Partial mirror symmetry Il: Generators and relations

Brent Everitt and John Fountain *

Abstract. We continue our development of the theory of reflection mdsdiy first deriving a presentation for
a general reflection monoid from a result of Easdown, EastRitmjerald for factorizable inverse monoids. We
then derive “Popova” style presentations for reflection aids built from Boolean hyperplane arrangements and
reflection arrangements.

Introduction

In [3] we initiated the formal study of “partial mirror symnmg’—the theory of monoids gen-
erated by partial reflections. The principle acheivemehth@theory to date, after identifying
and formulating the notion itself, are to observe a numbesxaimples of reflection monoids
occuring in nature and determine their orders.

In this paper we continue the programme with a general ptasen for reflection monoids,
which we then interpret for a number of the key examples.dfistlly, this goes back to Popova
[7], who gave a simple presentation for the symmetric irer®noid.#,, with generators the
transpositiongi,: + 1) € &,, (the standard Coxeter generators &y as a Weyl group) and a
single idempotent. Just as the symmetric group is the “sstpfamily of finite (real) reflection
groups, so the symmetric inverse monoid is the simplestiyaohfinite real reflection monoids.
In our language., is the Boolean reflection monoid of typk,_1, just asS,, is the Weyl group
of type 4, _1.

We thus recover Popova’s presentation from our generalaan@ell as a number of others of
course. There are other interesting “geometric” integdrens of the Popova presentation: it was
recovered in [2] from a presentation for the “braid monoid’rostrands, much as one recovers
the Coxeter presentation f@&,, from a presentation for Artin’s braid group.

This paper is organized as follows: we remember reflectionaitierminology from the first
paper in the series iflL. The idempotents in our monoids offer many of the diffi@dtin writing
presentations, so they deserve a special sec§@naf their own. Our general presentation is
then Theorem 1 0§3, obtained by massaging a presentation for factorizalvierse monoids
obtained recently in [1]. The last two sectiofi$4-5 interpret the various ingredients of Theorem
1 and perform a few more simplifications for the Boolean aifiécgon arrangement monoids.

1. Preliminaries on reflection monoids

We summarize the notation and conventions of the first paptre seriesl’ is a vector space
over a fieldF andW < GL(V') a group generated by reflections. The main theorems of the
paper in§3 work at this level of generality, but later we will restrict the casé&” = R and W
finite, in which caséV = W (®) is determined by a root systednin V. In particular we shall
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Type Root systend Coxeter symbol and simple system
X2 — X3 Xn—1 — Xn
Ani(n22)  fxi—x; (1<i#j<n) O—O0—  —0—=O0
X1 — X2 Xn—2 — Xn—1

Xn—1 — Xn

X2 — X3
D, (n>4) {txitx; 1<i<ji<n)} o—-:0 - Xy 9 — Xy 1
X1 — X2
Xp—1 1 Xn
B, (n>2) {xx; (1<i<m), O—méﬁ ..... _O%
A= tx;tx; (1<i<j<n)} X1 = x5 X0 1 %),

Table 1. Standard root systends C V for the classical Weyl groups [§2.10].

be concerned with the finite crystallographic\Weylgroups, determined by the Euclidean root
systems, with the finite classical systems of tyde®) and B given in Table 1. We will always
use these versions.

A systemB for W in V' is aW-invariant collection of subspaces closed under inteisect
and containingV. If (2 is any collection of subspaces we writ€)y, for the system foilV/
generated by th€. The principal example for us is the intersection lattid¢ed) of a hyperplane
arrangement4, which we order by reverse inclusion. In particular, the Baa systems arise
from A the coordinate hyperplanesihand the arrangement systems frghthe set of reflecting
hyperplanes ofV.

A partial isomorphism ofl” is a vector space isomorphisi — Y between subspaces
X,Y of V. A partial reflection is a partial isomorphism obtained bgtrieting a reflection
s € GL(V) to a subspace. A reflection monoid is a factorizable inversaaid generated by
partial reflections. Alternatively, for a reflection grolip and systent3 for W, it is the set of
partial isomorphisms of the form.

M(W,B) ={g9x g € W, X € B},

whereg is the partial isomorphism obtained by restricting thellfisomorphismg to X. The
units are they € W and the idempotents the partial identitieg that are just the identity map
X — X.

If W =W () is a Weyl group and the Boolean system fd#” thenM (W, B) = M (&, B)
is called a Boolean (reflection) monoid. Similarly, with taerangement systeri{ we get
M (@, H) the (reflection) arrangement monoids. The third principaheple defined in [3§4.2]
is a reflection monoid intimately associated to a conneaddative algebraic monoll with
0. We leave a detailed investigation of this to a later date.

2. Idempotents

All the presentations in this section (and the next) will benmid presentations, (see, eg: [4,
§§1.5-1.6]) ie: if S is a set, letS* be the free monoid o$ and if R C S* x S*, let (R))
be the smallest congruence 8f containingR. Then a monoidV/ has presentatioqS | R ) if

M = S*/(R)) or, equivalently, if there is a surjective monoid homomasphy : S* — M
with kernel ( R)); we say that\/ has presentatiofS | R ) via .

The idempotents in a reflection monoid present their ownd@nsubtleties, and for this
reason it is worth dealing with them separately. l(etbe a finite set of subspaces of finite
dimensional/, andB = (12) the system of subspaces f6rc GL(V') generated by?. Recall
[3, §2] that if all the X € (2 have the same dimension then orderfhgy reverse inclusion gives
an atomic poset with atomd = {Xg | X € 2,9 € G}.
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We will want to keep track of the essentially different wapssdement of3 can be expressed
as an intersection of atoms. To this end, fix a total ordefiraf the atoms, so that an intersection
of atomsX; N---N Xy isreducedf X; < --- < Xg. If () X is any intersection of atoms, then
reordering theX; with respect to< and removing redundancies gives a reduced intersection.
Write () X;/= for this reduced reordering.

Let E be the semilattice of idempotentsi(G, B) ande (X € A) a collection of symbols
parametrised by the atoms. F8t= B\ {V} and for each” € B’ fix a reduced intersection
Y =X;N---NXgwiththe X; € A, and lete,- stand for the expressiarny, ... ey, . We agree
thate,, = e,- whenY € A.

Proposition 1. £ has presentation,

E=(ex (X € A)|ek =ey, exey =eyey forall X,Y € A,
€y =ey, ...ey, forallY € B'andY = Y1 N---NY; reduced

viaey — ey.
Proof. We start with the “multiplication table” presentation
E = <€Y (Y S B/) ’ eXeY = eXﬂY fOI’ a” X,Y S B/>,

from which we can deduce the relatioss = e for all X € A, andeye, = ey ey for all
X,Y € A. Similarly, if Y € B'andY = X; n--- N X} the reduced intersection chosen for
Y with Y = ¥1 N ---NYj any other reduced intersection, we can dedyce= ey, ...ey, =

ey, - - - €y, i€l the relationey. = ey, ...ey . Add all these to the relations in the presentation
above. Usey = ey, ...ex, toremove generators and replace each occureneg by ey, so
that

E={ex (X €A)|ex =ey, exey =eyex foral X,Y € A,
ey = ey, ...ey, forallY e B’ andY = Y1 N---NY; reduced
/B\me - /B\X/B\Y for a” X,Y € B/>

We can deduce and hence remove the last family using thehiest:tletX, Y € B with X =
X1 N---NXyandY = X9 N --- N Xy the reduced intersections chosen MrandY’, so
thatey = ey, ...ex  andey =ey, ...ey,, . Using the commutativity and idempotency of
intersection we canwrit& NY = (X11N---NXy) N (X1 N NXop) =X, NN X
with the last a reduced intersection and thes {11,...,1k,21,...,2¢}. These manipulations
can be mirrored ie y ey using the first two families of relations so that

/e\X/é\Y = eXil e eX

m

On the other handX NY = X;, Nn--- N X, areduced intersection gives, by the third family
of relations, thaty -y = ey, ...ey, - O
In §84-5 we will want to be quite specific about the presentatiofPafposition 1 for the
Boolean and arrangement reflection monoids associatea toldlsical Weyl groups. This en-
tails a description of the possible reduced intersectionaif arbitraryYy” € .
Let W = W(®) be a Weyl group with? a root system as in [3, Table 1] (see also Table
1 of this paper) and3 = (xi,...,x; ) Boolean with atoms the; . Totally ordering.A by
x{ < -+ < X, we havex;- N --- N x}k is reduced if and only if; < --- < 4. In particular,
there is a unique reduced intersection for each element afodeBn system which reflects the
fact thatB is the free semilattice (with identity) ad. e Should we give a
In an arrangement system however, there may be many distidated intersections for a reference for this?
given element. Recall [32] that in this situation we havB = L(.A), the intersection lattice of
the arrangementl of reflecting hyperplanes fdi/. We parametrize the reduced intersections
for L(.A) with respect to some& on A4, the reflecting hyperplanes of the Weyl grodp(®), for
¢ classical, recalling the description b{.4) and notation of [3§2].
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First a general definition; I€f’ be a set, and a collection of distinct two element subsets
{i,j} < T. A subsetl” C T is connected by if it is a singleton or for everyr,y € T’,
there are distinct subsefs$,, j1}, ..., {im,jm} € 0 such thate € {i1,j1}, v € {im,jm} and
{ir, 7k} N {ik+1, jr+1} # @ (@and thus they have a single element in common). A subsgét of
that is maximal with respect to being connecteddby a connected component.

Starting with the Weyl grougV’ (A4,,—1), let I = {1,2,... ,n} andA = {A;,..., 4.} a
partition of /. A collectiond of two element subsets dfis adecompositiorof A if the blocks
Aq, ..., A, are the connected components with respeét tioet D(A) be the set of decompo-
sitions of the partitionl. We refer the reader to [32] for the definition of the subspacg(A)
and note that the proof of the following is now elementary:

Lemma 1. The mapd — Ny, j1ep (x; — x;)-/= is a bijection fromD(A) to the set of reduced
intersections of the subspad¢g(A) € L(A).

Turning now toW (B,,), we describe the reduced intersections of a subspace obthe f
X(AA) = X(A,2,4). A decompositiord = (0,6,) of (A, A) is (a). a decomposition
6, of the partition/, and (b). a collectior; of distinct subsets ofA* := A U (—A) of the
form {i, —i}, {i,7} and{—i, —;}, whose union isA*, and is such that i/, is a real space
of dimension|4|, then the system of homogeneous linear equatigns: 0, ({7, —i} € 6;),
xzi—x; =0,({4,5} € 61) andx; + z; = 0, ({—i,—j} € 61), has no non-trivial solution.

Writing D(A, A) for the set of possible decompositions(af, 4), we have,

Lemma 2. The map

9!—>{ ﬂ (xi—xj)Lﬁ ﬂ (xi—xj)Lﬁ m (Xi—i-Xj)J'ﬂ ﬂ Xf‘}/j,

{i,j}€02 {i,5}€01 {—i,—j}€b:1 {i,—i}€0:
is a bijection fromD(A, A) to the set of reduced intersectionsXfA, &, A).

Proof. We havex = (z;) € X(A, @, A) ifand only if z; = 0 for i € A andx; = x; for ¢, 7 in
the same block of the partition. In particular, if an intersection fak has intersectanst- or
(x; +x;)%, then{i, j} C A, and the result follows. O

Finally, for W (D,,) we describe the reduced intersections of the subspaces dbtim
X(A,2,A4) and X(2,{k},A), 1 < k < n. In the first case, a decomposition= (61, 6)
of (A, A) = (A, 2, A) is (a). a decompositiofl, of the partitionA, and (b). a collectiord; of
distinct subsets ofA* := A U (—A) of the form {4, j} and{—i, —j}, whose union isA*, and
such that ifi74 is a real space of dimensig¢d|, then the system of homogenous linear equations
zi—x; =0,({,5} € 61) andx; + z; =0, ({—i,—j} € 61), has no non-trivial solution.

A decompositiond of (A,{k}) := (@,{k}, A) is a collection of distinct subsets of of
the form{i, j} < I\ {k} and{i, k}, with < andk in the same block, and such that the blocks
Ay, ..., A, are the connected components.

Writing D(A, A) andD(A, {n}) for the sets of decompositions in the two cases, the proof
of the following is similar to Lemma 2.

Lemma 3. The map
0 — { m (Xi—Xj)J'ﬂ m (Xi—Xj)J'ﬂ ﬂ (Xi—l-Xj)J'}/j,
{iuj}EGQ {iuj}eel {_iv_j}eel
is a bijection fromD(A, A) to the set of reduced intersectionsXf{A, @, A), and the map,
0 — { ﬂ (x; — Xj)l N ﬂ (x; —I-Xn)l}/j,
{i,j}€0 {i,k}€b

is a bijection fromD(A, {k}) to the set of reduced intersectionsX{a, {k}, A).
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3. A presentation for reflection monoids

The main result of this section, Theorem 1 below, is a present for the reflection monoid
M (W, B) in the case that the systeh= (2)yy is generated by a collectiof? of subspaces alll
having the same dimension, as is the case for instance Whea hyperplane arrangement. The
main technical tool is a recent presentation for factofizétverse monoids, Theorem 2 below.

First we establish the notation and conventions necessasyate the theorem. Lél" C
GL(V) be a reflection group with generating reflectiofignd B = (2)y a system of sub-
spaces folV/. As usualB has atoms the subspacds:= 2W. Let {2, be a fixed set of orbit
representatives for thé -action on the rank elements of3. In particularf(?, is a set of repre-
sentatives for thél/-action onA. Lete, (X € §2;) be a collection of symbols parametrised by
.

For eachy € W we fix a wordg = s7 ... s, in the generators$' representing;, agreeing
thats = s whens € S. ForY € A, we fixag € W with Y = (X)g for someX € (2,
and writee, for the words, ' ... s ey s1...s;. For eachY” € B fix a reduced intersection
Y = X1N---NX} with respect to some& on A, and letey stand for the expressiany, ... ey
In all cases we take,. = e,- whenY € (2;.

Finally, and possibly somewhat cryptically, &t be a set of pairgf, (X)g) with X € B,
g € W and f a generator for the isotropy grodf x),, such that the following holds: i¥ is
any element of3 andt a generator for the isotropy grodpy, then there is &f, (X)g) € ¥
with X <Y andt = gfg~".

6

Theorem 1.With the notation above, the reflection mondi{ W, B) has presentation,

M(W,B) = (s € S, ex (X € £2)] relations forW, e% = ey for X € (24,
exey =eyey for X NY € (2,
ey =€y, ...¢y, foryY e Ok >2,
and anyY = Y1 N ---NY,, reduced,
sey =eysfor(s,X) e S x A,

~

/E\ng :/e\Xg for (vag) € E>
vias— sandey — ey.

Theorem 1 follows by massaging a presentation for factblizieaverse monoids supplied by
[1], which we now summarize.

SupposeV/ is a factorizable inverse monoid with group of unifs= G(M ), semilattice of
idempotentsty = E(M), and(S¢ | Ra ), (Sk | Rg ) monoid presentations fax and E. For
g € G, fixawordy for g in the generator$ and similarly a worce in Sg for e € E, with
the conventions above applying whene S; ande € Sg. There is anti-action off on £
given bye — geg~' € E, allowing us to fix a word inSg for geg—! also. For eacl € E let
G.={g € Gleg = e}, andX, C G, a set of monoid generators fof. .

Theorem 2 (1, Theorem 6). The factorizable inverse monold has presentation,

M = (Sa, Sg| Ra, R, ge = geg— - gfor (g,¢) € S x S,
ét=¢cforec E,t € X,).

We now interpret the various ingredients in the case thatawve la reflection monoid/ =
M (W, B), whereG is the reflection group?” with generating reflectionS, andE is generated
by theey for X € A by Proposition 1.

If s € S ande for X € Ais a generating idempotent, then, s~' = ¢, whereX's € A,
as.A is W-invariant. Thus the relations

ge =geg—t-gfor(g,e) € Sg x Sg,
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in Theorem 2 becomeey, = ey sfor (s,X) e S x A lf e=¢y,thenG, = {g € W|eyg =
ey }, Where for anyr € Y we haveze, g = z¢y, iff zg = z, ie: G, is the isotropy groupVy .
Thus we may take fo’, any generating sefy for the isotropy grougVy-, although in many
situations there will be particularly nice onesJif is a complex reflection group for instance,
Steinberg’s Theorem [8] allows us to take féy the reflections in the hyperplanes containing
Y, and from now on we shall do this.

Thus the relationg? = efore € E,t ¢ ¥, becomeéyt = &, for Y € B,t € Sy.
Summarizing,

Corollary 1. If W C GL(V) is a reflection group ands = ({2)y with atoms.A the X ¢ for
X € 2andg € W, thenM (W, B) has presentation,

M(W,B) = (s € S, ex (X € A)| relations forW, €3 = e for X € A,
exey =eyey for XY € A
ey =ey, ...ey forY € BY =Yin---NYj reduced,
sexy =ey sfor(s,X) eSS xA,
eyt =8y forY € B,t € Sy).

Deducing Theorem 1 now becomes a matter of removing reatom generators (in that
order) from the presentation in Corollary 1. Before we doaglance at the presentations in
Corollary 1 and Theorem 1 masks the considerable savingiergeors and relations of the latter
over the former, as we shall see in the next two sections. ¥ample, in the Boolean monoid
of type A,,_1, Corollary 1 gives: idempotent generators, relations of the forme3. = e, and
n(n — 1) relations of the forne y e, = ey-ey.. There ar&™ subspacey¥” in the Boolean system,
and ifY = x}l n---N Xz‘t is one of them, then a standard generating selifer hask — 1

reflecting generators, for a total 8f~'n(n — 1) relations of the forne, ¢ = &,. Theorem
1 on the other hand gives a single idempotent generatorgéesoempotent relation, a single
commuting idempotents relation, and a single relation efiéist kind.

First, we deduce some useful intermediate relations:

—

Lemmad4.LetX,Y € BwithY = Xg. Then one can dedué = g—! ¢ g from the relations
in Corollary 1.

Proof. We deal first with the case thaf andY” are atomic, where we require only tke, =
ex4s relations. In particular, ifjf = s1... s, thensiey = ey, s1, henceey, = 57 ey s
Proceeding by induction, if

-1 -1
€xsys = (S, ---51 )ex(s1...8),

then X's;...s; € A, aW-invariant set, thus the relatiofy ey, . =
Corollary 1 gives

eXsl...si+1Si+1 of
— (o1 ~1 4
€Xs1.8i41 (3i+1 RS Jex(s1---8it1),

and soey, = (s;'...s7 )ex(s1...5x). Suppose now that, = ex, ---ex, With the X;

atomic. AsY = Xg = X39 N --- N Xyg, with the X; g also atomic, we gety = ey, ... ey
with Uy n---N U, = X1gN--- N X,,g/ <. The commuting of the idempotents then gives
€y =ex,,---€x, 4 andso

é\Y:HeXig:H;_\leXiua:g/_\l'Hexi':‘7\:9/_\1/6\)(?]\-
O

Now to the thinning out of the relations. L&t be a set of pairéf, Xg) with X € B,g € W
and f € Sx, a generator fofVx, as in the preamble to the statement of Theorem 1, ie: such
that for anyY” € B andt € Sy thereis af, Xg) € ¥ with X <Y andt = gfg".
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Lemma 5.The€YtA: ey forY € B,t € Sy are implied by the?ng: ex, for (f,(X)g) €
X, the idempotent relations and the, = es.

Proof. Observe first that th’éng: ex, are indeed a subset of thet = . As X <Y we
haveY = Y N X giving &, = £y and so we can dedu¢g. = ey-ey from the idempotent
relations. Thus,

— —

eyt =eyexgfgl =eygex)fot =evgex 9t =eyvexgg ! =ey,
via the assumption and two applications of Lemma 4. O

In the next two lemmas we use thE-action onB to thin out the idempotent relations. If
X,Y € B,Y = XgandY = YiN---NY,, areduced intersection, thédg—'N---NY,,g~ /=
is a reduced intersection foY, from which, together with the commuting of the idempotents
we deducey, = €y, g1 Cyjg1-
Lemmab.LetX,Y € B,withY = XgandY = Y; N---NY}; any reduced intersection. Then
ey = ey, ... ey, isimplied byey = €y, g1 -y, g-1n theeyey = ey ey andthesey = ey s.

Lemma7.(j). Let X, Y € Aandg € W withY = Xg. Then the relatior? = e, is implied
by the relatione% = e and thesey = ey,s.

(i). Let X;,Y; € A, (i = 1,2) andg € W withY; = (X;)g, (: = 1,2). Then the relation
ey, €y, = €y,€y, isimplied by the relatior . ey = ey ey andthesey = ey, s.

The proofs of both are an easy application of Lemma 4. Finakyhave the

Proof (of Theorem 1)Lemma 5 allows us to reduce t@? = ey, forY € B,t € Sy to

the €ng = €Xg for (f,Xg) € X.If {2 is a set of orbit representatives for thig-action
on the rankk elements of3, then theey, = ey, ...e,, for Y € B relations can be reduced
to the cases wher¥ < (2, for k > 2. By Lemma 7(i) we may replace tr@ = ey, for
X € AW, by thee§( = ey, for X € 2,. The pairsX # Y € AW correspond to the rank two
elementsX NY € B,andag X NY)g = (X)g N (Y)g, theeyey, = eyey, for X, Y € AW
can be replaced, using Lemma 7(ii), bye,, = eyey, for X NY € (2. So much for the
relations. For everyy” € AW there is anX € (2; with ey, = (si...s1)ex(s1...s%), and
so we remove these superfluous generators, replacing eaatence ok, in the relations by
ey = (8k...s1)ex(s1...5k). 0

4. “Popova style” presentations for the Boolean monoids

In this section we recover Popova’s presentation [7] forsyrametric inverse monoid by inter-
preting it as the Boolean monoid of typeand then using Theorem 1. We also do the same for
the typeB and D Boolean monoids.

Let ¢ be a root system as in Table B, = L(.A) the intersection lattice of the Boolean
arrangementd = {xi,...,x; } (with AW = A) andX;, ;, := x;; N--- Nx;.. We observed
in §1 that eachX;, ; has a unique reduced intersection with respect to the oigléfy, <
-+ < Xp, sotheey, = ey, ... ey, relations are vacuous. Th&-action on the rank elements
is transitive, so in particulaf?; and {2, each have a single element, s&y, and X,,_; ,,. Let
e:= ey ,ands;, (1 <i < n— 1), the reflection in the hyperplane orthogonakio- x;;. We
chooseX; = (X,)sp—1...5; SO thate := (Si-. Sn—1)€(Sp—1...5).

The result is that the monoids have generators tfe simple reflections fdi’) ande, with
the relationse% = ey (X € 1) juste? = e, and the relationg ey, = eyey (X NY € ()
reducing to the singles,,_1es,_1 = s,_1€Sy_1€.
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Now to theé(X)gf = Q(X)g for (f,(X)g) € X. Any X;, ;. € B has isotropy group a
reflection group, generated, according to Steinberg’s fdmpby reflections in the hyperplanes

containingX;, ;.. Indeed, we can take

@ isotropy groupWx, . b))
An_l <SV ‘V =X _Xj7 {Zaj} C {Zlaazk}> (Sn—laXn—l,n)
. . . 1, Xn—1n),
B,  (sy|v==Ex;£x;,+x;, {i,j} C{ir,...,0}) {(sn (317))( )
.. . . Sn—1, Xn—1.n),
Du fsvlv =g, (g} i) ek

with s,, the reflection in the hyperplane orthogonalxtg in the typeB case, and in the hyper-
plane orthogonal tx,,—; + x,, in the typeD case. Notice that a8 andt € Sy vary, so do
X andg in the pair(f, (X)g), but (X)g and f remain constant: for example in typg if ¢ is
the reflection in the hyperplane orthogonalxp— x; (j < n), then we takeX = X;;, and
g=1(sj...5n-1)(8i...5n—2),0lving (X)g = X,,_1, andf = s,,_1, irrespective of and;.

The relations are thus,_ies,_1es,—1 = sn,—1esn,—1¢e in all three cases, withs,, = ¢ as
well in type B ands,,_1es,_1€8, = Sp_1€Sp_1€ intypeD.

We pause to observe that in some sense the geometry of th&ystems is reflected in these
relations. It is a fundamental fact thatdfis an irreducible crystallographic root system, then
the associated Weyl groufy (®) acts on® with orbits the roots of a given length. Thus there
is a single orbit o in types A, D, E (where all the roots are “long”) and two orbits in types
B, F,G (where roots are either “short” or long). In particular thensitivity in type A is the
reason for the single pair if, while the two orbits in type3 result in two pairs.

This completes the presentation given by Theorem 1 for th@leBm monoids, but it turns
out that the relationsey = Q(X)Ss for (s,X) € S x A can also be significantly reduced in
number:

Lemma 8. The relationss; ex; = €(x;)s,;sifor1 <i <n—1andl < j < n are implied by

the relationss; ex, = é\(Xn)siSi for 1 <7 <n —1, and the relations foil’.

Proof. By examining the various possibilities for the subspake)s;, it is to be proved that the
relations

/e\XjSiv Z#]_Lj?

sing = /G\Xj,lsi, 1= ] - 17

é\Xj+13i7 1= ja
follow from the given relations, for which there are four eato consider: (i)1 < i < j — 1:
the reflections; commutes withs;, . . ., s,,_1 ande, giving the result immediately. (i) < i <
n—1:

= (8j...5i-18iSi—1...Sn—1)e(Sp—1...5;) = (8j...5p—1)si—1€(Sp—1...5;)

= (55...8n-1)eSi—1(Sn—1---5) = (Sj .- Sn—1)e(Sp—1...8i-18iSi—1...5;)

=(s5...5n-1)e(Sp—1...8iSi—18;i...5j) = (Sj...Sn—1)€(Sn—1...5;)Si

= €x; si,
where we have used the relatiofis_1s;)® = 1 in their “braid” form s;_1s;s;_1 = s;8;_15,
and the commuting of;_; ande. (iii). i = j —1:s;_1€x; = sj-1(5j ... sp-1)e(Sn—1...5;) =
(8j-18j -+ Sn—1)e(sn—1...85)8j-158j—1 = ex,_;sj-1 (V). i = j: sjex, = s;j(sj...5n-1)
e(sn—1---85) = (Sj41---Sn—1)e(Sp—1...57)8j5; = €x;,,5j- a

Putting it all together in the typd case, and observing théX,,)s; = X,, wheni # n — 1,

and(X,)sn,—1 = X,,—1, we get Popova’s presentation for the symmetric inverseadi],
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Theorem 3.The Boolean monoid/(A,,_;, B) has presentation,

M(Ap—1,B) = {(s1,...,8n-1,¢]| (si8;)™5 =1, e* = e,
sie =-es; (i <n—2),

O—O_ _____ _O—O €Sp—1€Sp—1 = Sp—1€Sp—1¢€,

81 S92 Sp—2 Sn—1 Sn—1€8n—1€Sp—1 = Sp—1€Sp—1€)

The relations;ex, = Q(Xn)sisi is vacuous whem = n — 1. Recall that then;; can be read
off the Coxeter symbol (which is why we have included it), las hodes are joined by an edge
labelledm;; if m;; > 4, an unlabelled edge if.;; = 3, no edge ifm;; = 2 andm,; = 1 if and
only if i = j.

Lemma 8 leaves unresolved in typBsand D the status of thee, = é(X)Ss relations when
S = Sy

Lemma 9.1f & = B, then the relations,, ex; = €(x;)s, sn for 1 < j < n are implied by the
relationss; ex,, = €(x,,)s;8i for 1 <i <n — 1, the relations, ex, , = ex, _,sn, the relation
sn€x, = €x, S, and the relations fo#l.

Proof. Forl < j <n —2,
Snex; = sn(Sj.--Sn-1)e(sn-1...55) = (85 ... 8nSn—1)€(Sn—1---5;)

= (Sj e Sn)/e\X7L718n_1(Sn_1 e Sj) = (Sj e 3n—2)/e\Xn,13n(3n—2 e Sj)

= 6Xj3n-
O

Again we have(X,,)s; = X, wheni # n — 1, and(X,)s,—1 = X,_1, resulting in a
presentation,

Theorem 4.The Boolean monoid/ (B, B) has presentation,
M(Bp,B) = (s1,...,sn,e]| (sis;)™ =1, €2 = e,
sie =es; (i <n—2), spe = esy,
4 SnSn—1€Sp—1 = Sp—1€Sp—15n,
S1 52 Sn—1 Sn €Sp—1€Sp—1 = Sp—1€Sp—1€, €Sy = €,
Sp—1€Sp—1€Sp—1 = Sp—1€Sp—_1€).
The proof of the following is analogous to Lemma 9:

Lemma10.I1f & = D, then the relationss, ex; = €(x,)s,s» for 1 < j < n are implied
by the relationss; ex, = €(x,)s,5i for 1 < i < n — 1, the relationss, ex, , = €x,_,5n,
Sn€X,_, = €X, Sn, Sn €X, = €x,_,Sn, and the relations foil’.

Together with(X,,)s; = X,, wheni # n — 1,n, and(X,,)sp—1 = (Xn)sp = Xp—1, We
have,

Theorem 5.The Boolean monoid/ (D,,, B) has presentation,

M(Dy,B) = (s1,...,8n,¢e| (si8;)™i =1, e =¢, sie =es; (i <n —2),

Sp—1
Sp€ = Sp—1€Sp—18n, €5n—-1€Sp—1 = Sp—1€Sp—16€,
SnSn—1€Sp—1 = €Sp, Sp—-1€5p—1€Spn—1 = Sp—-1€Sp-16€,
...... : : Sn—1€5p—1€Sp = Sp—-1€5p—16€,
Sn Sp—2 52 S1

SnSn—25n—1€8n—15n-2 = Sn—257_1€Sn_15n-25n)-
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5. “Popova style” presentations for the arrangement monoid

We now repeat the process of the previous section, but foartagement monoids of types
A, B and D. Much is similar, but the non-uniqueness of reduced exfmesdor subspaces in
the arrangement systems does complicate matters a little.

Let W = W (&) with @ in Table 1 andH the associated arrangement system. Either using
the results of [3§2.2], or the classical fact that a Weyl group acts tranditiem the roots of a
given length, we get th&/-action is transitive on the reflecting hyperplanes in tydesnd D
and has two orbits, corresponding to the long and short rémtsype B. We take

2 = (X1 — x,) " fortypesA, D and2; = {(x,_1 — x,)",x;} for type B,

r

giving generators the; ande for typesA and D or thes; andey, es for type B, and relations
the usual(s;s;)™i = 1 together withe?> = e ore? = e¢;, (i = 1,2).

We start with the sel, for which the following is one of the nicest properties o tirrange-
ment monoids from a presentation point of view:

Lemma 11l.LetW C GL(V) be a reflection group with arrangement systefiand (2; a set of
orbit representatives for th#/-action on the hyperplanes &f. ThenX = {(s, X) | X € 2},
wheres is the reflection in the hyperplang.

Proof. Let Y’ € ‘H andt a generating reflection for the isotropy groupdf, which by Stein-
berg’s Theorem is a reflection in a hyperplanavith Y C Y’. There is thus aiX € 2, and a
g € Wwith Y = (X)g with the pair(s, X) fulfilling the obligations of the set’ for the pair
(Y’ t). 0

The relation§(X)gf: Q(X)g for (f,(X)g) € X are thuss,,_1e = e in typesA and D, and
Sp—1€1 = €1, Spea = e intype B.
Concentrating now on typd, we have the atomd = {Y = (x; —x;)1 |1 <i < j <n},

and we writee;; := e, for Y = (x; — x;)+, with

o — (S5 Sn—1)(Si-..Sn—2)€(Sp—2...8;)(Sn—1...55),for1 <i<j<n-1,
) (Si...Spn—2)e(Sp—2...5i) fori<i<n-—2,j=n.

Recall from [3,52.2] that there is a lattice isomorphisth+— X (A) from the latticeP(n) of
partitionsA = {A;,...,A4,} of [ = {1,...,n} to’H, and thelV-orbits are parametrised by the
corresponding partitions = (A1, ..., A,) of n, where); = |4;|.

The rank two subspaces Hi are theX (A) for A a partition of the formA; = {{i1,i2}, {is,
is},{is},...} whenn > 4, or Ay = {{i1,42,i3},{ia},...}. Indeed, by [6, Proposition 6.72]
(see also [3, Proposition 3]), the partitiols and /- are representatives for th&-action on
the rank two elements G?(n), giving,

(22 = {(Xn—3 - Xn—Q)J_ N (Xn—l - Xn)J_y (Xn—2 - Xn—l)J_ N (Xn—l - Xn)J_}'

Thus theey ey, = ey ey (X NY € ) family of relations reduces te, 5, se =ce, 5,
anden—?,n—le : een—?,n_—l' .
If the canonical partition of type\ = (A,..., ) is

A={L ... o b+ o+ Xl L A+ AL

then we may take th& (A) below, for A canonical, as a set of orbit representatives, for which
we fix the reduced intersection,

X(4) = m m (xi —Xi1)", giving gX(A) = H H €iit1-
A>1 {i,i+1}CA Ap>1 {i,i+1}C A,
If 6 is a decomposition ofl as in§2, let

{i,j}€06
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The family of relationsey = ey, ...y, forY € 4,k > 2, andY; N --- N Y} reduced, then
becomes, by Lemma 1, the famﬂy((/l) = e, for all partitions\ of n, A the canonical partition

of type A andf € D(A).
As with the Boolean monoids, the family of relationg,, = é(X)Ss for (s,X) € S x Acan
also be reduced in number:

Lemma 12.If Y = (x; — x;)*, (1 < j < k < n), then the relations; ey = €yys;Sin (1 <1<
n — 1) are implied by the relations;e , = é(X)S_si, (1<i<n-—1)for X = (x,_1 —xp)",

and the relations:;€y = €y, si, (1 <@ <n—2)forY = (x; — x;1) "

Proof. A case by case approach similar to Lemma 8. O

The relations are thuse = es;, (i # n — 2), Sp—26 = Sp—1€Sp—15p—2 ands;e; ;1 =
e; i+15: for (1 <i <n — 2). Putting it all together

Theorem 6.The arrangement monoitl/ (A4,,_1,H) has presentation,

M(Ap—1,H) = (s1,...,8n—1,€]| (si8;)™7 =1, e =e,s,e = es; (i #n — 2),

Sp—1€ = €, Sp—2€ = Sp_1€5p_15n-2,

O— O —O——0  n-3n26=CCh s,
en—Z,n—le = een—2,n—17

€X(A) = ey, A a partition ofn, 0 € D(A)).

Now to typeBB, where the atomic elements Bf are the
A={(x;+x,)"|1<i<j<n}u{x;|1<i<n},
with e;; defined as in typel, except that, replaces,

(85 Sn—1)(Si--Sn—2)Sn€15p(Sn—2...8i)(Sp—1...85), 1 <i<j<n—1,
ajj =€y =4 (8i...5n—2)Sn€15n(Sn—2...5i), 1<i<j=n,
Sn€1Sn 1=n—1,57=n,

whenY = (x; + xj)l, andb; ;= ey = (s;...5p-1)e2 (Sp—1...s;) whenY = xf-.

The W -orbits on’H are parametrised [6, Proposition 6.75] (see also [3, Pitipogl]) by the
pairs(m, \) of an integef < m < n and a partitiom\ of n—m. The rank two subspaceshfare
thus parametrised by ﬂ’(@, L, {{i17i2}7 {i37 Z.4}7 {i5}7 .- })’ (®7 L, {{ilv 12, i3}7 {i4}7 e })’
({ir}, Iy {{i2, i3}, {ia},...}) and ({i1, 2}, I, {{i3}, ...}). By [3, Proposition 4] these four
correspond to foubV-orbits, where we are free to choose and the values of thés, at will.
Thus,

L 1 L L
92 = {(Xn—i’) - Xn—2) N (Xn—l - Xn) 3 (Xn—Z - Xn—l) N (Xn—l - Xn)
LAyl L i
(Xn—l - XTL) X, X1 N Xn}
and so the commuting of the imdepotent relations become,,_,e1 = e1e,_5,, 2,6, 9, 161 =
€1€,_9 1) €162 = €2€] andb,,_1es = egb,_1.

In general we have orbit representatives ¥\, A) = X (A, @, A) of [3, §2.2], whereA is
the canonical partition of1,...,n —m}andA ={n—m+1,...,n}. Let

XAa0= () —x) ' n()x gvingexan= 11 e [0

Ae>1 {ii+1}C AR i€A A>T {ii+1}CA,  i€A
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If D =D(A,A) is the set of decompositions 6\, A) as in§2, then ford = (0;,6,) € D,

let
€y = H €ij H €ij H Qi H bl
{igreb  {ijreor {—i,—jteb {i,—i}eb:
The relationsey,. = ey, ...ey forY € (4, k > 2, andY; N --- N Y} reduced, then become
QX(A A) = € for all pairs (m, \) consisting of an integet < m < n and\ a partition of
n — m, /A the canonical partition of typg, A ={n —m+1,...,n}andd € D(A, A).

It remains to consider thee, = é(y)ss, where Lemma 12 applies equally to type while
for Y = x;- we can use Lemma 9 from the Boolean case. This leaves uneelshie cases where
s = s, 0rY = (x; +x;)+, for which the proof of the following is much the same as fonirea
12:

Lemma 13.Let® = B,,. Then (i). the relations,, e, = é(y)Snsn forY = (x; — x,)* can be
deduced from the relations fé#, and

(ii). the relationss; ey, = é\(y)sl,s,- for Y = (x; + x;)* are implied by the relations; &,, =
/e\(y)sisi forY = (Xi — Xj)J‘, by thesiai,iﬂ = Qj;i+18; (1 <i1<n-— 2), by SnQij; = QijSn
(1 <i<j<n-— 1)1 and bysn—lan—l,n = Gp—1,nSn—1-

The first part of the Lemma leaves the = (x; — xj)l forl <i < j<n-—1,ie: the
relationss,e;; = e;jsp, (1 <i<j<n-—1).

Theorem 7.The arrangement monoiti/ (B,,, H) has presentation,

M(Bp,H) = (s1,...,8n,e1,62| (535;)™9 =1, €] = €;, 5p_1€1 = €1, 5,2 = €2,
4 siep = e18; (i £ n —2,n), s;ea = ezs; (i <n—2),
S1 S9 Sn—1 Sn €1€2 = €2€1, Sp€2 = €28p,; Sp—2€1 = Sp—1€15p—15n-2,

€n—3n—261 = €1€5_3 2, €n_2n—161 = €1€,_2n_1;
SnSn—1€25n—1 = Sp—-1€25n—15n, bn_1€2 = egbn_l, Sn—10n—1,n = An—-1,nSn—1,
Si€;iv1 = €415 (1 <4 <n—2), spejj = ejjsp, (1<i<j<n-—1),
SiGiir1 = Qi it1Si, (1 <i<n—2), spaij = a;jsp, (1 <i<j<n-—1),
€X(A7A) = ey, m an integer A a partition ofn — m, 6 € D(A, A)).

This brings us finally to type, where the atomic elements are the= {(x; + x;)1 |1 <
i < j <n}}, withe;; asintyped, and

(85 8n—1)(Si--Sn—3)9 teg(sn—3...8)(Sp-1...8j), 1 <i<j<n-—1,
a;; =€y =14 (si-..sp-3)g 'eg(sn_s...5), 1<i<j=n,
8n—2g_1egsn—2 i=n— 17] =n,

whenY = (x; + x;)+, and whergy = s,,_28,_15n.

The W-orbits on’H are parametrised [3, Proposition 5] by the pdins, \) of an integer
0 <m <nwithm # 1, and\ = (Aq,...,\,) a partition ofn —m, except ifm = 0 and all the
\; are even, in which case there are two orbits corresponditigstpair. The rank two subspaces
of ‘H are thus th@((@, I, {{il, ig}, {ig, i4}, {i5}, .. }), X(@, I, {{il, 19, ig}, {i4}, .. }) and
X ({i1, i}, I {{is}, ...}). By [3, Proposition 5] these correspondiear W (D,,)-orbits, where
we are free to choosés at will, as well asl” in the second two cases, aft= @ or {n} in the
first. Thus,

(22 = {(Xn—3 - Xn—2)l N (Xn—l - Xn)la (Xn—3 - Xn—Q)J_ N (Xn—l + Xn)ly

(Xn—Z - Xn—l)J_ N (Xn—l - Xn)l7 (Xn—l - Xn)J_ N (Xn—l + Xn)l}a
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and so the commuting of the idempotents relations becgmg,,_se =ce,_5,, o,
-1 _ -1
en—37n—28n—2g egsn—2 - sTL—2g egsn—2en—37n—27

€n—2n—1€ = €€y 9, 1, andsn_2g_1egsn_ge = esn_gg_legsn_g.

In general we get orbit representatives fKieA, A) = X (A, @, A) of [3, §2.2] whereA is
the canonical partition of1,...,n — m}andA = {n —m + 1,...,n}, except forA = &
and the|4;| all even, where we have representativé§], @) = X (@, @, A) and X (A, {n}) =
X(2,{n}, A).

All of which results in the expressions,

€x(A,4) = H H €ii+1 H €iit+1 Hai,i—l—lv

Ae>1 {3i+13CA, {ii+1}ed  {4i+1}eA

(which is also valid forX (A, @)) and@X(Mn}) = gX(mz)an—lm- Lemma 3 allows us to read
off, for § € D(A, A),

ep = H €ij Heij H Qij, andeg = He,-j Ham,

{ivj}€€2 {i,j}EGl {_i7_j}€€1 {i,j}e@ {i,n}EG

for0 € D(A,{n}).
Finally these, = €(Y)Ss relations, where Lemma 12 also applies to typeleaving unre-

solved the cases whese= s, orY = (x; + x;)*:

Lemma 14.Let® = D,. Then (i). the relations, ey, = €

implied by the relations folV, s,ec.

(1 <j<n-—2)andspe =esp;
(ii). the relationss; ey, = g(Y)siSi for Y = (x; + x;)* are implied by the relations; &, =

(¥)s sp forY = (x; — x;)*t are

-1 = jTL Sn (1 S j S n — 2), Snejn = aj,n—lsn

(Y) spforY = (x; — x; )+, by Sp—20n—1n = Ap—2nSn—2, DY thesiai’iJrl = ;415 (1<
i <n-—1), by thesnajn = € p—15n (1< j' <n—2), by thesn_lajk = Q;pSn-1 (1<j<
k<n-—2),and bythesnajk = a;1.5n 1<j<k<n-1).

Theorem 8.The arrangement monoiti/ (D,,, H) has presentation,
Sn_1 M(Dp,H) = (s1,...,8n,e| (si5)™i =1, €2 = ¢, 8,1 = e,
sie=-es; (i £n—2,n), Sp—26 = Sp_1€Sp—1Sp—2,
...... _O—O en—3,n—2e = een—3,n—27 en—2,n—le = een—2,n—1
sp /o2 52 $1 Sn—29 'egsn_o€ = €5,_2g 'egsn_o,

Cp_3n_95n—20 €9Sn—2 = Sn_20 '€GSn—2€, 3, _o;
Sn—20n—1;n = An-2.n5n-2; 5i€; ;11 = € 415, (1 <i<n—2),
= a8, (1 <j<n—2), Snejn:ajn 1Sy (1< <n—2),
; ;1155 (1<i<n-1

n€jn—1
Sil 41 = ) Splj, = €, 15n; (1<j<n-2),
Sn—10j = G Sn—1, (1<j<k<n-2), Snlj), = G pSn, (1<j<k<n-1),
=e¢y, 0 € D(A,{n}), ey XA = €pm# 1L a partition ofn —

6 € D(A, A)).

Cx(aqn}) =
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