permuting coordinates)

\(E_3 : \pi = (1, 2, 3) \in G_3 \)

\(\frac{\pi}{3} \) turn rotation of \(\mathbb{R}^3 \),
Example: $\pi = (i, j) \in S_n$

\[x_i - x_j = 0 \]

Reflection in plane $z_i - z_j = 0$

Conclusion: $G_n \subset GL(V)$ generated by reflections, \bar{a} is a reflection group (see lecture 2).

(iii). Yet another version: G_n is the Weyl group of the linear algebraic group $GL_n(\mathbb{R})$.

A Partial symmetry: (i) X set and I_X symmetric inverse monoid on X.

\[I_X = \text{inverses monoid partial bijection of } X. \]

Partial bijection a bijection $Y \rightarrow Z$ for $Y, Z \subseteq X$.

(On particular, "full" bijections $X \rightarrow X$ and "empty" bijection $0 : \emptyset \rightarrow \emptyset$).

\[\alpha \beta : (Z \cap Y_2)^+ \rightarrow (Z \cap Y_2) \beta \]

\[\alpha \gamma : (Z_1 = Y_1 \cap) \]

\[\alpha \beta : Y_1 \cap Y_2, \rightarrow Y_1 (\alpha \beta) \cap Y_2 \beta. \]

Gives I_X structure of a monoid:

\[\begin{cases} \text{associative} \\ \text{identity id : } X \rightarrow X \\ \text{no inverses in general} \end{cases} \]
inverse monoid: There are "local" inverses:

\[
X \begin{bmatrix} O & \alpha \\ Y & \beta \end{bmatrix} \xrightarrow{\gamma} X
\]

for any \(X \) then is \(\beta \in I_X \)

with \(\alpha \beta = \text{id}_Y \)

\(\beta \alpha = \text{id}_X \)

(iii). On a reflection group ... In a reflection monoid?

(yes: see lecture 5)

(iii). On a Weyl group ... In the Ranner monoid of the

linear algebraic monoid

\(\text{GL}_n \mathbb{R} = \text{all } n \times n \mathbb{R} \text{-matrices} \)
Permutation groups

bijectsions \(X \rightarrow X \)
\(X = \{1, 2, \ldots, n\} \)

Symmetric group \(S_n \)

Reflection groups

Euclidean space \(V \)
basis \(\{x_1, \ldots, x_n\} \)

Weyl groups

\[G = GL_n(\mathbb{F}) \]
\[T = D_n^*(\mathbb{F}) \subset GL_n(\mathbb{F}) \text{ torus} \]
\[W = N_G(T)/T \text{ permutation matrices} \]

Reflection monoids
Partial permutations

Bijections $X \supset Y \rightarrow Y' \subset X$

$X = \{1, 2, \ldots, n\}$

Symmetric inverse monoid

Renner monoids

$G = \text{GL}_n(F) \subset M_n(F) = M$

$T = D_n^*(F) \subset D_n(F) = \overline{T}$ (Zariski closure)

$W = N_G(T)/T \subset \overline{N_G(T)}/T$

Partial permutation matrices

= Rook monoid

Reflection monoids
Lecture 2: Reflection groups

- What is a reflection? \(V = \text{n-dim. IR-space} \)

- A real reflection:
 - \(I = \text{the primitive } n^{th} \text{ root of } 1 \text{ in } \mathbb{R} \)
 - \(x \mapsto \text{primitive } n^{th} \text{ root of } 1 \text{ in } \mathbb{R} \)

- In any field, \(\text{a } k\text{-reflection: } k \oplus \cdots \oplus k \oplus k \)

If \(V \) a \(k \)-space, \(\text{GL}(V) = \text{gp. invertible linear maps of } V \)

Then a \(k \)-reflection \(g : = \text{subgp. of } \text{GL}(V) \text{ generated} \)

by \(k \)-reflections.

In these lectures, we will restrict to \(\text{finite, real reflectiongps.} \)

Throughout, \(V \) a real space with basis \(x_1, \ldots, x_n \) and inner

product \((x_i, x_j) = \delta_{ij} \) (Euclidean).

\(v \in V, s_v := \text{linear map } V \rightarrow V \)

(\(x \) a hyperplane) fixing \(v \) pt.-wise and sending \(v \mapsto -v \)

(Ex: \(s_v : u \mapsto u - 2 \frac{(u, v)}{(v, v)} v \)).

\(W \in \text{GL}(V) \text{ finite is a reflection gp } \iff W = \{ s_{x_1}, \ldots, s_{x_n} \}. \)
\(E_8 \) : \(V = \mathbb{R}^2 \)

\(W = \text{symmetries of square} \)

\(\Phi = \{ v \in V \mid v \neq 0 \} \)

\[\begin{aligned}
&\text{Finite set of non-zero vectors} \\
&v \in \Phi \implies 1_v \cap \Phi = \pm v \\
&v \in \Phi \implies \overline{v} = \overline{v}
\end{aligned} \]

- A \(\Phi \subset V \) satisfying (\(\ast \)) a root system (\(\Phi \) \(\Phi \) a root)

\[W(\Phi) = \langle sv \mid v \in \Phi \rangle \subset GL(V) \text{ a finite ref. grp.} \]

root systems \(\leftrightarrow \) finite ref. grps.

(combinatorics) \quad (g.p. Kazuo)

\(\Phi \) reducible iff \(V = V_1 \oplus V_2 \) with \(\Phi = \Phi_1 \cup \Phi_2 \);

irreducible otherwise.

\[\Phi = \Phi_1 \cup \Phi_2 \]

(Ex: \(\Phi \) reducible \(\implies W(\Phi) \cong W(\Phi_1) \times W(\Phi_2) \)).

- \(\Phi \) is real, root systems have been classified:

\[A_{n-1}(n \geq 2), \quad B_n(n \geq 2), \quad D_n(n \geq 4), \quad I_2(m)(m \geq 3) \]

\[H_3, H_4, F_4, E_6, E_7, E_8. \]
- \textbf{Eg:} \(B_n = \{ x^i, x^i \} \cup \{ x_i \} \quad (B_2 = \mathbb{X}) \)

\[W(B_n) \cong \text{symmetries of } n\text{-cube }/n\text{-octahedron} \]

- \textbf{Eg:} \(A_{n-1} = \{ x^i - x^j \} \quad \delta_{x^i} : x^i - x^j \to x^j - x^i \)

\[\to (i,j) \in G_n \quad \text{under permutation} \]

\[W(A_{n-1}) \cong G_n \subset GL(V) \quad \text{action} \quad x_i \to x_i^\pi \]

\[= \text{symmetries of } (n-1)\text{-simplex } \subset \mathbb{R}^n \]

\[= \{ \sum x_i^\pi \mid \sum x_i = 1 \text{ and } x_i > 0 \} \]

- \textbf{Eg:} \(W(C_n) \cong \text{symmetries of } n\text{-dim. cross polytope} \)

- \textbf{Eg:} \(W(H_3) \cong \text{icosahedron/dodecahedron} \)

\[W(H_4) \cong \text{120/600-cell} \]

\[W(F_4) \cong \text{24-cell} \]

\[\text{4-dim. Platonic solids} \]
Lecture 3: Hyperplane arrangements

Throughout: V Euclidean with orthonormal basis e_1, \ldots, e_n.

- A real arrangement \mathcal{A} is a set of linear hyperplanes in V.

Describing hyperplanes: (i). $v \in V$ and hyperplane $H_v = \{ u \in V | (u, v) = 0 \}$, or (ii). coordinate maps $x_i : V \to \mathbb{R}$ with $x_i(\sum a_i x_i) = x_i$. If $v = \sum a_i x_i$ then v^\perp the kernel of map $a_1 x_1 + \cdots + a_n x_n : V \to \mathbb{R}$. (c.f. Cartesian equation)

- Eg: The Borel arrangement $\mathcal{A} = \{ e_1, \ldots, e_n \}$ or
 \{ hyperplanes with equation $x_1 = 0, x_2 = 0, \ldots, x_n = 0$ \}.

- Eg: Braid arrangement $\mathcal{A} = \{ $ hyperplanes $x_i - x_j = 0 \ for \ all \ i \neq j \}$.

Recall (Lecture 2) the root system $\mathcal{A}_{n-1} = \{ x_i - \pm \epsilon_i \ | \ i \neq j \} \subset V$

with reflection gp. $W(\mathcal{A}_{n-1}) \simeq \mathfrak{S}_n$

Thus, braid arrangement = the reflecting hyperplanes of the set gp.

In general, a reflection arrangement = \{ reflecting hyperplanes of some reflection gp \}.

Combinatorics (of hyperplane arrangements).
Intersection lattice $L(\mathcal{A}) := \text{all possible intersections of elements of } \mathcal{A}$

- a poset, partially ordered by reverse inclusion.

Eq.: Boolean arrangement (n=3): $\mathcal{A} = \{ x_1 = 0, x_2 = 0, x_3 = 0 \}$

$\equiv (\text{as a poset}) \text{ poset of subsets of } \{1,2,3\} \text{, i.e. a Boolean algebra}$

Eq.: braid arrangement: let $I = \{i_1, ..., i_n\}$, A partition of I blocks

is a $\Lambda = \{\Lambda_1, ..., \Lambda_p \}$ with $\Lambda_i \subset I$, $\Lambda_i \cap \Lambda_j = \emptyset$ and $I = \bigcup \Lambda_i$.

If $\Lambda' = \{\Lambda'_1, ..., \Lambda'_{p'} \}$ then define $\Lambda \leq \Lambda' \iff \text{for each } \Lambda_i \text{ there is a } \Lambda'_i \text{ with } \Lambda_i \subset \Lambda'_i$. Write $\Pi(n)$ for set of partitions of I; the set $\Pi(n)$ with partial order \leq is a poset called the partition lattice.

$n=3$:

$\Pi(n)$ has a bijection

Ex: there is a map $\Lambda \mapsto x(\Lambda)$ from $\Pi(n) \rightarrow L(\mathcal{A})$ such that $\Lambda \leq \Lambda' \iff x(\Lambda) \equiv x(\Lambda')$.

\implies an isomorphism of posets.

Defn: for any $L(\mathcal{A}) \rightarrow \mathbb{Z}$, Möbius function $\mu: L(\mathcal{A}) \rightarrow \mathbb{Z}$ is

$$\mu(x) = \begin{cases} 1, & \text{if } x = V \\ - \sum_{y < x} \mu(y), & \text{if } x \neq V \end{cases}$$
and the Poincaré polynomial is

\[\pi(A, t) := \sum_{x \in \mathcal{L}(A)} \mu(x) (-t)^{\text{codim } X} \]

Beautiful Result 1 (Zaslavsky): \(\pi(A, 1) = \text{N}^w \)-regions, \(w \):

\[\text{N}^w \text{ of connected components in } V - \bigcup_{x \in A} x \]

Topology (of hyperplane arrangements):

A \(\subseteq \mathbb{V} \) hyperplane arrangement means

\[A_c = \{ X \oplus \mathbb{C} \mid x \in A \} \]

Exercise (amusing): \(V \setminus X \) disconnected

\[V_c \setminus (X \oplus \mathbb{C}) \text{ connected} ! \]

Form space \(M_A := V_c - \bigcup_{x \in A} x \oplus \mathbb{C} \), the complement of the hyperplanes in \(V_c \).

The Poincaré polynomial

of \(M_A \) defined to be \(\text{Poin}(M_A, t) := \sum_{k \geq 0} \text{rk } H^k(M_A, \mathbb{C}) t^k \).

Beautiful Result 2 (Arnold): \(A = \text{braid arrangement} \)

\[\Rightarrow \text{Poin}(M_A, t) = (1 + t)(1 + 2t) \cdots (1 + (n-1)t) \]

Beautiful Result 3 (Orlik-Solomon): for any \(A \),

\[\text{Poin}(M_A, t) = \pi(A, t) \]
Lecture 4: Inverse monoids

- \(X = \mathbb{E} \), \(\cdots \). Recall symmetric inverse monoid \(\text{In} \) has elements partial bijections \(Y \to \mathbb{Z} \) (\(Y \subseteq X \)) under composition of partial maps.
- \(\text{dom} x = Y, \text{im} x = \mathbb{Z} \).
- \(\text{In} \text{ monoid: } \begin{cases} \text{compositions of partial maps are associative} \\ \text{id: } X \to X \text{ with } \text{id} \cdot x = x = x \cdot \text{id} \text{ for all } x \end{cases} \)
- \(Y \subseteq X \), \(\text{id}_Y : Y \to Y \text{ partial identity} \); if \(x \in \text{In} \text{ and } Y = \text{dom} x \)
 \[\begin{aligned} \text{then } \text{id}_Y \cdot x &= x \text{ (but, } \text{id}_Y \cdot \beta \neq \beta \text{ in general).} \end{aligned} \]

\(X \) \[\begin{aligned} \begin{array}{ccc} \circ & \alpha \to \circ \to & \circ \\
Y & \text{ and } & \mathbb{Z} \end{array} \end{aligned} \]

For \(x \in \text{In} \), there is \(x^{-1} \in \text{In} \) defined by

- \(x^{-1}(z) = y \iff z \in \mathbb{Z} \text{ and } x(y) = z \)
- \(x^{-1} \): partial bijection \(\text{with } \text{dom} x^{-1} = \text{im} x, \text{im} x^{-1} = \text{dom} x \)
- have \(x x^{-1} = \text{id}_Y \), \(x^{-1} x = \text{id}_X \) (note \(ax^{-1} \neq x^{-1} a \))
- \[\begin{aligned} \Rightarrow x x^{-1} &= x \text{ and } x^{-1} x &= x^{-1} \end{aligned} \]

In inverse monoid: \(\begin{cases} \text{a monoid } M \text{ s.t. for all } a \in M \text{ there is a} \\ \text{unique } a^1 \in M \text{ with } a a^1 a = a \text{ and} \\ a^1 a a^1 = a \end{cases} \)

\(\text{Caution: in an inverse monoid we have } (a^{-1})^{-1} = a \text{ and } (ab)^{-1} = \)

- \(b^{-1} a^{-1} \); we do not have \(a a^{-1} = a^{-1} a \text{ or } ab = ac \Rightarrow b = c \text{ (as we do in groups).} \)

- In \(\text{In} \) we have the bijections \(\alpha : X \to X, \bar{\alpha} : \mathbb{E} \ni x \) is a subgroup of \(\text{In} \).
consisting of precisely those $a \in \mathcal{I}_N$ with $a^{-1} \cdot \text{id} = \text{id} = \text{id} \cdot a$.

For M inverse monoid, the units $E = \mathcal{E}(M)$ can form a set \mathcal{N} with

$$aa^{-1} = \text{id} = a^{-1}a.$$

1. $Y \subseteq X \Rightarrow \text{id}_Y \cdot \text{id}_Y = (\text{id}_Y^2) = \text{id}_Y$. For M (inverse) monoid

the idempotents $E = \mathcal{E}(M)$ are those $e \in M$ s.t. $e^2 = e$.

(In \mathcal{I}_N this includes the empty map $\emptyset : \emptyset \to \emptyset$)

The units act on the idempotents: in \mathcal{I}_N, if $x \in \mathcal{E}_N$ then $x^* \cdot \text{id}_Y \cdot x = \text{id}_Y$, and in general, for $g \in \mathcal{E}$, $e \in E$ have $g \cdot e \cdot g \in E$.

2. $\alpha \in \mathcal{I}_N$ with $Y = \text{dom} \alpha$ \Rightarrow there is $\hat{\alpha} \in \mathcal{E}_N$ with $\hat{\alpha} \cdot \text{id}_Y = \alpha$.

$$\begin{bmatrix} \circ & \alpha \to \circ \\
Y & \circ \end{bmatrix} \quad (\hat{\alpha} = \alpha \text{ on } Y \text{ and is any bijection } X \setminus Y \to X \setminus \hat{\alpha}(Y))$$

Then, every $\alpha \in \mathcal{I}_N$ a restriction of a unit (warning: $\hat{\alpha}$ not unique).

Put another way: $\alpha = \text{id}_Y \cdot \hat{\alpha} \in \mathcal{E}(\mathcal{I}_N) \& (\mathcal{I}_N)$.

In general, a monoid is factorable $\iff M = \mathcal{E} \mathcal{G}$.

3. Partially order $\mathcal{E}(\mathcal{I}_N)$ by $\text{id}_Y \leq \text{id}_Z \iff Y \subseteq Z \iff \text{id}_Y \cdot \text{id}_Z = \text{id}_Z$

(for general M, partially order $\mathcal{E}(M)$ by $e \leq f \iff ef = f$)
\[E(I_3) : \]

\[\text{id}_{i_1}, \text{id}_{i_2}, \text{id}_{i_3}, \text{id}_{i_{1,2}}, \text{id}_{i_{1,3}}, \text{id}_{i_{2,3}}, \text{id}_{x} \]

(Boolean algebra)

General principle: much of the structure of \(M \) determined by
the group \(G(M) \), the point \(E(M) \) and the action of \(G \) on \(E \).

- All of the above holds for: \(K \) field, \(V \) vector space over \(K \)

\[ML(V) = \text{vector space isoms. } Y \to \mathbb{Z} \] \((Y,Z \text{ subspaces of } V) \)

under composition of partial maps.
Lecture 5: Reflection monoids

- Recall (lecture 4): \(V \) vector space, \(Y, Z \subset V \) subspaces, then an isomorphism \(Y \to Z \) a partial (linear) isomorphism \(\Rightarrow ML(V) \)

Linear monoid of partial isoms under composition of partial maps.

- Notation: \(g \in GL(V) \) (\(\bar{a}: V \to V \) full isom.) and \(Y \subset V \) subspace, write \(g_Y \) for partial isom. \(Y \to Y \bar{g} \). In particular, \(\sigma \in GL(V) \)

Recall \(g_Y, h_Z \in ML(V) \)

\[g_Y h_Z = (gh)_Y \circ h_{\bar{g}^{-1}}. \]

- \(WCGL(V) \) a group. A set \(S \) of subspaces of \(V \) is a system in \(V \)

Let \(W \Leftrightarrow (1). V \in S, (2). SW = S (\bar{a}: X \in S, g \in W \Rightarrow X \bar{g} \in S) \)

(3). \(X, Y \in S \Rightarrow X \cap Y \in S. \)

- \(E_g : V \) Euclidean, orthonormal basis \(\{x_1, ..., x_n\} \) recall root system \(\Delta = \{ \pm \frac{1}{2}, 1 \} \) and reflection group \(W(\Delta) \)

\[G \cong GL(V) \text{ under permutation action } (x_i \mapsto x_{i \pi}) \]

(called \(g \in GL(V) \) under this isom.)

Let \(I = \{0, 1, 2\} \) and for \(J \subseteq I, \delta(J) = \bigoplus_{j \in J} \mathbb{R} x_j \subset V \) and \(S_I = \{ x(J) \mid J \subseteq I \} \), \(x(\emptyset) = 0 \).
Then (1). \(V = X(I), \) (2). \(X(I)g(\sigma) = X(I\sigma) \) and (3). \(X(I_1) \cap X(I_2) = X(I_1 \cap I_2) \). \(\Rightarrow \) \(S \) is system in \(V \) for \(W(An) \).

- \(E_g: \) Some \(W \) as above; \(A = \) braid arrangement (lecture 3)

\[\{ \text{hyperplanes } x_i - x_j = 0 \} = \text{reflected hyperplanes of } W(An). \]

Let \(S_1 = L(A) \) intersect lattice. Recall there is an isomorphism of posets \(T(A) \rightarrow S_1 \), written \(A = \{ \Lambda_1, \ldots, \Lambda_n \} \rightarrow X(\Lambda) \in S_1 \). It turns out that \(X(\Lambda \cdot \sigma) = X(\Lambda \Pi) \) with \(\Pi = \{ \Lambda_{1\Pi}, \ldots, \Lambda_{n\Pi} \} \)

\(\Rightarrow S_2 \) a system for \(W(An) \).

- \(E_g: \) In general, if \(W \subset GL(V) \) a reflection gp., \(A = \) reflecting hyperplanes of \(W \) and \(S = L(A) \), then let \(X \in S, g \in W \) and \(s = \text{reflection in } X \)

\[\Rightarrow gsg = s' = \text{reflection in } Xg = Xg \in A \Rightarrow AW = A \Rightarrow SW = S. \]

Thus, \(S \) a system in \(V \) for \(W \).

- \(W \subset GL(V) \), \(S \) system in \(V \) for \(W \). Let

\[M(W, S) = \{ gy \mid g \in W, y \in S \} \subset MGL(V). \]

Theorem: TFAE: (1). \(MGL(V) \) factorizable inverse monoid generated by partial reflections, (2). There is a reflection group
\(WCGL(v) \) and a system \(S \) for \(W \in V \) with \(M = M(W, S) \).

A reflection monoid is an \(M \) satisfying \((1)\) or \((2)\).

- **Eg:** \(W = W(\Gamma_{n-1}) \cong S_n \) (act. 1), writing \(M(\Gamma_{n-1}, S_1) \) for \(M(W, S_1) \), we have \(M(\Gamma_{n-1}, S_1) \cong I_n \).

- **Theorem:** \(WCGL(v) \) finite and system \(S \) finite. Then

\[
1M(W, S) = \sum_{x \in S} [W : W_x]
\]

\((W_x : \text{isotropy grp. } x = \{ g \in W \mid xg = x \text{ for all } y \in X \}) \).

- **Eg:** \(W = W(\Gamma_{n-1}) \cong S_n \), \(S_2 \) system a base. If \(x = x(n) \) for \(n = \delta_1, \ldots, \delta_p \) then \(W_x \cong S_{\delta_1} \times \cdots \times S_{\delta_p} \) and

\[
1M(\Gamma_{n-1}, S_2) = \sum_{\Lambda} [G_\Lambda : G_{\Lambda_1} \times \cdots \times G_{\Lambda_p}]
\]

- **In general:** if \(W = W(\Phi) \) then a \(\Phi \subseteq \Phi \) satisfying the axioms for a root system (see Lecture 2) is a sub-root system. A reflection subgroup is a \(W(\Phi) \) for \(\Phi \) a sub-root system. Then,

Theorem: \(WCGL(v) \) finite and \(S_2 = L(\Phi) \) the intersection lattice of the reflecting hyperplanes. Then \(M(W, S_2) \) has order the sum of the indices of the reflection subgroups.