Partial mirror symmetry II: Generators and relations

Brent Everitt and John Fountain *

Abstract

We continue our development of the theory of reflection monoids by first deriving a presentation for a general reflection monoid from a result of Easdown, East and Fitzgerald for factorizable inverse monoids. We then derive "Popova" style presentations for reflection monoids built from Boolean hyperplane arrangements and reflection arrangements.

Introduction

In [3] we initiated the formal study of "partial mirror symmetry"-the theory of monoids generated by partial reflections. The principle acheivements of the theory to date, after identifying and formulating the notion itself, are to observe a number of examples of reflection monoids occuring in nature and determine their orders.

In this paper we continue the programme with a general presentation for reflection monoids, which we then interpret for a number of the key examples. Historically, this goes back to Popova [7], who gave a simple presentation for the symmetric inverse monoid \mathscr{I}_{n} with generators the transpositions $(i, i+1) \in \mathfrak{S}_{n}$ (the standard Coxeter generators for \mathfrak{S}_{n} as a Weyl group) and a single idempotent. Just as the symmetric group is the "simplest" family of finite (real) reflection groups, so the symmetric inverse monoid is the simplest family of finite real reflection monoids. In our language, \mathscr{I}_{n} is the Boolean reflection monoid of type A_{n-1}, just as \mathfrak{S}_{n} is the Weyl group of type A_{n-1}.

We thus recover Popova's presentation from our general one, as well as a number of others of course. There are other interesting "geometric" interpretations of the Popova presentation: it was recovered in [2] from a presentation for the "braid monoid" on n strands, much as one recovers the Coxeter presentation for \mathfrak{S}_{n} from a presentation for Artin's braid group.

This paper is organized as follows: we remember reflection monoid terminology from the first paper in the series in $\S 1$. The idempotents in our monoids offer many of the difficulties in writing presentations, so they deserve a special section ($\S 2$) of their own. Our general presentation is then Theorem 1 of $\S 3$, obtained by massaging a presentation for factorizable inverse monoids obtained recently in [1]. The last two sections, $\S \S 4-5$ interpret the various ingredients of Theorem 1 and perform a few more simplifications for the Boolean and reflection arrangement monoids.

1. Preliminaries on reflection monoids

We summarize the notation and conventions of the first paper in the series: V is a vector space over a field \mathbb{F} and $W \subset G L(V)$ a group generated by reflections. The main theorems of the paper in $\S 3$ work at this level of generality, but later we will restrict to the case $\mathbb{F}=\mathbb{R}$ and W finite, in which case $W=W(\Phi)$ is determined by a root system Φ in V. In particular we shall

[^0]* Some of the results of this paper were obtained while the first author was visiting the Institute for Geometry and its Applications, University of Adelaide, Australia. He is grateful for their hospitality. A grant from the Royal Society made it possible for the second author to visit the University of Adelaide to continue the work reported here. He would like to express his gratitude to the members of the Glenelg Mathematics Institute for their kindness and hospitality during his visit to Adelaide.

Type	Root system Φ	Coxeter symbol and simple system	
$A_{n-1}(n \geq 2)$	$\left\{\mathbf{x}_{i}-\mathbf{x}_{j}(1 \leq i \neq j \leq n)\right\}$	$\mathbf{x}_{1}-\mathbf{x}_{2}$	$\cdots-\bigcirc_{\mathbf{x}_{n-2}} \bigcirc^{\mathbf{x}_{n-1}-\mathbf{x}_{n}}$
$D_{n}(n \geq 4)$	$\left\{ \pm \mathbf{x}_{i} \pm \mathbf{x}_{j}(1 \leq i<j \leq n)\right\}$		
$B_{n}(n \geq 2)$	$\begin{aligned} & \left\{ \pm \mathbf{x}_{i}(1 \leq i \leq n),\right. \\ & \left. \pm \mathbf{x}_{i} \pm \mathbf{x}_{j}(1 \leq i<j \leq n)\right\} \end{aligned}$	$\mathbf{x}_{1}-\mathbf{x}_{2}$	$\cdots-\mathbf{x}_{n-1}-\mathbf{x}_{n} \xrightarrow{\mathbf{x}_{n}}$

Table 1. Standard root systems $\Phi \subset V$ for the classical Weyl groups [5, §2.10].
be concerned with the finite crystallographic or Weyl groups, determined by the Euclidean root systems, with the finite classical systems of types A, D and B given in Table 1. We will always use these versions.

A system \mathcal{B} for W in V is a W-invariant collection of subspaces closed under intersection and containing V. If Ω is any collection of subspaces we write $\langle\Omega\rangle_{W}$ for the system for W generated by the Ω. The principal example for us is the intersection lattice $L(\mathcal{A})$ of a hyperplane arrangement \mathcal{A}, which we order by reverse inclusion. In particular, the Boolean systems arise from \mathcal{A} the coordinate hyperplanes in V and the arrangement systems from \mathcal{A} the set of reflecting hyperplanes of W.

A partial isomorphism of V is a vector space isomorphism $X \rightarrow Y$ between subspaces X, Y of V. A partial reflection is a partial isomorphism obtained by restricting a reflection $s \in G L(V)$ to a subspace. A reflection monoid is a factorizable inverse monoid generated by partial reflections. Alternatively, for a reflection group W and system \mathcal{B} for W, it is the set of partial isomorphisms of the form.

$$
M(W, \mathcal{B})=\left\{g_{X} \mid g \in W, X \in \mathcal{B}\right\}
$$

where g_{X} is the partial isomorphism obtained by restricting the (full) isomorphism g to X. The units are the $g \in W$ and the idempotents the partial identities ε_{X} that are just the identity map $X \rightarrow X$.

If $W=W(\Phi)$ is a Weyl group and \mathcal{B} the Boolean system for W then $M(W, \mathcal{B})=M(\Phi, \mathcal{B})$ is called a Boolean (reflection) monoid. Similarly, with the arrangement system \mathcal{H} we get $M(\Phi, \mathcal{H})$ the (reflection) arrangement monoids. The third principal example defined in [3, §4.2] is a reflection monoid intimately associated to a connected reductive algebraic monoid \mathbb{M} with 0 . We leave a detailed investigation of this to a later date.

2. Idempotents

All the presentations in this section (and the next) will be monoid presentations, (see, eg: [4, $\S \S 1.5-1.6]$) ie: if S is a set, let S^{*} be the free monoid on S and if $R \subset S^{*} \times S^{*}$, let $\langle R R\rangle$ be the smallest congruence on S^{*} containing R. Then a monoid M has presentation $\langle S \mid R\rangle$ if $M \cong S^{*} /\left\langle\langle R\rangle\right.$ or, equivalently, if there is a surjective monoid homomorphism $\psi: S^{*} \rightarrow M$ with kernel $\langle\langle R\rangle$; we say that M has presentation $\langle S \mid R\rangle$ via ψ.

The idempotents in a reflection monoid present their own brand of subtleties, and for this reason it is worth dealing with them separately. Let Ω be a finite set of subspaces of finite dimensional V, and $\mathcal{B}=\langle\Omega\rangle_{G}$ the system of subspaces for $G \subset G L(V)$ generated by Ω. Recall [3, §2] that if all the $X \in \Omega$ have the same dimension then ordering \mathcal{B} by reverse inclusion gives an atomic poset with atoms $\mathcal{A}=\{X g \mid X \in \Omega, g \in G\}$.

We will want to keep track of the essentially different ways an element of \mathcal{B} can be expressed as an intersection of atoms. To this end, fix a total ordering \preceq of the atoms, so that an intersection of atoms $X_{1} \cap \cdots \cap X_{k}$ is reduced if $X_{1} \prec \cdots \prec X_{k}$. If $\bigcap X_{i}$ is any intersection of atoms, then reordering the X_{i} with respect to \preceq and removing redundancies gives a reduced intersection. Write $\bigcap X_{i} / \preceq$ for this reduced reordering.

Let E be the semilattice of idempotents in $M(G, \mathcal{B})$ and $e_{X}(X \in \mathcal{A})$ a collection of symbols parametrised by the atoms. Put $\mathcal{B}^{\prime}=\mathcal{B} \backslash\{V\}$ and for each $Y \in \mathcal{B}^{\prime}$ fix a reduced intersection $Y=X_{1} \cap \cdots \cap X_{k}$ with the $X_{i} \in \mathcal{A}$, and let \widehat{e}_{Y} stand for the expression $e_{X_{1}} \ldots e_{X_{k}}$. We agree that $\widehat{e}_{Y}=e_{Y}$ when $Y \in \mathcal{A}$.

Proposition 1. E has presentation,

$$
\begin{aligned}
E=\left\langle e_{X}(X \in \mathcal{A})\right| e_{X}^{2} & =e_{X}, e_{X} e_{Y}=e_{Y} e_{X} \text { for all } X, Y \in \mathcal{A} \\
\widehat{e}_{Y} & \left.=e_{Y_{1}} \ldots e_{Y_{k}} \text { for all } Y \in \mathcal{B}^{\prime} \text { and } Y=Y_{1} \cap \cdots \cap Y_{k} \text { reduced }\right\rangle
\end{aligned}
$$

via $e_{X} \mapsto \varepsilon_{X}$.
Proof. We start with the "multiplication table" presentation

$$
\left.E=\left\langle e_{Y}\left(Y \in \mathcal{B}^{\prime}\right)\right| e_{X} e_{Y}=e_{X \cap Y} \text { for all } X, Y \in \mathcal{B}^{\prime}\right\rangle,
$$

from which we can deduce the relations $e_{X}^{2}=e_{X}$ for all $X \in \mathcal{A}$, and $e_{X} e_{Y}=e_{Y} e_{X}$ for all $X, Y \in \mathcal{A}$. Similarly, if $Y \in \mathcal{B}^{\prime}$ and $Y=X_{1} \cap \cdots \cap X_{k}$ the reduced intersection chosen for Y with $Y=Y_{1} \cap \cdots \cap Y_{k}$ any other reduced intersection, we can deduce $e_{Y}=e_{X_{1}} \ldots e_{X_{k}}=$ $e_{Y_{1}} \ldots e_{Y_{k}}$, ie: the relation $\widehat{e}_{Y}=e_{Y_{1}} \ldots e_{Y_{k}}$. Add all these to the relations in the presentation above. Use $e_{Y}=e_{X_{1}} \ldots e_{X_{k}}$ to remove generators and replace each occurence of e_{Y} by \widehat{e}_{Y}, so that

$$
\begin{gathered}
E=\left\langle e_{X}(X \in \mathcal{A})\right| e_{X}^{2}=e_{X}, e_{X} e_{Y}=e_{Y} e_{X} \text { for all } X, Y \in \mathcal{A}, \\
\widehat{e}_{Y}=e_{Y_{1}} \ldots e_{Y_{k}} \text { for all } Y \in \mathcal{B}^{\prime} \text { and } Y=Y_{1} \cap \cdots \cap Y_{k} \text { reduced, } \\
\left.\widehat{e}_{X \cap Y}=\widehat{e}_{X} \widehat{e}_{Y} \text { for all } X, Y \in \mathcal{B}^{\prime}\right\rangle .
\end{gathered}
$$

We can deduce and hence remove the last family using the first three: let $X, Y \in \mathcal{B}$ with $X=$ $X_{11} \cap \cdots \cap X_{1 k}$ and $Y=X_{21} \cap \cdots \cap X_{2 \ell}$ the reduced intersections chosen for X and Y, so that $\widehat{e}_{X}=e_{X_{11}} \ldots e_{X_{1 k}}$ and $\widehat{e}_{Y}=e_{X_{21}} \ldots e_{X_{2 \ell}}$. Using the commutativity and idempotency of intersection we can write $X \cap Y=\left(X_{11} \cap \cdots \cap X_{1 k}\right) \cap\left(X_{21} \cap \cdots \cap X_{2 \ell}\right)=X_{i_{1}} \cap \cdots \cap X_{i_{m}}$ with the last a reduced intersection and the $i_{j} \in\{11, \ldots, 1 k, 21, \ldots, 2 \ell\}$. These manipulations can be mirrored in $\widehat{e}_{X} \widehat{e}_{Y}$ using the first two families of relations so that

$$
\widehat{e}_{X} \widehat{e}_{Y}=e_{X_{i_{1}}} \ldots e_{X_{i_{m}}} .
$$

On the other hand, $X \cap Y=X_{i_{1}} \cap \cdots \cap X_{i_{m}}$ a reduced intersection gives, by the third family of relations, that $\widehat{e}_{X \cap Y}=e_{X_{i_{1}}} \ldots e_{X_{i_{m}}}$.

In $\S \S 4-5$ we will want to be quite specific about the presentation of Proposition 1 for the Boolean and arrangement reflection monoids associated to the classical Weyl groups. This entails a description of the possible reduced intersections for an arbitrary $Y \in \mathcal{B}$.

Let $W=W(\Phi)$ be a Weyl group with Φ a root system as in [3, Table 1] (see also Table 1 of this paper) and $\mathcal{B}=\left\langle\mathbf{x}_{1}^{\perp}, \ldots, \mathbf{x}_{n}^{\perp}\right\rangle$ Boolean with atoms the \mathbf{x}_{i}^{\perp}. Totally ordering \mathcal{A} by $\mathbf{x}_{1}^{\perp} \prec \cdots \prec \mathbf{x}_{n}^{\perp}$, we have $\mathbf{x}_{i_{1}}^{\perp} \cap \cdots \cap \mathbf{x}_{i_{k}}^{\perp}$ is reduced if and only if $i_{1}<\cdots<i_{k}$. In particular, there is a unique reduced intersection for each element of a Boolean system which reflects the fact that \mathcal{B} is the free semilattice (with identity) on \mathcal{A}.

In an arrangement system however, there may be many distinct reduced intersections for a given element. Recall [3, §2] that in this situation we have $\mathcal{B}=L(\mathcal{A})$, the intersection lattice of the arrangement \mathcal{A} of reflecting hyperplanes for W. We parametrize the reduced intersections for $L(\mathcal{A})$ with respect to some \preceq on \mathcal{A}, the reflecting hyperplanes of the Weyl group $W(\Phi)$, for Φ classical, recalling the description of $L(\mathcal{A})$ and notation of [3, §2].

- Should we give a reference for this?

First a general definition; let T be a set, and θ a collection of distinct two element subsets $\{i, j\} \subset T$. A subset $T^{\prime} \subset T$ is connected by θ if it is a singleton or for every $x, y \in T^{\prime}$, there are distinct subsets $\left\{i_{1}, j_{1}\right\}, \ldots,\left\{i_{m}, j_{m}\right\} \in \theta$ such that $x \in\left\{i_{1}, j_{1}\right\}, y \in\left\{i_{m}, j_{m}\right\}$ and $\left\{i_{k}, j_{k}\right\} \cap\left\{i_{k+1}, j_{k+1}\right\} \neq \varnothing$ (and thus they have a single element in common). A subset of T that is maximal with respect to being connected by θ is a connected component.

Starting with the Weyl group $W\left(A_{n-1}\right)$, let $I=\{1,2, \ldots, n\}$ and $\Lambda=\left\{\Lambda_{1}, \ldots, \Lambda_{p}\right\}$ a partition of I. A collection θ of two element subsets of I is a decomposition of Λ if the blocks $\Lambda_{1}, \ldots, \Lambda_{p}$ are the connected components with respect to θ. Let $\mathcal{D}(\Lambda)$ be the set of decompositions of the partition Λ. We refer the reader to [3, §2] for the definition of the subspace $X(\Lambda)$ and note that the proof of the following is now elementary:

Lemma 1. The map $\theta \mapsto \cap_{\{i, j\} \in \theta}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} / \preceq$ is a bijection from $\mathcal{D}(\Lambda)$ to the set of reduced intersections of the subspace $X(\Lambda) \in L(\mathcal{A})$.

Turning now to $W\left(B_{n}\right)$, we describe the reduced intersections of a subspace of the form $X(\Delta, \Lambda):=X(\Delta, \varnothing, \Lambda)$. A decomposition $\theta=\left(\theta_{1}, \theta_{2}\right)$ of (Δ, Λ) is (a). a decomposition θ_{2} of the partition Λ, and (b). a collection θ_{1} of distinct subsets of $\Delta^{ \pm}:=\Delta \cup(-\Delta)$ of the form $\{i,-i\},\{i, j\}$ and $\{-i,-j\}$, whose union is $\Delta^{ \pm}$, and is such that if V_{Δ} is a real space of dimension $|\Delta|$, then the system of homogeneous linear equations $x_{i}=0,\left(\{i,-i\} \in \theta_{1}\right)$, $x_{i}-x_{j}=0,\left(\{i, j\} \in \theta_{1}\right)$ and $x_{i}+x_{j}=0,\left(\{-i,-j\} \in \theta_{1}\right)$, has no non-trivial solution.

Writing $\mathcal{D}(\Delta, \Lambda)$ for the set of possible decompositions of (Δ, Λ), we have,
Lemma 2. The map

$$
\theta \mapsto\left\{\bigcap_{\{i, j\} \in \theta_{2}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} \cap \bigcap_{\{i, j\} \in \theta_{1}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} \cap \bigcap_{\{-i,-j\} \in \theta_{1}}\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp} \cap \bigcap_{\{i,-i\} \in \theta_{1}} \mathbf{x}_{i}^{\perp}\right\} / \preceq
$$

is a bijection from $\mathcal{D}(\Delta, \Lambda)$ to the set of reduced intersections of $X(\Delta, \varnothing, \Lambda)$.
Proof. We have $\mathbf{x}=\left(x_{i}\right) \in X(\Delta, \varnothing, \Lambda)$ if and only if $x_{i}=0$ for $i \in \Delta$ and $x_{i}=x_{j}$ for i, j in the same block of the partition Λ. In particular, if an intersection for X has intersectand \mathbf{x}_{i}^{\perp} or $\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}$, then $\{i, j\} \subset \Delta$, and the result follows.

Finally, for $W\left(D_{n}\right)$ we describe the reduced intersections of the subspaces of the form $X(\Delta, \varnothing, \Lambda)$ and $X(\varnothing,\{k\}, \Lambda), 1 \leq k \leq n$. In the first case, a decomposition $\theta=\left(\theta_{1}, \theta_{2}\right)$ of $(\Delta, \Lambda)=(\Delta, \varnothing, \Lambda)$ is (a). a decomposition θ_{2} of the partition Λ, and (b). a collection θ_{1} of distinct subsets of $\Delta^{ \pm}:=\Delta \cup(-\Delta)$ of the form $\{i, j\}$ and $\{-i,-j\}$, whose union is $\Delta^{ \pm}$, and such that if V_{Δ} is a real space of dimension $|\Delta|$, then the system of homogenous linear equations $x_{i}-x_{j}=0,\left(\{i, j\} \in \theta_{1}\right)$ and $x_{i}+x_{j}=0,\left(\{-i,-j\} \in \theta_{1}\right)$, has no non-trivial solution.

A decomposition θ of $(\Lambda,\{k\}):=(\varnothing,\{k\}, \Lambda)$ is a collection of distinct subsets of Λ of the form $\{i, j\} \subset I \backslash\{k\}$ and $\{i, k\}$, with i and k in the same block, and such that the blocks $\Lambda_{1}, \ldots, \Lambda_{p}$ are the connected components.

Writing $\mathcal{D}(\Delta, \Lambda)$ and $\mathcal{D}(\Lambda,\{n\})$ for the sets of decompositions in the two cases, the proof of the following is similar to Lemma 2.

Lemma 3. The map

$$
\theta \mapsto\left\{\bigcap_{\{i, j\} \in \theta_{2}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} \cap \bigcap_{\{i, j\} \in \theta_{1}}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} \cap \bigcap_{\{-i,-j\} \in \theta_{1}}\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}\right\} / \preceq
$$

is a bijection from $\mathcal{D}(\Delta, \Lambda)$ to the set of reduced intersections of $X(\Delta, \varnothing, \Lambda)$, and the map,

$$
\theta \mapsto\left\{\bigcap_{\{i, j\} \in \theta}\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} \cap \bigcap_{\{i, k\} \in \theta}\left(\mathbf{x}_{i}+\mathbf{x}_{n}\right)^{\perp}\right\} / \preceq
$$

is a bijection from $\mathcal{D}(\Lambda,\{k\})$ to the set of reduced intersections of $X(\varnothing,\{k\}, \Lambda)$.

3. A presentation for reflection monoids

The main result of this section, Theorem 1 below, is a presentation for the reflection monoid $M(W, \mathcal{B})$ in the case that the system $\mathcal{B}=\langle\Omega\rangle_{W}$ is generated by a collection Ω of subspaces all having the same dimension, as is the case for instance when Ω is a hyperplane arrangement. The main technical tool is a recent presentation for factorizable inverse monoids, Theorem 2 below.

First we establish the notation and conventions necessary to state the theorem. Let $W \subset$ $G L(V)$ be a reflection group with generating reflections S and $\mathcal{B}=\langle\Omega\rangle_{W}$ a system of subspaces for W. As usual \mathcal{B} has atoms the subspaces $\mathcal{A}:=\Omega W$. Let Ω_{k} be a fixed set of orbit representatives for the W-action on the rank k elements of \mathcal{B}. In particular Ω_{1} is a set of representatives for the W-action on \mathcal{A}. Let $e_{X}\left(X \in \Omega_{1}\right)$ be a collection of symbols parametrised by Ω_{1}.

For each $g \in W$ we fix a word $\widehat{g}=s_{1} \ldots s_{k}$ in the generators S representing g, agreeing that $\widehat{s}=s$ when $s \in S$. For $Y \in \mathcal{A}$, we fix a $g \in W$ with $Y=(X) g$ for some $X \in \Omega_{1}$, and write \widehat{e}_{Y} for the word $s_{k}^{-1} \ldots s_{1}^{-1} e_{X} s_{1} \ldots s_{k}$. For each $Y \in \mathcal{B}$ fix a reduced intersection $Y=X_{1} \cap \cdots \cap X_{k}$ with respect to some \preceq on \mathcal{A}, and let \widehat{e}_{Y} stand for the expression $\widehat{e}_{X_{1}} \ldots \widehat{e}_{X_{k}}$. In all cases we take $\widehat{e}_{Y}=e_{Y}$ when $Y \in \Omega_{1}$.

Finally, and possibly somewhat cryptically, let Σ be a set of pairs $(f,(X) g)$ with $X \in \mathcal{B}$, $g \in W$ and f a generator for the isotropy group $W_{(X) g}$, such that the following holds: if Y is any element of \mathcal{B} and t a generator for the isotropy group W_{Y}, then there is a $(f,(X) g) \in \Sigma$ with $X \leq Y$ and $t=g f g^{-1}$.

Theorem 1. With the notation above, the reflection monoid $M(W, \mathcal{B})$ has presentation,

$$
\begin{aligned}
M(W, \mathcal{B})=\left\langle s \in S, e_{X}\left(X \in \Omega_{1}\right)\right| & \text { relations for } W, e_{X}^{2}=e_{X} \text { for } X \in \Omega_{1}, \\
& \widehat{e}_{X} \widehat{e}_{Y}=\widehat{e}_{Y} \widehat{e}_{X} \text { for } X \cap Y \in \Omega_{2} \\
& \widehat{e}_{Y}=\widehat{e}_{Y_{1}} \ldots \widehat{e}_{Y_{m}} \text { for } Y \in \Omega_{k}, k \geq 2 \\
& \text { and any } Y=Y_{1} \cap \cdots \cap Y_{m} \text { reduced, } \\
& s \widehat{e}_{X}=\widehat{e}_{X s} \text { sfor }(s, X) \in S \times \mathcal{A}, \\
& \left.\widehat{e}_{X g} \widehat{f}=\widehat{e}_{X g} \text { for }(f, X g) \in \Sigma\right\rangle .
\end{aligned}
$$

via $\widehat{s} \mapsto s$ and $e_{X} \mapsto \varepsilon_{X}$.
Theorem 1 follows by massaging a presentation for factorizable inverse monoids supplied by [1], which we now summarize.

Suppose M is a factorizable inverse monoid with group of units $G=G(M)$, semilattice of idempotents $E=E(M)$, and $\left\langle S_{G} \mid R_{G}\right\rangle,\left\langle S_{E} \mid R_{E}\right\rangle$ monoid presentations for G and E. For $g \in G$, fix a word \widehat{g} for g in the generators S_{G} and similarly a word \widehat{e} in S_{E} for $e \in E$, with the conventions above applying when $g \in S_{G}$ and $e \in S_{E}$. There is anti-action of G on E given by $e \mapsto g e g^{-1} \in E$, allowing us to fix a word in S_{E} for geg $^{-1}$ also. For each $e \in E$ let $G_{e}=\{g \in G \mid e g=e\}$, and $\Sigma_{e} \subset G_{e}$ a set of monoid generators for G_{e}.

Theorem 2 ($[1$, Theorem 6]). The factorizable inverse monoid M has presentation,

$$
\begin{gathered}
M=\left\langle S_{G}, S_{E}\right| R_{G}, R_{E}, g e=\widehat{g e g^{-1}} \cdot g \text { for }(g, e) \in S_{G} \times S_{E} \\
\left.\widehat{e} \widehat{t}=\widehat{e} \text { for } e \in E, t \in \Sigma_{e}\right\rangle
\end{gathered}
$$

We now interpret the various ingredients in the case that we have a reflection monoid $M=$ $M(W, \mathcal{B})$, where G is the reflection group W with generating reflections S, and E is generated by the e_{X} for $X \in \mathcal{A}$ by Proposition 1 .

If $s \in S$ and ε_{X} for $X \in \mathcal{A}$ is a generating idempotent, then $s \varepsilon_{X} s^{-1}=\varepsilon_{X s}$, where $X s \in \mathcal{A}$, as \mathcal{A} is W-invariant. Thus the relations

$$
g e=\widehat{g e g^{-1}} \cdot g \text { for }(g, e) \in S_{G} \times S_{E},
$$

in Theorem 2 become $s e_{X}=e_{X s} s$ for $(s, X) \in S \times \mathcal{A}$. If $e=\varepsilon_{Y}$, then $G_{e}=\left\{g \in W \mid \varepsilon_{Y} g=\right.$ $\left.\varepsilon_{Y}\right\}$, where for any $x \in Y$ we have $x \varepsilon_{Y} g=x \varepsilon_{Y}$ iff $x g=x$, ie: G_{e} is the isotropy group W_{Y}. Thus we may take for Σ_{e} any generating set S_{Y} for the isotropy group W_{Y}, although in many situations there will be particularly nice ones: if W is a complex reflection group for instance, Steinberg's Theorem [8] allows us to take for S_{Y} the reflections in the hyperplanes containing Y, and from now on we shall do this.

Thus the relations $\widehat{e} \widehat{t}=\widehat{e}$ for $e \in E, t \in \Sigma_{e}$ become $\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y}$ for $Y \in \mathcal{B}, t \in S_{Y}$. Summarizing,

Corollary 1. If $W \subset G L(V)$ is a reflection group and $\mathcal{B}=\langle\Omega\rangle_{W}$ with atoms \mathcal{A} the $X g$ for $X \in \Omega$ and $g \in W$, then $M(W, \mathcal{B})$ has presentation,

$$
\begin{aligned}
M(W, \mathcal{B})=\left\langle s \in S, e_{X}(X \in \mathcal{A})\right| & \text { relations for } W, e_{X}^{2}=e_{X} \text { for } X \in \mathcal{A} \\
& e_{X} e_{Y}=e_{Y} e_{X} \text { for } X, Y \in \mathcal{A} \\
& \widehat{e}_{Y}=e_{Y_{1}} \ldots e_{Y_{k}} \text { for } Y \in \mathcal{B}, Y=Y_{1} \cap \cdots \cap Y_{k} \text { reduced, } \\
& s e_{X}=e_{X s} \text { sfor }(s, X) \in S \times \mathcal{A} \\
& \left.\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y} \text { for } Y \in \mathcal{B}, t \in S_{Y}\right\rangle
\end{aligned}
$$

Deducing Theorem 1 now becomes a matter of removing relations and generators (in that order) from the presentation in Corollary 1. Before we do so, a glance at the presentations in Corollary 1 and Theorem 1 masks the considerable saving in generators and relations of the latter over the former, as we shall see in the next two sections. For example, in the Boolean monoid of type A_{n-1}, Corollary 1 gives n idempotent generators, n relations of the form $e_{X}^{2}=e_{X}$ and $n(n-1)$ relations of the form $\widehat{e}_{X} \widehat{e}_{Y}=\widehat{e}_{Y} \widehat{e}_{X}$. There are 2^{n} subspaces Y in the Boolean system, and if $Y=\mathbf{x}_{i_{1}}^{\perp} \cap \cdots \cap \mathbf{x}_{i_{k}}^{\perp}$ is one of them, then a standard generating set for W_{Y} has $k-1$ reflecting generators, for a total of $2^{n-1} n(n-1)$ relations of the form $\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y}$. Theorem 1 on the other hand gives a single idempotent generator, a single idempotent relation, a single commuting idempotents relation, and a single relation of the last kind.

First, we deduce some useful intermediate relations:
Lemma 4. Let $X, Y \in \mathcal{B}$ with $Y=X g$. Then one can deduce $\widehat{e}_{Y}=\widehat{g^{-1}} \widehat{e}_{X} \widehat{g}$ from the relations in Corollary 1.

Proof. We deal first with the case that X and Y are atomic, where we require only the $s e_{X}=$ $e_{X s} s$ relations. In particular, if $\widehat{g}=s_{1} \ldots s_{k}$, then $s_{1} e_{X}=e_{X s_{1}} s_{1}$, hence $e_{X s_{1}}=s_{1}^{-1} e_{X} s_{1}$. Proceeding by induction, if

$$
e_{X s_{1} \ldots s_{i}}=\left(s_{i}^{-1} \ldots s_{1}^{-1}\right) e_{X}\left(s_{1} \ldots s_{i}\right)
$$

then $X s_{1} \ldots s_{i} \in \mathcal{A}$, a W-invariant set, thus the relation $s_{i+1} e_{X s_{1} \ldots s_{i}}=e_{X s_{1} \ldots s_{i+1}} s_{i+1}$ of Corollary 1 gives

$$
e_{X s_{1} \ldots s_{i+1}}=\left(s_{i+1}^{-1} \ldots s_{1}^{-1}\right) e_{X}\left(s_{1} \ldots s_{i+1}\right)
$$

and so $e_{Y}=\left(s_{k}^{-1} \ldots s_{1}^{-1}\right) e_{X}\left(s_{1} \ldots s_{k}\right)$. Suppose now that $\widehat{e}_{X}=e_{X_{1}} \ldots e_{X_{m}}$ with the X_{i} atomic. As $Y=X g=X_{1} g \cap \cdots \cap X_{m} g$, with the $X_{i} g$ also atomic, we get $\hat{e}_{Y}=e_{U_{1}} \ldots e_{U_{m}}$ with $U_{1} \cap \cdots \cap U_{m}=X_{1} g \cap \cdots \cap X_{m} g / \preceq$. The commuting of the idempotents then gives $\widehat{e}_{Y}=e_{X_{1} g} \ldots e_{X_{m} g}$, and so

$$
\widehat{e}_{Y}=\prod e_{X_{i} g}=\prod \widehat{g^{-1}} e_{X_{i}} \widehat{g}=\widehat{g^{-1}} \cdot \prod e_{X_{i}} \cdot \widehat{g}=\widehat{g^{-1}} \widehat{e}_{X} \widehat{g}
$$

Now to the thinning out of the relations. Let Σ be a set of pairs $(f, X g)$ with $X \in \mathcal{B}, g \in W$ and $f \in S_{X g}$ a generator for $W_{X g}$ as in the preamble to the statement of Theorem 1, ie: such that for any $Y \in \mathcal{B}$ and $t \in S_{Y}$ there is a $(f, X g) \in \Sigma$ with $X \leq Y$ and $t=g f g^{-1}$.

Lemma 5. The $\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y}$ for $Y \in \mathcal{B}, t \in S_{Y}$ are implied by the $\widehat{e}_{X g} \widehat{f}^{\prime}=\widehat{e}_{X g}$ for $(f,(X) g) \in$ Σ, the idempotent relations and the $s e_{X}=e_{X s} s$.

Proof. Observe first that the $\widehat{e}_{X g} \widehat{f}=\widehat{e}_{X g}$ are indeed a subset of the $\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y}$. As $X \leq Y$ we have $Y=Y \cap X$ giving $\varepsilon_{Y}=\varepsilon_{Y} \varepsilon_{X}$ and so we can deduce $\widehat{e}_{Y}=\widehat{e}_{Y} \widehat{e}_{X}$ from the idempotent relations. Thus,

$$
\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y} \widehat{e}_{X} \widehat{g} \widehat{f} \widehat{g^{-1}}=\widehat{e}_{Y} \widehat{g} \widehat{e}_{(X) g} \widehat{f} \widehat{g^{-1}}=\widehat{e}_{Y} \widehat{g} \widehat{e}_{(X) g} \widehat{g^{-1}}=\widehat{e}_{Y} \widehat{e}_{X} \widehat{g} \widehat{g^{-1}}=\widehat{e}_{Y}
$$

via the assumption and two applications of Lemma 4.
In the next two lemmas we use the W-action on \mathcal{B} to thin out the idempotent relations. If $X, Y \in \mathcal{B}, Y=X g$ and $Y=Y_{1} \cap \cdots \cap Y_{m}$ a reduced intersection, then $Y_{1} g^{-1} \cap \cdots \cap Y_{m} g^{-1} / \preceq$ is a reduced intersection for X, from which, together with the commuting of the idempotents, we deduce $\widehat{e}_{X}=e_{Y_{1} g^{-1}} \ldots e_{Y_{k} g^{-1}}$.

Lemma 6. Let $X, Y \in \mathcal{B}$, with $Y=X g$ and $Y=Y_{1} \cap \cdots \cap Y_{k}$ any reduced intersection. Then $\widehat{e}_{Y}=e_{Y_{1}} \ldots e_{Y_{k}}$ is implied by $\widehat{e}_{X}=e_{Y_{1} g^{-1}} \ldots e_{Y_{k} g^{-1}}$, the $e_{X} e_{Y}=e_{Y} e_{X}$ and the $s e_{X}=e_{X s} s$.

Lemma 7. (i). Let $X, Y \in \mathcal{A}$ and $g \in W$ with $Y=X g$. Then the relation $e_{Y}^{2}=e_{Y}$ is implied by the relation $e_{X}^{2}=e_{X}$ and the $s e_{X}=e_{X s} s$.
(ii). Let $X_{i}, Y_{i} \in \mathcal{A},(i=1,2)$ and $g \in W$ with $Y_{i}=\left(X_{i}\right) g$, $(i=1,2)$. Then the relation $e_{Y_{1}} e_{Y_{2}}=e_{Y_{2}} e_{Y_{1}}$ is implied by the relation $e_{X_{1}} e_{X_{2}}=e_{X_{2}} e_{X_{1}}$ and the $s e_{X}=e_{X s} s$.

The proofs of both are an easy application of Lemma 4. Finally, we have the
Proof (of Theorem 1). Lemma 5 allows us to reduce the $\widehat{e}_{Y} \widehat{t}=\widehat{e}_{Y}$, for $Y \in \mathcal{B}, t \in S_{Y}$ to the $\widehat{e}_{X g} \widehat{f}=\widehat{e}_{X g}$ for $(f, X g) \in \Sigma$. If Ω_{k} is a set of orbit representatives for the W-action on the rank k elements of \mathcal{B}, then the $\widehat{e}_{Y}=e_{Y_{1}} \ldots e_{Y_{k}}$ for $Y \in \mathcal{B}$ relations can be reduced to the cases where $Y \in \Omega_{k}$ for $k \geq 2$. By Lemma 7(i) we may replace the $e_{X}^{2}=e_{X}$, for $X \in \mathcal{A} W$, by the $e_{X}^{2}=e_{X}$, for $X \in \Omega_{1}$. The pairs $X \neq Y \in \mathcal{A} W$ correspond to the rank two elements $X \cap Y \in \mathcal{B}$, and as $(X \cap Y) g=(X) g \cap(Y) g$, the $e_{X} e_{Y}=e_{Y} e_{X}$, for $X, Y \in \mathcal{A} W$ can be replaced, using Lemma 7(ii), by $e_{X} e_{Y}=e_{Y} e_{X}$, for $X \cap Y \in \Omega_{2}$. So much for the relations. For every $Y \in \mathcal{A} W$ there is an $X \in \Omega_{1}$ with $e_{Y}=\left(s_{k} \ldots s_{1}\right) e_{X}\left(s_{1} \ldots s_{k}\right)$, and so we remove these superfluous generators, replacing each occurence of e_{Y} in the relations by $\widehat{e}_{Y}:=\left(s_{k} \ldots s_{1}\right) e_{X}\left(s_{1} \ldots s_{k}\right)$.

4. "Popova style" presentations for the Boolean monoids

In this section we recover Popova's presentation [7] for the symmetric inverse monoid by interpreting it as the Boolean monoid of type A and then using Theorem 1. We also do the same for the type B and D Boolean monoids.

Let Φ be a root system as in Table $1, \mathcal{B}=L(\mathcal{A})$ the intersection lattice of the Boolean arrangement $\mathcal{A}=\left\{\mathbf{x}_{1}^{\perp}, \ldots, \mathbf{x}_{n}^{\perp}\right\}($ with $\mathcal{A} W=\mathcal{A})$ and $X_{i_{1} \ldots i_{k}}:=\mathbf{x}_{i_{1}}^{\perp} \cap \cdots \cap \mathbf{x}_{i_{k}}^{\perp}$. We observed in $\S 1$ that each $X_{i_{1} \ldots i_{k}}$ has a unique reduced intersection with respect to the ordering $X_{1} \prec$ $\cdots \prec X_{n}$, so the $\widehat{e}_{Y}=e_{Y_{1}} \ldots e_{Y_{k}}$ relations are vacuous. The W-action on the rank k elements is transitive, so in particular Ω_{1} and Ω_{2} each have a single element, say, X_{n} and $X_{n-1, n}$. Let $e:=e_{X_{n}}$, and $s_{i},(1 \leq i \leq n-1)$, the reflection in the hyperplane orthogonal to $\mathbf{x}_{i}-\mathbf{x}_{i+1}$. We choose $X_{i}=\left(X_{n}\right) s_{n-1} \ldots s_{i}$ so that $\widehat{e}_{X_{i}}:=\left(s_{i} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{i}\right)$.

The result is that the monoids have generators the s_{i} (the simple reflections for W) and e, with the relations $e_{X}^{2}=e_{X}\left(X \in \Omega_{1}\right)$ just $e^{2}=e$, and the relations $\widehat{e}_{X} \widehat{e}_{Y}=\widehat{e}_{Y} \widehat{e}_{X}\left(X \cap Y \in \Omega_{2}\right)$ reducing to the single $e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e$.

Now to the $\widehat{e}_{(X) g} \widehat{f}=\widehat{e}_{(X) g}$ for $(f,(X) g) \in \Sigma$. Any $X_{i_{1} \ldots i_{k}} \in \mathcal{B}$ has isotropy group a reflection group, generated, according to Steinberg's Theorem, by reflections in the hyperplanes containing $X_{i_{1} \ldots i_{k}}$. Indeed, we can take

Φ	isotropy group $W_{X_{i_{1} \ldots i_{k}}}$	Σ
A_{n-1}	$\left\langle s_{\mathbf{v}} \mid \mathbf{v}=\mathbf{x}_{i}-\mathbf{x}_{j},\{i, j\} \subset\left\{i_{1}, \ldots, i_{k}\right\}\right\rangle$	$\left(s_{n-1}, X_{n-1, n}\right)$
B_{n}	$\left\langle s_{\mathbf{v}} \mid \mathbf{v}= \pm \mathbf{x}_{i} \pm \mathbf{x}_{j}, \pm \mathbf{x}_{i},\{i, j\} \subset\left\{i_{1}, \ldots, i_{k}\right\}\right\rangle$	$\left\{\left(s_{n-1}, X_{n-1, n}\right)\right.$,
		$\left.\left(s_{n}, X_{n}\right)\right\}$
D_{n}	$\left\langle s_{\mathbf{v}} \mid \mathbf{v}= \pm \mathbf{x}_{i} \pm \mathbf{x}_{j},\{i, j\} \subset\left\{i_{1}, \ldots, i_{k}\right\}\right\rangle$	$\left\{\left(s_{n-1}, X_{n-1, n}\right)\right.$,
		$\left.\left(s_{n}, X_{n-1, n}\right)\right\}$

with s_{n} the reflection in the hyperplane orthogonal to \mathbf{x}_{n} in the type B case, and in the hyperplane orthogonal to $\mathbf{x}_{n-1}+\mathbf{x}_{n}$ in the type D case. Notice that as Y and $t \in S_{Y}$ vary, so do X and g in the pair $(f,(X) g)$, but $(X) g$ and f remain constant: for example in type A, if t is the reflection in the hyperplane orthogonal to $\mathbf{x}_{i}-\mathbf{x}_{j}(j<n)$, then we take $X=X_{i j}$, and $g=\left(s_{j} \ldots s_{n-1}\right)\left(s_{i} \ldots s_{n-2}\right)$, giving $(X) g=X_{n-1, n}$ and $f=s_{n-1}$, irrespective of i and j.

The relations are thus $s_{n-1} e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e$ in all three cases, with $e s_{n}=e$ as well in type B and $s_{n-1} e s_{n-1} e s_{n}=s_{n-1} e s_{n-1} e$ in type D.

We pause to observe that in some sense the geometry of the root systems is reflected in these relations. It is a fundamental fact that if Φ is an irreducible crystallographic root system, then the associated Weyl group $W(\Phi)$ acts on Φ with orbits the roots of a given length. Thus there is a single orbit on Φ in types A, D, E (where all the roots are "long") and two orbits in types B, F, G (where roots are either "short" or long). In particular the transitivity in type A is the reason for the single pair in Σ, while the two orbits in type B result in two pairs.

This completes the presentation given by Theorem 1 for the Boolean monoids, but it turns out that the relations $s \widehat{e}_{X}=\widehat{e}_{(X) s} s$ for $(s, X) \in S \times \mathcal{A}$ can also be significantly reduced in number:

Lemma 8. The relations $s_{i} \widehat{e}_{X_{j}}=\widehat{e}_{\left(X_{j}\right) s_{i}} s_{i}$ for $1 \leq i \leq n-1$ and $1 \leq j \leq n$ are implied by the relations $s_{i} e_{X_{n}}=\widehat{e}_{\left(X_{n}\right) s_{i}} s_{i}$ for $1 \leq i \leq n-1$, and the relations for W.

Proof. By examining the various possibilities for the subspace $\left(X_{j}\right) s_{i}$, it is to be proved that the relations

$$
s_{i} \widehat{e}_{X_{j}}=\left\{\begin{array}{l}
\widehat{e}_{X_{j}} s_{i}, \quad i \neq j-1, j \\
\widehat{e}_{X_{j-1}} s_{i}, \quad i=j-1 \\
\widehat{e}_{X_{j+1}} s_{i}, i=j
\end{array}\right.
$$

follow from the given relations, for which there are four cases to consider: (i). $1 \leq i<j-1$: the reflection s_{i} commutes with s_{j}, \ldots, s_{n-1} and e, giving the result immediately. (ii). $j<i \leq$ $n-1$:

$$
\begin{aligned}
s_{i} \widehat{e}_{X_{j}} & =s_{i}\left(s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right)=\left(s_{j} \ldots s_{i} s_{i-1} s_{i} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right) \\
& =\left(s_{j} \ldots s_{i-1} s_{i} s_{i-1} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right)=\left(s_{j} \ldots s_{n-1}\right) s_{i-1} e\left(s_{n-1} \ldots s_{j}\right) \\
& =\left(s_{j} \ldots s_{n-1}\right) e s_{i-1}\left(s_{n-1} \ldots s_{j}\right)=\left(s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{i-1} s_{i} s_{i-1} \ldots s_{j}\right) \\
& =\left(s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{i} s_{i-1} s_{i} \ldots s_{j}\right)=\left(s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right) s_{i} \\
& =\widehat{e}_{X_{j}} s_{i}
\end{aligned}
$$

where we have used the relations $\left(s_{i-1} s_{i}\right)^{3}=1$ in their "braid" form $s_{i-1} s_{i} s_{i-1}=s_{i} s_{i-1} s_{i}$, and the commuting of s_{i-1} and e. (iii). $i=j-1: s_{j-1} \widehat{e}_{X_{j}}=s_{j-1}\left(s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right)=$ $\left(s_{j-1} s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right) s_{j-1} s_{j-1}=\widehat{e}_{X_{j-1}} s_{j-1}$ (iv). $i=j: s_{j} \widehat{e}_{X_{j}}=s_{j}\left(s_{j} \ldots s_{n-1}\right)$ $e\left(s_{n-1} \ldots s_{j}\right)=\left(s_{j+1} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right) s_{j} s_{j}=\widehat{e}_{X_{j+1}} s_{j}$.

Putting it all together in the type A case, and observing that $\left(X_{n}\right) s_{i}=X_{n}$ when $i \neq n-1$, and $\left(X_{n}\right) s_{n-1}=X_{n-1}$, we get Popova's presentation for the symmetric inverse monoid [7],

Theorem 3. The Boolean monoid $M\left(A_{n-1}, \mathcal{B}\right)$ has presentation,

$$
\begin{aligned}
M\left(A_{n-1}, \mathcal{B}\right)=\left\langle s_{1}, \ldots, s_{n-1}, e\right| & \left(s_{i} s_{j}\right)^{m_{i j}}=1, e^{2}=e \\
& s_{i} e=e s_{i}(i \leq n-2) \\
& e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e \\
s_{1} & \left.s_{n-1} e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e\right\rangle
\end{aligned}
$$

The relation $s_{i} e_{X_{n}}=\widehat{e}_{\left(X_{n}\right) s_{i}} s_{i}$ is vacuous when $i=n-1$. Recall that the $m_{i j}$ can be read off the Coxeter symbol (which is why we have included it), as the nodes are joined by an edge labelled $m_{i j}$ if $m_{i j} \geq 4$, an unlabelled edge if $m_{i j}=3$, no edge if $m_{i j}=2$ and $m_{i j}=1$ if and only if $i=j$.

Lemma 8 leaves unresolved in types B and D the status of the $s \widehat{e}_{X}=\widehat{e}_{(X) s} s$ relations when $s=s_{n}$:

Lemma 9. If $\Phi=B_{n}$ then the relations $s_{n} \widehat{e}_{X_{j}}=\widehat{e}_{\left(X_{j}\right) s_{n}} s_{n}$ for $1 \leq j \leq n$ are implied by the relations $s_{i} e_{X_{n}}=\widehat{e}_{\left(X_{n}\right) s_{i}} s_{i}$ for $1 \leq i \leq n-1$, the relation $s_{n} \widehat{e}_{X_{n-1}}=\widehat{e}_{X_{n-1}} s_{n}$, the relation $s_{n} e_{X_{n}}=e_{X_{n}} s_{n}$ and the relations for W.

Proof. For $1 \leq j \leq n-2$,

$$
\begin{aligned}
s_{n} \widehat{e}_{X_{j}} & =s_{n}\left(s_{j} \ldots s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right)=\left(s_{j} \ldots s_{n} s_{n-1}\right) e\left(s_{n-1} \ldots s_{j}\right) \\
& =\left(s_{j} \ldots s_{n}\right) \widehat{e}_{X_{n-1}} s_{n-1}\left(s_{n-1} \ldots s_{j}\right)=\left(s_{j} \ldots s_{n-2}\right) \widehat{e}_{X_{n-1}} s_{n}\left(s_{n-2} \ldots s_{j}\right) \\
& =\widehat{e}_{X_{j}} s_{n}
\end{aligned}
$$

Again we have $\left(X_{n}\right) s_{i}=X_{n}$ when $i \neq n-1$, and $\left(X_{n}\right) s_{n-1}=X_{n-1}$, resulting in a presentation,

Theorem 4. The Boolean monoid $M\left(B_{n}, \mathcal{B}\right)$ has presentation,

$$
\begin{array}{rl}
M\left(B_{n}, \mathcal{B}\right)=\left\langle s_{1}, \ldots, s_{n}, e\right| & \left(s_{i} s_{j}\right)^{m_{i j}}=1, e^{2}=e \\
& s_{i} e=e s_{i}(i \leq n-2), s_{n} e=e s_{n} \\
s_{1} & s_{n} s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} s_{n} \\
s_{2} & e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e, e s_{n}=e, \\
\left.s_{n-1} e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e\right\rangle .
\end{array}
$$

The proof of the following is analogous to Lemma 9:
Lemma 10. If $\Phi=D_{n}$ then the relations $s_{n} \widehat{e}_{X_{j}}=\widehat{e}_{\left(X_{j}\right) s_{n}} s_{n}$ for $1 \leq j \leq n$ are implied by the relations $s_{i} e_{X_{n}}=\widehat{e}_{\left(X_{n}\right) s_{i}} s_{i}$ for $1 \leq i \leq n-1$, the relations $s_{n} \widehat{e}_{X_{n-2}}=\widehat{e}_{X_{n-2}} s_{n}$, $s_{n} \widehat{e}_{X_{n-1}}=e_{X_{n}} s_{n}, s_{n} e_{X_{n}}=\widehat{e}_{X_{n-1}} s_{n}$, and the relations for W.

Together with $\left(X_{n}\right) s_{i}=X_{n}$ when $i \neq n-1, n$, and $\left(X_{n}\right) s_{n-1}=\left(X_{n}\right) s_{n}=X_{n-1}$, we have,

Theorem 5. The Boolean monoid $M\left(D_{n}, \mathcal{B}\right)$ has presentation,

$$
\begin{aligned}
& M\left(D_{n}, \mathcal{B}\right)=\left\langle s_{1}, \ldots, s_{n}, e\right|\left(s_{i} s_{j}\right)^{m_{i j}}=1, e^{2}=e, s_{i} e=e s_{i}(i \leq n-2) \\
& s_{n} e=s_{n-1} e s_{n-1} s_{n}, e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e \\
& s_{n} s_{n-1} e s_{n-1}=e s_{n}, s_{n-1} e s_{n-1} e s_{n-1}=s_{n-1} e s_{n-1} e \\
& s_{n-1} e s_{n-1} e s_{n}=s_{n-1} e s_{n-1} e, \\
& \left.s_{n} s_{n-2} s_{n-1} e s_{n-1} s_{n-2}=s_{n-2} s_{n-1} e s_{n-1} s_{n-2} s_{n}\right\rangle
\end{aligned}
$$

5. "Popova style" presentations for the arrangement monoids

We now repeat the process of the previous section, but for the arrangement monoids of types A, B and D. Much is similar, but the non-uniqueness of reduced expressions for subspaces in the arrangement systems does complicate matters a little.

Let $W=W(\Phi)$ with Φ in Table 1 and \mathcal{H} the associated arrangement system. Either using the results of $[3, \S 2.2]$, or the classical fact that a Weyl group acts transitively on the roots of a given length, we get the W-action is transitive on the reflecting hyperplanes in types A and D and has two orbits, corresponding to the long and short roots, for type B. We take

$$
\Omega_{1}=\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp} \text { for types } A, D \text { and } \Omega_{1}=\left\{\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp}, \mathbf{x}_{n}^{\perp}\right\} \text { for type } B
$$

giving generators the s_{i} and e for types A and D or the s_{i} and e_{1}, e_{2} for type B, and relations the usual $\left(s_{i} s_{j}\right)^{m_{i j}}=1$ together with $e^{2}=e$ or $e_{i}^{2}=e_{i},(i=1,2)$.

We start with the set Σ, for which the following is one of the nicest properties of the arrangement monoids from a presentation point of view:
Lemma 11. Let $W \subset G L(V)$ be a reflection group with arrangement system \mathcal{H} and Ω_{1} a set of orbit representatives for the W-action on the hyperplanes of \mathcal{H}. Then $\Sigma=\left\{(s, X) \mid X \in \Omega_{1}\right\}$, where s is the reflection in the hyperplane X.
Proof. Let $Y^{\prime} \in \mathcal{H}$ and t a generating reflection for the isotropy group of Y^{\prime}, which by Steinberg's Theorem is a reflection in a hyperplane Y with $Y \subseteq Y^{\prime}$. There is thus an $X \in \Omega_{1}$ and a $g \in W$ with $Y=(X) g$ with the pair (s, X) fulfilling the obligations of the set Σ for the pair $\left(Y^{\prime}, t\right)$.

The relations $\widehat{e}_{(X) g} \widehat{f}=\widehat{e}_{(X) g}$ for $(f,(X) g) \in \Sigma$ are thus $s_{n-1} e=e$ in types A and D, and $s_{n-1} e_{1}=e_{1}, s_{n} e_{2}=e_{2}$ in type B.

Concentrating now on type A, we have the atoms $\mathcal{A}=\left\{Y=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp} \mid 1 \leq i<j \leq n\right\}$, and we write $e_{i j}:=\widehat{e}_{Y}$ for $Y=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp}$, with

$$
e_{i j}= \begin{cases}\left(s_{j} \ldots s_{n-1}\right)\left(s_{i} \ldots s_{n-2}\right) e\left(s_{n-2} \ldots s_{i}\right)\left(s_{n-1} \ldots s_{j}\right), & \text { for } 1 \leq i<j \leq n-1 \\ \left(s_{i} \ldots s_{n-2}\right) e\left(s_{n-2} \ldots s_{i}\right) & \text { for } 1 \leq i<n-2, j=n\end{cases}
$$

Recall from [3, §2.2] that there is a lattice isomorphism $\Lambda \mapsto X(\Lambda)$ from the lattice $\mathcal{P}(n)$ of partitions $\Lambda=\left\{\Lambda_{1}, \ldots, \Lambda_{p}\right\}$ of $I=\{1, \ldots, n\}$ to \mathcal{H}, and the W-orbits are parametrised by the corresponding partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ of n, where $\lambda_{i}=\left|\Lambda_{i}\right|$.

The rank two subspaces in \mathcal{H} are the $X(\Lambda)$ for Λ a partition of the form $\Lambda_{1}=\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{3}\right.\right.$, $\left.\left.i_{4}\right\},\left\{i_{5}\right\}, \ldots\right\}$ when $n \geq 4$, or $\Lambda_{2}=\left\{\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}\right\}, \ldots\right\}$. Indeed, by [6, Proposition 6.72] (see also [3, Proposition 3]), the partitions Λ_{1} and Λ_{2} are representatives for the W-action on the rank two elements of $\mathcal{P}(n)$, giving,

$$
\Omega_{2}=\left\{\left(\mathbf{x}_{n-3}-\mathbf{x}_{n-2}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp},\left(\mathbf{x}_{n-2}-\mathbf{x}_{n-1}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp}\right\} .
$$

Thus the $\widehat{e}_{X} \widehat{e}_{Y}=\widehat{e}_{Y} \widehat{e}_{X}\left(X \cap Y \in \Omega_{2}\right)$ family of relations reduces to $e_{n-3, n-2} e=e e_{n-3, n-2}$ and $e_{n-2, n-1} e=e e_{n-2, n-1}$.

If the canonical partition of type $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ is

$$
\Lambda=\left\{\left\{1, \ldots, \lambda_{1}\right\},\left\{\lambda_{1}+1, \ldots, \lambda_{1}+\lambda_{2}\right\}, \ldots,\left\{\lambda_{1}+\cdots+\lambda_{p-1}+1, \ldots, \lambda_{1}+\cdots+\lambda_{p}\right\}\right\}
$$

then we may take the $X(\Lambda)$ below, for Λ canonical, as a set of orbit representatives, for which we fix the reduced intersection,

$$
X(\Lambda)=\bigcap_{\lambda_{k}>1} \bigcap_{\{i, i+1\} \subset \Lambda_{k}}\left(\mathbf{x}_{i}-\mathbf{x}_{i+1}\right)^{\perp}, \text { giving } \widehat{e}_{X(\Lambda)}=\prod_{\lambda_{k}>1} \prod_{\{i, i+1\} \subset \Lambda_{k}} e_{i, i+1}
$$

If θ is a decomposition of Λ as in $\S 2$, let

$$
e_{\theta}=\prod_{\{i, j\} \in \theta} e_{i j}
$$

The family of relations $\widehat{e}_{Y}=\widehat{e}_{Y_{1}} \ldots \widehat{e}_{Y_{k}}$ for $Y \in \Omega_{k}, k \geq 2$, and $Y_{1} \cap \cdots \cap Y_{k}$ reduced, then becomes, by Lemma 1, the family $\widehat{e}_{X(\Lambda)}=e_{\theta}$, for all partitions λ of n, Λ the canonical partition of type λ and $\theta \in \mathcal{D}(\Lambda)$.

As with the Boolean monoids, the family of relations $s \widehat{e}_{X}=\widehat{e}_{(X) s} s$ for $(s, X) \in S \times \mathcal{A}$ can also be reduced in number:

Lemma 12. If $Y=\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\perp},(1 \leq j<k \leq n)$, then the relations $s_{i} \widehat{e}_{Y}=\widehat{e}_{(Y) s_{i}} s_{i},(1 \leq i \leq$ $n-1)$ are implied by the relations $s_{i} e_{X}=\widehat{e}_{(X) s_{i}} s_{i},(1 \leq i \leq n-1)$ for $X=\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp}$, and the relations $s_{i} \widehat{e}_{Y}=\widehat{e}_{(Y) s_{i}} s_{i},(1 \leq i \leq n-2)$ for $Y=\left(\mathbf{x}_{i}-\mathbf{x}_{i+1}\right)^{\perp}$.

Proof. A case by case approach similar to Lemma 8.
The relations are thus $s_{i} e=e s_{i},(i \neq n-2), s_{n-2} e=s_{n-1} e s_{n-1} s_{n-2}$ and $s_{i} e_{i, i+1}=$ $e_{i, i+1} s_{i}$ for $(1 \leq i \leq n-2)$. Putting it all together

Theorem 6. The arrangement monoid $M\left(A_{n-1}, \mathcal{H}\right)$ has presentation,

$$
M\left(A_{n-1}, \mathcal{H}\right)=\left\langle s_{1}, \ldots, s_{n-1}, e\right|\left(s_{i} s_{j}\right)^{m_{i j}}=1, e^{2}=e, s_{i} e=e s_{i}(i \neq n-2)
$$

$$
\begin{aligned}
& s_{n-1} e=e, s_{n-2} e=s_{n-1} e s_{n-1} s_{n-2}, \\
& e_{n-3, n-2} e=e e_{n-3, n-2} \\
& e_{n-2, n-1} e=e e_{n-2, n-1} \\
& s_{i} e_{i, i+1}=e_{i, i+1} s_{i},(1 \leq i \leq n-2) \\
& \left.\widehat{e}_{X(\Lambda)}=e_{\theta}, \lambda \text { a partition of } n, \theta \in \mathcal{D}(\Lambda)\right\rangle .
\end{aligned}
$$

Now to type B, where the atomic elements of \mathcal{H} are the

$$
A=\left\{\left(\mathbf{x}_{i} \pm \mathbf{x}_{j}\right)^{\perp} \mid 1 \leq i<j \leq n\right\} \cup\left\{\mathbf{x}_{i}^{\perp} \mid 1 \leq i \leq n\right\}
$$

with $e_{i j}$ defined as in type A, except that e_{1} replaces e,
$a_{i j}:=\widehat{e}_{Y}= \begin{cases}\left(s_{j} \ldots s_{n-1}\right)\left(s_{i} \ldots s_{n-2}\right) s_{n} e_{1} s_{n}\left(s_{n-2} \ldots s_{i}\right)\left(s_{n-1} \ldots s_{j}\right) & 1 \leq i<j \leq n-1, \\ \left(s_{i} \ldots s_{n-2}\right) s_{n} e_{1} s_{n}\left(s_{n-2} \ldots s_{i}\right), & 1 \leq i<j=n, \\ s_{n} e_{1} s_{n} & i=n-1, j=n,\end{cases}$
when $Y=\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}$, and $b_{i}:=\widehat{e}_{Y}=\left(s_{i} \ldots s_{n-1}\right) e_{2}\left(s_{n-1} \ldots s_{i}\right)$ when $Y=\mathbf{x}_{i}^{\perp}$.
The W-orbits on \mathcal{H} are parametrised [6, Proposition 6.75] (see also [3, Proposition 4]) by the pairs (m, λ) of an integer $0 \leq m \leq n$ and a partition λ of $n-m$. The rank two subspaces of \mathcal{H} are thus parametrised by the $\left(\varnothing, \Gamma,\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{3}, i_{4}\right\},\left\{i_{5}\right\}, \ldots\right\}\right),\left(\varnothing, \Gamma,\left\{\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}\right\}, \ldots\right\}\right)$, $\left(\left\{i_{1}\right\}, \Gamma,\left\{\left\{i_{2}, i_{3}\right\},\left\{i_{4}\right\}, \ldots\right\}\right)$ and $\left(\left\{i_{1}, i_{2}\right\}, \Gamma,\left\{\left\{i_{3}\right\}, \ldots\right\}\right)$. By [3, Proposition 4] these four correspond to four W-orbits, where we are free to choose Γ, and the values of the i 's, at will. Thus,

$$
\begin{aligned}
& \Omega_{2}=\left\{\left(\mathbf{x}_{n-3}-\mathbf{x}_{n-2}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp},\left(\mathbf{x}_{n-2}-\mathbf{x}_{n-1}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp}\right. \\
&\left.\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp} \cap \mathbf{x}_{n}^{\perp}, \mathbf{x}_{n-1}^{\perp} \cap \mathbf{x}_{n}^{\perp}\right\}
\end{aligned}
$$

and so the commuting of the imdepotent relations become $e_{n-3, n-2} e_{1}=e_{1} e_{n-3, n-2}, e_{n-2, n-1} e_{1}=$ $e_{1} e_{n-2, n-1}, e_{1} e_{2}=e_{2} e_{1}$ and $b_{n-1} e_{2}=e_{2} b_{n-1}$.

In general we have orbit representatives the $X(\Delta, \Lambda)=X(\Delta, \varnothing, \Lambda)$ of $[3, \S 2.2]$, where Λ is the canonical partition of $\{1, \ldots, n-m\}$ and $\Delta=\{n-m+1, \ldots, n\}$. Let

$$
X(\Delta, \Lambda)=\bigcap_{\lambda_{k}>1} \bigcap_{\{i, i+1\} \subset \Lambda_{k}}\left(\mathbf{x}_{i}-\mathbf{x}_{i+1}\right)^{\perp} \cap \bigcap_{i \in \Delta} \mathbf{x}_{i}^{\perp}, \text { giving } \widehat{e}_{X(\Delta, \Lambda)}=\prod_{\lambda_{k}>1} \prod_{\{i, i+1\} \subset \Lambda_{k}} e_{i, i+1} \prod_{i \in \Delta} b_{i}
$$

If $\mathcal{D}=\mathcal{D}(\Delta, \Lambda)$ is the set of decompositions of (Δ, Λ) as in $\S 2$, then for $\theta=\left(\theta_{1}, \theta_{2}\right) \in \mathcal{D}$, let

$$
e_{\theta}=\prod_{\{i, j\} \in \theta_{2}} e_{i j} \prod_{\{i, j\} \in \theta_{1}} e_{i j} \prod_{\{-i,-j\} \in \theta_{1}} a_{i j} \prod_{\{i,-i\} \in \theta_{1}} b_{i} .
$$

The relations $\widehat{e}_{Y}=\widehat{e}_{Y_{1}} \ldots \widehat{e}_{Y_{k}}$ for $Y \in \Omega_{k}, k \geq 2$, and $Y_{1} \cap \cdots \cap Y_{k}$ reduced, then become $\widehat{e}_{X(\Delta, \Lambda)}=e_{\theta}$, for all pairs (m, λ) consisting of an integer $1 \leq m \leq n$ and λ a partition of $n-m, \Lambda$ the canonical partition of type $\lambda, \Delta=\{n-m+1, \ldots, n\}$ and $\theta \in \mathcal{D}(\Delta, \Lambda)$.

It remains to consider the $s \widehat{e}_{Y}=\widehat{e}_{(Y) s} s$, where Lemma 12 applies equally to type B, while for $Y=\mathbf{x}_{i}^{\perp}$ we can use Lemma 9 from the Boolean case. This leaves unresolved the cases where $s=s_{n}$ or $Y=\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}$, for which the proof of the following is much the same as for Lemma 12:

Lemma 13. Let $\Phi=B_{n}$. Then (i). the relations $s_{n} \widehat{e}_{Y}=\widehat{e}_{(Y) s_{n}} s_{n}$ for $Y=\left(\mathbf{x}_{i}-\mathbf{x}_{n}\right)^{\perp}$ can be deduced from the relations for W, and
(ii). the relations $s_{i} \widehat{e}_{Y}=\widehat{e}_{(Y) s_{i}} s_{i}$ for $Y=\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}$ are implied by the relations $s_{i} \widehat{e}_{Y}=$ $\widehat{e}_{(Y) s_{i}} s_{i}$ for $Y=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp}$, by the $s_{i} a_{i, i+1}=a_{i, i+1} s_{i}(1 \leq i \leq n-2)$; by $s_{n} a_{i j}=a_{i j} s_{n}$ ($1 \leq i<j \leq n-1$), and by $s_{n-1} a_{n-1, n}=a_{n-1, n} s_{n-1}$.

The first part of the Lemma leaves the $Y=\left(\mathbf{x}_{i}-\mathbf{x}_{j}\right)^{\perp}$ for $1 \leq i<j \leq n-1$, ie: the relations $s_{n} e_{i j}=e_{i j} s_{n}(1 \leq i<j \leq n-1)$.

Theorem 7. The arrangement monoid $M\left(B_{n}, \mathcal{H}\right)$ has presentation,

$$
\begin{aligned}
& M\left(B_{n}, \mathcal{H}\right)=\left\langle s_{1}, \ldots, s_{n}, e_{1}, e_{2}\right|\left(s_{i} s_{j}\right)^{m_{i j}}=1, e_{i}^{2}=e_{i}, s_{n-1} e_{1}=e_{1}, s_{n} e_{2}=e_{2}, \\
& \bigcirc-1-1-2 s_{i} e_{1}=e_{1} s_{i}(i \neq n-2, n), s_{i} e_{2}=e_{2} s_{i}(i \leq n-2) \text {, } \\
& e_{1} e_{2}=e_{2} e_{1}, s_{n} e_{2}=e_{2} s_{n}, s_{n-2} e_{1}=s_{n-1} e_{1} s_{n-1} s_{n-2}, \\
& e_{n-3, n-2} e_{1}=e_{1} e_{n-3, n-2}, e_{n-2, n-1} e_{1}=e_{1} e_{n-2, n-1} \text {, } \\
& s_{n} s_{n-1} e_{2} s_{n-1}=s_{n-1} e_{2} s_{n-1} s_{n}, b_{n-1} e_{2}=e_{2} b_{n-1}, s_{n-1} a_{n-1, n}=a_{n-1, n} s_{n-1} \text {, } \\
& s_{i} e_{i, i+1}=e_{i, i+1} s_{i},(1 \leq i \leq n-2), s_{n} e_{i j}=e_{i j} s_{n},(1 \leq i<j \leq n-1) \text {, } \\
& s_{i} a_{i, i+1}=a_{i, i+1} s_{i},(1 \leq i \leq n-2), s_{n} a_{i j}=a_{i j} s_{n},(1 \leq i<j \leq n-1) \text {, } \\
& \left.\widehat{e}_{X(\Delta, \Lambda)}=e_{\theta}, m \text { an integer, } \lambda \text { a partition of } n-m, \theta \in \mathcal{D}(\Delta, \Lambda)\right\rangle .
\end{aligned}
$$

This brings us finally to type D, where the atomic elements are the $A=\left\{\left(\mathbf{x}_{i} \pm \mathbf{x}_{j}\right)^{\perp} \mid 1 \leq\right.$ $i<j \leq n\}\}$, with $e_{i j}$ as in type A, and

$$
a_{i j}=\widehat{e}_{Y}= \begin{cases}\left(s_{j} \ldots s_{n-1}\right)\left(s_{i} \ldots s_{n-3}\right) g^{-1} e g\left(s_{n-3} \ldots s_{i}\right)\left(s_{n-1} \ldots s_{j}\right), & 1 \leq i<j \leq n-1, \\ \left(s_{i} \ldots s_{n-3}\right) g^{-1} e g\left(s_{n-3} \ldots s_{i}\right), & 1 \leq i<j=n, \\ s_{n-2} g^{-1} e g s_{n-2} & i=n-1, j=n,\end{cases}
$$

when $Y=\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}$, and where $g=s_{n-2} s_{n-1} s_{n}$.
The W-orbits on \mathcal{H} are parametrised [3, Proposition 5] by the pairs (m, λ) of an integer $0 \leq m \leq n$ with $m \neq 1$, and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ a partition of $n-m$, except if $m=0$ and all the λ_{i} are even, in which case there are two orbits corresponding to this pair. The rank two subspaces of \mathcal{H} are thus the $X\left(\varnothing, \Gamma,\left\{\left\{i_{1}, i_{2}\right\},\left\{i_{3}, i_{4}\right\},\left\{i_{5}\right\}, \ldots\right\}\right), X\left(\varnothing, \Gamma,\left\{\left\{i_{1}, i_{2}, i_{3}\right\},\left\{i_{4}\right\}, \ldots\right\}\right)$ and $X\left(\left\{i_{1}, i_{2}\right\}, \Gamma,\left\{\left\{i_{3}\right\}, \ldots\right\}\right)$. By [3, Proposition 5] these correspond to four $W\left(D_{n}\right)$-orbits, where we are free to choose i 's at will, as well as Γ in the second two cases, and $\Gamma=\varnothing$ or $\{n\}$ in the first. Thus,

$$
\begin{aligned}
\Omega_{2}=\{ & \left(\mathbf{x}_{n-3}-\mathbf{x}_{n-2}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp},\left(\mathbf{x}_{n-3}-\mathbf{x}_{n-2}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}+\mathbf{x}_{n}\right)^{\perp}, \\
& \left.\left(\mathbf{x}_{n-2}-\mathbf{x}_{n-1}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp},\left(\mathbf{x}_{n-1}-\mathbf{x}_{n}\right)^{\perp} \cap\left(\mathbf{x}_{n-1}+\mathbf{x}_{n}\right)^{\perp}\right\},
\end{aligned}
$$

and so the commuting of the idempotents relations become $e_{n-3, n-2} e=e e_{n-3, n-2}$,

$$
e_{n-3, n-2} s_{n-2} g^{-1} e g s_{n-2}=s_{n-2} g^{-1} e g s_{n-2} e_{n-3, n-2}
$$

$e_{n-2, n-1} e=e e_{n-2, n-1}$, and $s_{n-2} g^{-1} e g s_{n-2} e=e s_{n-2} g^{-1} e g s_{n-2}$.
In general we get orbit representatives the $X(\Delta, \Lambda)=X(\Delta, \varnothing, \Lambda)$ of $[3, \S 2.2]$ where Λ is the canonical partition of $\{1, \ldots, n-m\}$ and $\Delta=\{n-m+1, \ldots, n\}$, except for $\Delta=\varnothing$ and the $\left|\Lambda_{i}\right|$ all even, where we have representatives $X(\Lambda, \varnothing)=X(\varnothing, \varnothing, \Lambda)$ and $X(\Lambda,\{n\})=$ $X(\varnothing,\{n\}, \Lambda)$.

All of which results in the expressions,

$$
\widehat{e}_{X(\Delta, \Lambda)}=\prod_{\lambda_{k}>1} \prod_{\{i, i+1\} \subset \Lambda_{k}} e_{i, i+1} \prod_{\{i, i+1\} \in \Delta} e_{i, i+1} \prod_{\{i, i+1\} \in \Delta} a_{i, i+1}
$$

(which is also valid for $X(\Lambda, \varnothing)$) and $\widehat{e}_{X(\Lambda,\{n\})}=\widehat{e}_{X(\Lambda, \varnothing)} a_{n-1, n}$. Lemma 3 allows us to read off, for $\theta \in \mathcal{D}(\Delta, \Lambda)$,

$$
e_{\theta}=\prod_{\{i, j\} \in \theta_{2}} e_{i j} \prod_{\{i, j\} \in \theta_{1}} e_{i j} \prod_{\{-i,-j\} \in \theta_{1}} a_{i j}, \text { and } e_{\theta}=\prod_{\{i, j\} \in \theta} e_{i j} \prod_{\{i, n\} \in \theta} a_{i n}
$$

for $\theta \in \mathcal{D}(\Lambda,\{n\})$.
Finally the $s \widehat{e}_{Y}=\widehat{e}_{(Y) s} s$ relations, where Lemma 12 also applies to type D, leaving unresolved the cases where $s=s_{n}$ or $Y=\left(\mathbf{x}_{i}+\mathbf{x}_{j}\right)^{\perp}$:

Lemma 14. Let $\Phi=D_{n}$. Then (i). the relations $s_{n} \widehat{e}_{Y}=\widehat{e}_{(Y) s_{n}} s_{n}$ for $Y=\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\perp}$ are implied by the relations for $W, s_{n} e_{j, n-1}=a_{j n} s_{n}(1 \leq j \leq n-2), s_{n} e_{j n}=a_{j, n-1} s_{n}$ $(1 \leq j \leq n-2)$ and $s_{n} e=e s_{n}$;
(ii). the relations $s_{i} \widehat{e}_{Y}=\widehat{e}_{(Y) s_{i}} s_{i}$ for $Y=\left(\mathbf{x}_{j}+\mathbf{x}_{k}\right)^{\perp}$ are implied by the relations $s_{i} \widehat{e}_{Y}=$ $\widehat{e}_{(Y) s_{i}} s_{i}$ for $Y=\left(\mathbf{x}_{j}-\mathbf{x}_{k}\right)^{\perp}$, by $s_{n-2} a_{n-1, n}=a_{n-2, n} s_{n-2}$, by the $s_{i} a_{i, i+1}=a_{i, i+1} s_{i}(1 \leq$ $i \leq n-1)$, by the $s_{n} a_{j n}=e_{j, n-1} s_{n}(1 \leq j \leq n-2)$, by the $s_{n-1} a_{j k}=a_{j k} s_{n-1}(1 \leq j<$ $k \leq n-2)$, and by the $s_{n} a_{j k}=a_{j k} s_{n}(1 \leq j<k \leq n-1)$.

Theorem 8. The arrangement monoid $M\left(D_{n}, \mathcal{H}\right)$ has presentation,

$$
\begin{aligned}
& M\left(D_{n}, \mathcal{H}\right)=\left\langle s_{1}, \ldots, s_{n}, e\right|\left(s_{i} s_{j}\right)^{m_{i j}}=1, e^{2}=e, s_{n-1} e=e, \\
& s_{i} e=e s_{i}(i \neq n-2, n), s_{n-2} e=s_{n-1} e s_{n-1} s_{n-2}, \\
& e_{n-3, n-2} e=e e_{n-3, n-2}, e_{n-2, n-1} e=e e_{n-2, n-1} \\
& s_{n-2} g^{-1} e g s_{n-2} e=e s_{n-2} g^{-1} e g s_{n-2}, \\
& e_{n-3, n-2} s_{n-2} g^{-1} e g s_{n-2}=s_{n-2} g^{-1} e g s_{n-2} e_{n-3, n-2}, \\
& s_{n-2} a_{n-1, n}=a_{n-2, n} s_{n-2}, s_{i} e_{i, i+1}=e_{i, i+1} s_{i},(1 \leq i \leq n-2), \\
& s_{n} e_{j, n-1}=a_{j n} s_{n},(1 \leq j \leq n-2), s_{n} e_{j n}=a_{j, n-1} s_{n},(1 \leq j \leq n-2), \\
& s_{i} a_{i, i+1}=a_{i, i+1} s_{i},(1 \leq i \leq n-1), s_{n} a_{j n}=e_{j, n-1} s_{n},(1 \leq j \leq n-2), \\
& s_{n-1} a_{j k}=a_{j k} s_{n-1},(1 \leq j<k \leq n-2), s_{n} a_{j k}=a_{j k} s_{n},(1 \leq j<k \leq n-1), \\
& \widehat{e}_{X(\Lambda,\{n\})}=e_{\theta}, \theta \in \mathcal{D}(\Lambda,\{n\}), \widehat{e}_{X(\Delta, \Lambda)}=e_{\theta}, m \neq 1, \lambda \text { a partition of } n-m, \\
& \theta \in \mathcal{D}(\Delta, \Lambda)\rangle .
\end{aligned}
$$

References

[1] David Easdown, James East, and D. G. FitzGerald, Presentations of factorizable inverse monoids, Acta Sci. Math. (Szeged) 71 (2005), no. 3-4, 509-520.MR2206594
[2] D. Easdown and T. G. Lavers, The inverse braid monoid, Adv. Math. 186 (2004), no. 2, 438-455.MR2073914 (2005d:20062)
[3] B. Everitt and J. Fountain, Partial mirror symmetry I: reflection monoids, available at arXiv:math/ 0701313 v 2.
[4] John M. Howie, Fundamentals of semigroup theory, London Mathematical Society Monographs. New Series, vol. 12, The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications.MR1455373 (98e:20059)
[5] James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990.MR1066460 (92h:20002)
[6] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992.MR1217488 (94e:52014)
[7] L. M. Popova, Defining relations is some semigroups of partial transformations of a finite set, Leningrad. Gos. Ped. Inst. Uvcen. Zap. 218 (1961), 191-212 (Russian).
[8] Robert Steinberg, Invariants of finite reflection groups, Canad. J. Math. 12 (1960), 616-618.MR0117285 (22 \#8066)

[^0]: Department of Mathematics, University of York, York YO10 5DD, United Kingdom. e-mail: bje1@york. ac. uk (Brent Everitt), e-mail: jbf1@york.ac.uk (John Fountain).

