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THE COVER shows the Cayley graph for the smallest non-Abelian simple group, the alternating group
A5 (see§11.). We will see in§16. that the simplicity of this group means there is no algebraicexpression
for any of the roots of the polynomialx5 − 4x + 2 using the algebraic ingredients,
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so therefore there can be no formula for the solutions ofax5 + bx4 + cx3 + dx2 + ex+ f = 0 that works
for all possiblea, b, c, d, e, f ∈ C.

id

(1,2,3,4,5)

(1,3,5,2,4)

(1,5,4,3,2)(1,4,2,5,3)

(1,2)(3,4)

(1,5)(2,4)
(1,2,3,5,4)

(1,5,2,3,4)(2,4)(3,5)

(1,4)(2,3)(1,3)(2,4)

(2,4,5)
(1,3,2)

(1,5)(2,3)

(2,5,4)

(1,3,5)

(1,4,3,5,2)

(1,3,5,4,2)

(1,4,3)

(1,2,5,3,4)

(1,5,3)

(1,4)(3,5)

(1,5,4,2,3)

(1,3,4,5,2)

(1,2,5)

(1,4,5)

(1,2,5,4,3)

(1,5,3,2,4)

(2,4,3)

(1,2,3)

(1,4,5,2,3)

(2,5)(3,4)

(1,5,2,4,3)

(2,5,3)

(1,4,2,3,5)

(1,3,4)
(1,2)(4,5)

(3,4,5)

(1,4,2)
(1,3,2,5,4)

(1,4,3,2,5)
(1,5)(3,4)

(1,5,2)

(1,2)(3,5)
(1,3,2,4,5)

(3,5,4)

(1,4)(2,5)

(1,5,3,4,2)

(1,3,4,2,5)

(1,2,4,5,3)

(2,3,5)

(1,2,4,3,5)

(2,3,4)

(1,5,4)

(1,3)(2,5)
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The Cayley graph is a visual depiction of the multiplicationin the groupA5. The vertices correspond
to the elements of the group as marked, the red edges to the particular elementσ = (1, 2, 3, 4, 5) and the
black edges toτ = (1, 2)(3, 4). The red pentagonal faces are oriented anticlockwise with respect to the
outward pointing normal vector (use the right-hand rule), so that crossing a red edge in an anticlockwise
direction corresponds toσ and crossing in a clockwise direction corresponds toσ−1 (as in the diagram).

The edges depict multiplication on the right: crossing a rededge anticlockwise (repectively clockwise)
multiplies the label of the start vertex byσ (resp.σ−1) to give the label of the finish vertex; crossing a
black edge in either direction multiplies the label of the start vertex byτ to give the label of the finish
vertex1.

Thus, the green sequence of edges gives the decomposition(1, 4)(3, 5) = τσ−2τσ−1 and the blue
sequence shows that(1, 2, 4, 5, 3)τσ−2τ = (1, 3, 5).

It is a curious coincidence that the Cayley graph of the simplest non-Abelian simple group is the
Buckminsterfullerene molecule: the simplest known pure form of Carbon.

1The reason for the lack of orientation on the black edges is because the permutationτ = τ−1.

2



§1. What is Galois Theory?

A quadratic equationax2 + bx + c = 0 has exactly two (possibly repeated) solutions in the complex
numbers. We can even write an algebraic expression for them,thanks to a formula that first appears in the
ninth century bookHisab al-jabr w’al-muqabalaby Abu Abd-Allah ibn Musa al’Khwarizmi, and written
in modern notation as,

x =
−b ±

√
b2 − 4ac

2a
.

Less familiar maybe,ax3 + bx2 + cx + d = 0 has threeC-solutions, and they too can be expressed
algebraically using Cardano’s formula. For instance, one solution turns out to be,
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and the other two have similarly horrendous expressions. There is an even more complicated formula,
attributed to Descartes, for the roots of a quartic polynomial equation.

What is mildly miraculous is not that the solutions exist, but they can always be expressed algebraically
in terms of the coefficients and the basic algebraic operations,
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By the turn of the 19th century, no equivalent formula for thesolutions to a quintic (degree five) poly-
nomial equation had materialised, and it was Abels who had the crucial realisation:no such formula
exists!

Such a statement can be interpreted in a number of ways. Does it mean that there are always algebraic
expressions for the roots of quintic polynomials, but theirform is too complex for onesingleformula to
describe all the possibilities? It would therefore be necessary to have a number, maybe even infinitely
many, formulas. The reality turns out to be far worse: there are specific polynomials, such asx5−4x+2,
whose solutionscannot be expressed algebraically in any way whatsoever. There is no formula for the
roots of just this single polynomial, never mind all the others.

A few decades after Abel’s bombshell, Evaristé Galois started thinking about the deeper problem:why
don’t these formulae exist? Thus Galois theory was originally motivated by the desire to understand, in a
much more precise way than they hitherto had been, the solutions to polynomial equations.

Galois’ idea was this:study the solutions by studying their “symmetries”. Nowadays, when we hear
the word symmetry, we normally think of group theory rather than number theory. Actually, to reach
his conclusions, Galois kind of invented group theory alongthe way. In studying the symmetries of the
solutions to a polynomial, Galois theory establishes a linkbetween these two areas of mathematics. We
illustrate the idea, in a somewhat loose manner, with an example.

The symmetries of the solutions tox3 − 2 = 0.

(1.1) We work inC. Let α be the real cube root of2, ie: α = 3
√

2 ∈ R and,ω = − 1
2 +

√
3

2 i. Note thatω
is a cube root of1, and soω3 = 1.

α

αω2

αω

r1

r2 The three solutions tox3 − 2 = 0 (or roots of x3 − 2) are the complex
numbersα, αω andαω2, forming the vertices of the equilateral triangle shown.
The triangle has what we might call “geometric symmetries”:three reflections,
a counter-clockwise rotation through13 of a turn, a counter-clockwise rotation
through2

3 of a turn and a counter-clockwise rotation through3
3 of a turn= the

identity symmetry. Notice for now that ifr1 andr2 are the reflections in the
lines shown, the geometrical symmetries arer1, r2, r2r1r2, r2r1, (r2r1)

2 and(r2r1)
3 = 1 (read these

expressions from right to left).
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The symmetries referred to in the preamble are not so much geometric as “number theoretic”. It will
take a little explaining before we see what this means.

(1.2) A field is a setF with two operations, called,purely for convenience, + and×, such that for any
a, b, c ∈ F ,

1. a + b anda × b (= ab from now on) are uniquely defined elements ofF ,

2. a + (b + c) = (a + b) + c,

3. a + b = b + a,

4. there is an element0 ∈ F such that0 + a = a,

5. for anya ∈ F there is an element−a ∈ F with (−a) + a = 0,

6. a(bc) = (ab)c,

7. ab = ba,

8. there is an element1 ∈ F \ {0} with 1 × a = a,

9. for anya 6= 0 ∈ F there is ana−1 ∈ F with aa−1 = 1,

10. a(b + c) = ab + ac.

A field is just a set of things that you can add, subtract, multiply and divide so that the “usual” rules of
algebra are satisfied. Familiar examples of fields areQ, R andC; familiar examples of non-fields areZ,
polynomials and matrices (you can’t in general divide integers, polynomials and matrices to get integers,
polynomials or matrices).

(1.3) A subfieldof a fieldF is a subset that also forms a field under the same+ and×. Thus,Q is a
subfield ofR which is in turn a subfield ofC, and so on. On the other hand,Q ∪ {

√
2} is not a subfield

of R: it is certainly a subset but axiom 1 fails, as both1 and
√

2 are elements but1 +
√

2 is not.

Definition. If F is a subfield of the complex numbersC andβ ∈ C, thenF (β), is the “smallest” subfield
of C that contains bothF and the numberβ.

What do we mean by smallest? That there is no other fieldF ′ having the same properties asF (β)
which is smaller, ie: noF ′ with F ⊂ F ′ andβ ∈ F ′ too, butF ′ properly⊂ F (β). It is usually more
useful to say it the other way around:

If F ′ is a subfield that also containsF andβ, thenF ′ containsF (β) too. (*)

Loosely speaking,F (β) is all the complex numbers we get by adding, subtracting, multiplying and
dividing the elements ofF andβ together in all possible ways.

(1.4) To illustrate with some trivial examples,R(i) can be shown to be all ofC: it must contain all
expressions of the formbi for b ∈ R, and hence all expressions of the forma + bi with a, b ∈ R, and this
accounts for all the complex numbers;Q(2) is equally clearly justQ back again.

Slightly less trivially,Q(
√

2), the smallest subfield ofC containing all the rational numbers and
√

2 is
a field that is strictly bigger thanQ (eg: it contains

√
2) but is much, much smaller than all ofR.

Exercise 1 Show that
√

3 6∈ Q(
√

2).
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(1.5) Returning to the symmetries of the solutions tox3 − 2 = 0, we look at the fieldQ(α, ω), where

α = 3
√

2 ∈ R andω = − 1
2 +

√
3

2 i, as before. SinceQ(α, ω) is by definition a field, and fields are closed
under+ and×, we have

α ∈ Q(α, ω) andω ∈ Q(α, ω) ⇒ α × ω = αω, α × ω × ω = αω2 ∈ Q(α, ω) too.

So,Q(α, ω) contains all the solutions to the equationx3 − 2 = 0. On the other hand,

Exercise 2 Show thatQ(α, ω) has “just enough” numbers in it to solve the equationx3 − 2 = 0. More precisely,Q(α, ω) is the
smallest(in the sense (*))subfield ofC that contains all the solutions to this equation. (hint: you may find it useful to do Exercise 5
first).

(1.6) A very loose definition of a symmetry of the solutions ofx3 − 2 = 0 is that it is a “rearrangement”
of Q(α, ω) that does not disturb (or is compatible with) the+ and×.

To see an example, consider the two fieldsQ(α, ω) andQ(α, ω2). Despite first appearances they are
actually the same: certainly

α, ω ∈ Q(α, ω) ⇒ α, ω2 ∈ Q(α, ω).

But Q(α, ω2) is the smallest field containingQ, α andω2, so by (*),

Q(α, ω2) ⊆ Q(α, ω).

Conversely,
α, ω2 × ω2 = ω4 = ω ∈ Q(α, ω2) ⇒ Q(α, ω) ⊆ Q(α, ω2).

Remember thatω3 = 1 soω4 = ω. ThusQ(α, ω) andQ(α, ω2) are indeed the same. In fact, we should
think of Q(α, ω) andQ(α, ω2) as two different ways of looking at the same field, or more suggestively,
the same field viewed from two different angles.

Whenever we hear the phrase, “the same field viewed from two different angles”, we should imme-
diately think that a symmetry is lurking–a symmetry that moves the field from the one point of view to
the other. In the case above, there should be a symmetry of thefield Q(α, ω) that puts it into the form
Q(α, ω2). Surely this symmetry should send

α 7→ α, andω 7→ ω2.

We haven’t yet defined what we mean by, “is compatible with the+ and×”. It will turn out to mean
that if α andω are sent toα andω2 respectively, thenα × ω should go toα × ω2; similarly α × ω × ω
should go toα×ω2×ω2 = αω4 = αω. The symmetry thus moves the vertices of the equilateral triangle
determined by the roots in the same way that the reflectionr1 of the triangle does2:

α

αω2

αω

r1

(1.7) In exactly the same way, we can consider the fieldsQ(αω, ω2) andQ(α, ω). We have

α, ω ∈ Q(α, ω) ⇒ ω2, αω ∈ Q(α, ω) ⇒ Q(αω, ω2) ⊆ Q(α, ω);

and conversely,αω, ω2 ∈ Q(αω, ω2) ⇒ αωω2 = αω3 = α ∈ Q(αω, ω2), and hence also

α−1αω = ω ∈ Q(αω, ω2) ⇒ Q(α, ω) ⊆ Q(αω, ω2).

2This compatability also means that it would have made no sense to have the symmetry sendα 7→ ω2 andω 7→ α. A symmetry
should not fundamentally change the algebra of the field, so that if an element likeω cubes to give1, then its image under the
symmetry should too: butα doesn’tcube to give1.
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α

αω2

αω r2
Thus,Q(α, ω) andQ(αω, ω2) are the same field, and we can define another symme-

try that sends
α 7→ αω, andω 7→ ω2.

To be compatible with the+ and×,

α × ω 7→ αω × ω2 = αω3 = α, andα × ω × ω 7→ αω × ω2 × ω2 = αω5 = αω2.

So the symmetry is like the reflectionr2 of the triangle:
Finally, if we have two symmetries of the solutions to some equation, we would like their composition

to be a symmetry too. So if the symmetriesr1 andr2 of the original triangle are to be considered, so
shouldr2r1r2, r1r2, (r1r2)

2 and(r1r2)
3 = 1.

(1.8) The symmetries of the solutions tox3 − 2 = 0 include all the geometrical symmetries of the
equilateral triangle. We will see much later that any symmetry of the solutions is uniquely determined
as apermutationof the solutions. Since there are3! = 6 of these, we have accounted for all of them. It
would appear then that the solutions tox3 − 2 = 0 have symmetrypreciselythe geometrical symmetries
of the equilateral triangle.

(1.9) If this was always the case, things would be very simple: Galois theory would just be the study
of the “shapes” formed by the roots of polynomials, and the symmetries of those shapes. It would be a
branch of planar geometry.

But things are not so simple. If we look at the solutions tox5 − 2 = 0, something quite different
happens:

α

αω

αω3

αω2

αω4

α = 5
√

2

ω =

√
5 − 1

4
+

√
2
√

5 +
√

5

4
i

We will see later on how to obtain these expressions for the roots. A pentagon has 10 geometric symme-
tries, and you can check that all arise as symmetries of the roots ofx5 − 2 using the same reasoning as in
the previous example. But this reasoning also gives a symmetry that moves the vertices of the pentagon
according to:

α

αω

αω3

αω2

αω4

This is not a geometrical symmetry! Later we will see that forp > 2 a prime number, the solutions to
xp − 2 = 0 havep(p − 1) symmetries. While agreeing with the six obtained forx3 − 2 = 0, it gives
twentyfor x5 − 2 = 0. In fact, it was a bit of a fluke that all the number theoretic symmetries were also
geometric ones forx3 − 2 = 0. A p-gon has2p geometrical symmetries and2p ≤ p(p− 1) with equality
onlywhenp = 3.
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Exercise 3 Show that the figure on the left depicts a symmetry of the solutions tox3 − 1 = 0, but the one on the right does not.

1

ω2

ω

1

ω2

ω

Further Exercises for§1.

Exercise 4 You already know that the3-rd roots of 1 are1 and−1

2
±

√
3

2
i. What about thep-th roots for higher primes?

1. If ω 6= 1 is a5-th root it satisfiesω4 + ω3 + ω2 + ω + 1 = 0. Letu = ω + ω−1. Find a quadratic polynomial satisfied
by u, and solve it to obtainu.

2. Find another quadratic satisfied this time byω, with coefficients involvingu, and solve it to find explicit expressions for the
four primitive 5-th roots of 1.

3. Repeat the process with the7-th roots of1.

factoid: then-th roots of 1 can be expressed in terms of field operations andextraction of pure roots of rationals for anyn. The
details (which are a little complicated!) were finally completed by the work of Gauss and Galois.

Exercise 5

1. LetF be a field such that the element
1 + 1 + · · · + 1| {z }

n times

6= 0,

for anyn > 0. Argueing intuitively, show thatF contains a copy of the rational numbersQ (see also§4.).

2. Give an example of a field where
1 + 1 + · · · + 1| {z }

n times

= 0,

for somen.

Exercise 6 Letα = 6
√

5 ∈ R andω =
1

2
+

√
3

2
i. Show thatQ(α, ω), Q(αω2, ω5) andQ(αω4, ω5) are all the same field.

Exercise 7

1. Show that there is a symmetry of the solutions tox5 − 2 = 0 that moves the vertices of the pentagon according to:

α

αω

αω3

αω2

αω4

whereα = 5
√

2, andω5 = 1, ω ∈ C.

2. Show that the solutions inC to the equationx6 − 5 = 0 have12 symmetries.
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§2. Polynomials, Rings and Polynomial Rings

(2.1) There are a number of basic facts about polynomials that we will need. SupposeF is a field (Q, R
or C will do for now). A polynomial overF is an expression of the form

f = a0 + a1x + · · ·anxn,

where theai ∈ F andx is a “formal symbol” (sometimes called an indeterminate). We don’t tend to
think of x as a variable–it is purely an object on which to perform algebraic manipulations. Denote the
set of all polynomials overF by F [x]. If an 6= 0, thenn is called thedegree3 of f , writtendeg(f). If the
leading coefficientan = 1, thenf is monic.

(2.2) We can add and multiply elements ofF [x] in the usual way:

if f =

n∑

i=0

aix
i andg =

m∑

i=0

bix
i,

then,

f + g =

max(m,n)∑

i=0

(ai + bi)x
i andfg =

m+n∑

k=0

ckxk whereck =
∑

i+j=k

aibj . (1)

that is, ck = a0bk + a1bk−1 + · · · + akb0. The arithmetic of the coefficients (ie: how to work out
ai + bi, aibj and so on) is just that of the fieldF .

Exercise 8 Convince yourself that this multiplication is really just the “expanding brackets” multiplication of polynomials that
you know so well!

(2.3) The polynomialsF [x] together with this addition form an example of a,

Definition. A groupis a setG endowed with an operation⊕ such that for alla, b ∈ G,

1. a ⊕ b is a uniquely defined element ofG (closure);

2. a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity);

3. there is ane ∈ G such thate ⊕ a = a = a ⊕ e (identity),;

4. for anya ∈ G there is ana−1 ∈ G with a ⊕ a−1 = e = a−1 ⊕ a (inverses).

A group that also satisfiesa ⊕ b = b ⊕ a for all a, b ∈ G (commutativity) is said to beAbelian.

With polynomials, the operation⊕ is just the regular addition of polynomials. When the group opera-
tion is “familiar” addition it is customary to use the symbols: + for ⊕; 0 for e and− for inverses. Thus
the identity ofF [x] as a group is the zero polynomial and inverses are given by

−
( n∑

i=0

aix
i

)
=

n∑

i=0

(−ai)x
i.

Its also easy to see thatF [x] forms an abelian group: forf +g = g+f exactly whenai +bi = bi +ai for
all i. But the coefficients of our polynomials come from the fieldF , and addition is always commutative
in a field.

3In one of those triumphs of notation over intuition for whichMathematics is justifiably famous, definedeg(0) = −∞, whereas
deg(λ) = 0 if λ ∈ F is not zero. The arithmetic of degrees is then just the arithmetic of non-negative integers, except we also
need to decree that−∞ + n = −∞.
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(2.4) If we want to think about multiplication as well, we need the formal concept of,

Definition. A ring is a setR endowed with two operations⊕ and⊗ such that for alla, b ∈ R,

1. R is an Abelian group under⊕;

2. for anya, b ∈ R, a ⊗ b is a uniquely determined element ofR (closure of⊗);

3. a ⊗ (b ⊗ c) = (a ⊗ b) ⊗ c (associativity of⊗);

4. there is anf ∈ R such thatf ⊗ a = a = a ⊗ f (identity of⊗);

5. a ⊗ (b ⊕ c) = (a ⊗ b) ⊕ (a ⊗ c) (the distributive law).

Loosely, a ring is a set on which you canadd(⊕), subtract(the inverse of⊕ in the Abelian group) and
multiply (⊗), butnot necessarily divide (there is no inverse axiom for⊗).

Here are some well known examples of rings:

Z, F [x] for F a field, Zn andMn(F ),

whereZn is addition and multiplication of integers modulon andMn(F ) are then × n matrices, with
entries fromF , together with the usual addition and multiplication of matrices.

A ring is commutativeif the second operation⊗ is commutative:a ⊗ b = b ⊗ a for all a, b.

Exercise 9

1. Show thatfg = gf for polynomialsf, g ∈ F [x], henceF [x] is a commutative ring.

2. Show thatZ andZn are commutative rings, butMn(F ) is not foranyfield F if n > 2.

(2.5) The observation thatZ andF [x] are both commutative rings is not just some vacuous formalism.
A concrete way of putting it it this:at a very fundamental level, integers and polynomials sharethe same
algebraic properties.

When we work with polynomials, we need to be able to add and multiply the coefficients of the poly-
nomials in a way that doesn’t produce any nasty surprises–inother words, the coefficients have to satisfy
the basic rules of algebra that we all know and love. But thesebasic rules of algebra can be found among
the axioms of a ring.Thus, to work with polynomials successfully, all we need is that the coefficients
come from a ring.

This observation means that for a ringR, we can form the set of all polynomials with coefficients from
R and add and multiply them together as we did above. In fact, weare just repeating what we did above,
but are replacing the fieldF with a ringR. In practice, rather than allowing our coefficients to some from
an arbitrary ring, we takeR to be commutative. Since we are so used to our coefficients commuting with
each other, this is probably a prudent precaution. This all leads to,

Definition. Denote byR[x] the set of all polynomials with coefficients from some commutative ringR,
together with the+ and× defined at (1).

Exercise 10

1. Show thatR[x] forms a ring.

2. SinceR[x] forms a ring, we can consider polynomials with coefficients fromR[x]: take a new variable, sayy, and consider
R[x][y]. Show that this is just the set of polynomials in two variables x andy together with the ‘obvious’+ and×.

(2.6) A commutative ringR is called anintegral domainiff for any a, b ∈ R with a ⊗ b = e, we have
a = e, or b = e or both. ClearlyZ is an integral domain.

Exercise 11

1. Show that any fieldF is an integral domain.

2. For what values ofn is Zn an integral domain?

9



Lemma 1 Letf, g ∈ R[x], R an integral domain. Then

1. deg(fg) = deg(f) + deg(g).

2. R[x] is an integral domain.

The second part means that given polynomialsf andg (with coefficients from an integral domain), we
havefg = 0 ⇒ f = 0 or g = 0. You have been implicitly using this fact for some time now when you
solve polynomial equations by factorising them.

Proof: We have

fg =

m+n∑

k=0

ckxk whereck =
∑

i+j=k

aibj,

so in particularcm+n = anbm 6= 0 asR is an integral domain. Thusdeg(fg) ≥ m + n and since the
reverse inequality is obvious, we have part (1) of the Lemma.Part (2) now follows immediately since
fg = 0 ⇒ deg(fg) = −∞ ⇒ deg f + deg g = −∞, which can only happen if at least one off or g has
degree= −∞ (see the footnote at the bottom of the first page). 2

All your life you have been happily adding the degrees of polynomials when you multiply them. But as
the result above shows,this is only possible when the coefficients of the polynomialcome from an integral
domain. For example,Z6, the integers under addition and multiplication modulo6, is a ring that is not an
integral domain (as2 × 3 = 0 for example), and sure enough,

(3x + 1)(2x + 1) = 5x + 1,

where all of this is happening inZ6[x].

(2.7) Although we cannot necessarily divide two polynomials and get another polynomial, wecandivide
upto a possible “error term”, or, as it is more commonly called, a remainder.

Theorem A (The division algorithm). Supposef andg are elements ofR[x] where the leading coef-
ficient ofg has a multiplicative inverse in the ringR. Then there existq and r in R[x] (quotient and
remainder) such that

f = qg + r,

where eitherr = 0 or the degree ofr is < the degree ofg.

WhenR is a field (where you may be more used to doing long division) all the non-zero coefficients
of a polynomial have multiplicative inverses (as they lie ina field) so the condition ong becomesg 6= 0.

Actually the name of the theorem is not very apt: it merely guarantees the existence of a quotient and
remainder. It doesn’t give us any idea how to find them (in other words, an algorithm). Compare the
theorem with what you know aboutZ. There, we can also divide to get a remainder: when you divide17
by 3, it goes5 times with remainder2; in other words,17 = 5 × 3 + 2. With integers, we are used to
the remainder being smaller than the integer we are dividingby; in R[x] this condition is replaced by the
degree of the remainder being strictly smaller than the degree of the divisor.

Proof: For all q ∈ R[x], consider those polynomials of the formf − gq and choose one, sayr, of
smallest degree. Letd = deg r andm = deg g. We claim thatd < m. This will give the result, as ther
chosen has he formr = f − gq for someq, giving f = gq + r. Suppose thatd ≥ m and consider

r̄ = (rd)(g−1
m )x(d−m)g,

a polynomial sinced−m ≥ 0. Notice also that we have used the fact that the leading coefficient ofg has
a multiplicative inverse. The leading term ofr̄ is rdx

d, which is also the leading term ofr. Thus,r − r̄
has degree< d. Butr− r̄ = f −gq−rdg

−1
m xd−mg by definition, which equalsf −g(q−rdg

−1
m xd−m) =

f − gq̄, say. Thusr − r̄ has the formf − gq̄ too, but with smaller degree thanr, which was of minimal
degree amongst all polynomials of this form–this is our desired contradiction. 2
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Exercise 12

1. If R is an integral domain, show that the quotient and remainder are unique.

2. Show that the quotient and remainder are not unique when you divide polynomials inZ6[x].

(2.8) Other familiar concepts fromZ are those of divisors, common divisors and greatest common divi-
sors. Since we need no more algebra to define these notions than is enshrined in the axioms for a ring, it
should come as no surprise that these concepts carry pretty much straight over to polynomial rings. We
will state these in the setting of polynomials fromF [x] for F a field.

Definition. Forf, g ∈ F [x], we say thatf dividesg iff g = fh for someh ∈ F [x]. Write f | g.

Definition. Let f, g ∈ F [x]. Suppose thatd is a polynomial satisfying

1. d is a common divisor off andg, ie: d | f andd | g;

2. d is the greatest common divisor in the sense that any other common divisor must divided (and so
in particular be smaller!), ie: ifc | f andc | g thenc | d;

3. d is monic.

As with the division algorithm, we have tweaked the definition from Z to make it work inF [x]. The
reason is that we wantthegcd to be unique. InZ you ensure this by insisting that all gcd’s are positive,
otherwise,−3 would make a perfectly good gcd for6 and27; in F [x] we go for the monic condition
(otherwise ifd was a gcd off andg, then17 × d would be too).

(2.9) x2 − 1 and2x3 − 2x2 − 4x ∈ Q[x] have greatest common divisorx + 1: it is certainly a common
divisor asx2−1 = (x+1)(x−1) and2x3−2x2−4x = 2x(x+1)(x−2). From the two factorisations,
any other common divisor must have the formλ(x + 1) for someλ ∈ Q, and so dividesx + 1.

(2.10)

Theorem 1 Any twof, g ∈ F [x] have a greatest common divisord. Moreover, there area0, b0 ∈ F [x]
such that

d = a0f + b0g.

Compare this withZ! In fact, one may replaceF [x] by Z in the following proof to obtain the corre-
sponding fact for the integers.

Proof: Consider the setI = {af + bg | a, b ∈ F [x]}. Let d ∈ I be a monic polynomial with minimal
degree. Thend ∈ I gives thatd = a0f + b0g for somea0, b0 ∈ F [x]. We claim thatd is the gcd off and
g. The following two basic facts are easy to verify:

1. The setI is a subgroup of the Abelian groupF [x]–exercise.

2. If u ∈ I andw ∈ F [x] thenuw ∈ I, sincewu = w(af + bg) = (wa)f + (wb)g ∈ I.

Consider now the setP = {hd |h ∈ F [x]}. Sinced ∈ I and by the second observation above,hd ∈ I,
and we haveP ⊆ I. Conversely, ifu ∈ I then by the division algorithm,u = qd + r wherer = 0 or
deg(r) < deg(d). Now,r = u−qd andd ∈ I, soqd ∈ I by (2). Butu ∈ I andqd ∈ I sou−dq = r ∈ I
by (1) above. Thus, ifdeg(r) < deg(d) we would have a contradiction to the degree ofd being minimal,
and so we must haver = 0, givingu = qd. This means that any element ofI is a multiple ofd, soI ⊆ P .

Now that we know thatI is just the set of all multiples ofd, and since lettinga = 1, b = 0 or
a = 0, b = 1 gives thatf, g ∈ I, we have thatd is a common divisor off andg. Finally, if d′ is another
common divisor, thenf = u1d

′ andg = u2d
′, and sinced = a0f +b0g, we haved = a0u1d

′ +b0u2d
′ =

d′(a0u1 + b0u2) giving d′ | d. Thusd is indeed the greatest common divisor. 2
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(2.11) We have one more thing to say about polynomial rings. First, we need to recall a fundamental
notion:

Definition. Let R andS be rings. A mappingϕ : R → S is called aring homomorphismif and only if
for all a, b ∈ R,

1. ϕ(a + b) = ϕ(a) + ϕ(b);

2. ϕ(ab) = ϕ(a)ϕ(b);

3. ϕ(f) = f (wheref is the multiplicative identity inR).

In any ring of interest to us, the last item translates asϕ(1) = 1. Why do we need this but notϕ(0) = 0?
Actually it’s quite simple: we haveϕ(0) = ϕ(0 + 0) = ϕ(0) + ϕ(0) and sinceS is an Abelian group
under addition, we can cancel (we are using the existence of inverses under addition!) to getϕ(0) = 0.
We can’t do this to getϕ(1) = 1 as we don’t have inverses under multiplication, so we need toenshrine
the desired property in the definition.

You should think of a homomorphism as being like an “algebraic analogy”, or a way of transferring
algebraic properties; the algebra in the image ofϕ is analogous to the algebra ofR.

(2.12) We will have much more to say about general homomorphisms later on. For now, let’s look at
one in particular. LetR[x] be a ring of polynomials over a commutative ringR, and letλ ∈ R. Define a
mappingελ : R[x] → R by

ελ(f) = f(λ)
def
= a0 + a1λ + · · · + anλn.

ie: substituteλ into f . This is a ring homomorphism fromR[x] to R, called theevaluation atλ homo-
morphism: to see this, certainlyελ(1) = 1, and I’ll leaveελ(f + g) = ελ(f) + ελ(g) to you as its not
hard. Now,

ελ(fg) = ελ

(m+n∑

k=0

ckxk

)
=

m+n∑

k=0

ckλk whereck =
∑

i+j=k

aibj .

But
∑m+n

k=0 ckλk =

(∑n
i=0 aiλ

i

)(∑m
j=0 bjλ

j

)
= ελ(f)ελ(g) and we are done.

One consequence ofελ being a homomorphism is that given a factorisation of a polynomial, say
f = gh, we haveελ(f) = ελ(g)ελ(h), ie: if we substituteλ into f we get the same answer as when
we substitute intog andh and multiply the answers. This is another fact that appears to be trivial at first
sight–you would have instinctively done this anyway no doubt.

Further Exercises for§2.

Exercise 13 Let f, g be polynomials over the fieldF andf = gh. Show thath is also a polynomial overF .

Exercise 14 Let σ : R −→ S be a homomorphism of rings. Defineσ∗ : R[x] −→ S[x] by

σ∗ :
X

i

aix
i 7→

X

i

σ(ai)x
i.

Show thatσ∗ is a homomorphism.

Exercise 15 letR be a ring and define∂ : R[x] −→ R[x] by

∂ :
nX

k=0

akx
k 7→

nX

k=1

(kak)xk−1 and∂(λ) = 0,

for any constantλ. (Ring a bell?) Show that∂(f + g) = ∂(f) + ∂(g) and∂(fg) = ∂(f)g + f∂(g). The map∂ is called the
formal derivative.

12



§3. Roots and Irreducibility

(3.1) Much of the material in this section is familiar in the setting of polynomials withR coefficients.
The point is that these results are still true for polynomials with coefficients coming from an arbitrary
field F , and quite often, for polynomials with coefficients from a ringR.

Let
f = a0 + a1x + · · · + anxn

be a polynomial inR[x] for R a ring. We say thatλ ∈ R is aroot of f if

f(λ) = a0 + a1λ + · · · + anλn = 0 in R.

As a trivial example, the polynomialx2 + 1 is in all three ringsQ[x], R[x] andC[x]. It has no roots in
eitherQ or R, but two inC.

Aside. “I thought that we weren’t thinking ofx as a variable!”, I hear you say. In fact we don’t need to, as long as we are prepared
to think a little more abstractly about something we have been happily doing intuitively for a while now. Here is how: we say that
λ is a root off if and only if there is a homomorphismϕ : R[x] → R such thatϕ restricts to the identity onR, ie: ϕ(α) = α for
all α ∈ R, and also thatϕ(x) = λ andϕ(f) = 0. In fact you see that the homomorphism needed is the evaluation homomorphism
ελ.

(3.2)

The Factor Theorem. An elementλ ∈ R is a root off if and only iff = (x − λ)g for someg ∈ R[x].

In English,λ is a root exactly whenx − λ is a factor.

Proof: This is an illustration of the power of the division algorithm, Theorem A. Suppose thatf has the
form (x − λ)g for someg ∈ R[x]. Then

f(λ) = (λ − λ)g(λ) = 0.g(λ) = 0,

so thatλ is indeed a root (notice we used thatελ is a homomorphism, ie: thatελ(f) = ελ(x − λ)ελ(g)).
On the other hand, by the division algorithm, we can dividef by the polynomialx − λ to get,

f = (x − λ)g + µ,

whereµ ∈ R (we can use the division algorithm, as the leading coefficient of x − λ, being1, has an
inverse inR). Sincef(λ) = 0, we must also have(λ − λ)g + µ = 0, henceµ = 0. Thusf = (x − λ)g
as required. 2

(3.3) Here is another result that you probably already know to be true for polynomials over the reals,
complexes, etc. Reassuringly, it is true for polynomials with coefficients from (almost)anyring.

Theorem 2 Let f ∈ R[x] be a non-zero polynomial with coefficients from the integraldomainR. Then
f has at mostdeg(f) roots inR.

Proof: We use induction on the degree which is≥ 0 sincef is non-zero. Ifdeg(f) = 0 thenf = µ a
nonzero constant inR, which clearly has no roots, so the result holds. Assumedeg(f) ≥ 1 and that the
result is true for any polynomial of degree< deg(f). If f has no roots inR then we are done. Otherwise,
f has a rootλ ∈ R and

f = (x − λ)g,

for someg ∈ R[x] by the factor theorem. Moreover, asR is an integral domain,f(µ) = 0 iff either
µ − λ = 0 or g(µ) = 0, so the roots off areλ, together with the roots ofg. Since the degree ofg must
bedeg(f)− 1 (by Lemma 1, again using the fact thatR is an integral domain), it has at mostdeg(f)− 1
roots by the inductive hypothesis, and these combined withλ give at mostdeg(f) roots forf . 2
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(3.4) As the theorem indicates, a cherished fact such as this mightnot be true if the coefficients of our
polynomial do not come from an integral domain. For instance, if R = Z6, then the quadratic polynomial
(x − 1)(x − 2) = x2 + 3x + 2 has roots1, 2, 4 and5 in Z6.

(3.5) Notice that when we say thatf ∈ R[x], all we are claiming is that the ringR is big enough to contain
the coefficients off . Sox2 + 1 is equally at home inQ[x], R[x] andC[x] (not to mentionQ(i)[x] . . .).

This observation and the theorem mean that a polynomial has at most its degree number of rootsin any
ring that contains its coefficients. Put another way, we may become comfortable with the idea of creating
“new” numbers to solve equations (for example, the creationof C to solvex2 + 1 = 0), but there will
always be a limit to our inventiveness–you will never find more than two solutions tox2 + 1 = 0, now
matter how many “new numbers” you make up.

Exercise 16 A polynomial likex2 + 2x + 1 = (x + 1)2 has1 as arepeated root. It’s derivative, in the sense of elementary
calculus, is2(x+ 1), which also has1 as a root. In general, and in light of the Factor Theorem, callλ ∈ F a repeated root off iff
f = (x− λ)kg for somek > 1.

1. Using the formal derivative∂ (see Exercise 15), show thatλ is a repeated root off if and only if λ is a root of∂(f).

2. Show thatf has no repeated roots, ie: the roots off are distinct, if and only ifgcd(f, ∂(f)) = 1.

(3.6) For reasons that will become clearer later, a very importantrole is played by polynomials that cannot
be “factorised”.

Definition. Let F be a field andf ∈ F [x] a non-constant polynomial. Anon-trivial factorisationof f is
an expression of the formf = gh, whereg, h ∈ F [x] anddeg g, deg h ≥ 1. Sayf is reducible overF iff
it has a non-trivial factorisation, andirreducible overF otherwise.

Thus, a polynomial over a fieldF is irreducible precisely when it cannot be written as a product of
non-constant polynomials. Another way of putting it is to say thatf ∈ F [x] is irreducible precisely when
it is divisible only by a constantµ, or µ × f .

Aside. You can also talk about polynomials being irreducible over aring (eg: overZ). The definition is slightly more complicated
however: letf ∈ R[x] a non-constant polynomial with coefficients from the ringR. A non-trivial factorisationof f is an expression
of the formf = gh, whereg, h ∈ R[x] and either,

1. deg g,deg h ≥ 1, or

2. if sayg = λ ∈ R is a constant, thenλ hasno multiplicative inverse inR.

Sayf is reducibleoverR iff it has a non-trivial factorisation, andirreducibleoverR otherwise. Notice that ifR = F a field, then
the second possibility never arises, as every non-zero element ofF has a multiplicative inverse.

The reason for the extra complication in the definition is that if λ ∈ R is a constant which does have a multiplicative inverse in
R, then you can always write

f = λ(λ−1f).

So pulling out such constants is too easy! As an example,3x+ 3 = 3(x+ 1) is a non-trivial factorisation inZ[x] but a trivial one
in Q[x].

The “overF ” that follows reducible or irreducible iscrucial; polynomials are never absolutely re-
ducible or irreducible in any sense. An obvious example isx2 + 1, which is irreducible overR but
reducible overC.

(3.7) There is an exception to this, and it is that a linear polynomial f = ax + b ∈ F [x] is irreducible
over any fieldF : if f = gh then sincedeg f = 1, we cannot have bothdeg(g), deg(h) ≥ 1, for then
deg(gh) = deg(g)+ deg(h) ≥ 1 + 1 = 2, a contradiction. Thus, one ofg or h must be a constant withf
thus irreducible overF . So maybe we can qualify the statement above: linear polynomials are absolutely
irreducible (we don’t need to mention the field), but that’s it!

Exercise 17

1. LetF be a field andλ ∈ F . Show thatf is an irreducible polynomial overF if and only ifλf is irreducible overF for any
λ 6= 0.

2. Show that iff(x+ λ) is irreducible overF thenf(x) is too.
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(3.8) There is the famous,

Fundamental Theorem of Algebra. Any non-constantf ∈ C[x] has a root inC.

So if f ∈ C[x] hasdeg f ≥ 2, thenf has a root inC, hence a linear factor overC, hence is reducible
overC. Thus, the only irreducible polynomials overC are the linear ones.

Aside. Actually, the fundamental theorem of algebra has been described as neither fundamental nor about algebra! Later we will
be able to prove it from something known as the Galois correspondence, which also happens to be called the Fundamental Theorem
of Galois Theory. Now, if you take the view that Galois theoryis a subset of algebra, then it does seem rather odd that a theorem
supposedly fundamental to all of algebra can be proved from atheorem that is merely fundamental to apart of it.

Exercise 18 Show that iff is irreducible overR thenf is either linear or quadratic.

(3.9) A very common mistake is to think that having no roots inF is the same thing as being irreducible
overF . In fact, the two are not even remotely the same thing.

Just because a polynomial is irreducible overF does not mean that it has no roots in the field: we saw
above that a linear polynomialax + b is always irreducible, and yet has a root inF , namely−b/a. It is
true though that if a polynomialf has degree≥ 2 and had a root inF , then by the factor theorem it would
have a linear factor so would be reducible. Thus, ifdeg(f) ≥ 2 andf is irreducible overF , thenf has
no roots inF .

A polynomial that has no roots inF is not necessarily irreducible over the field: the polynomial
x4 + 2x2 + 1 = (x2 + 1)2 is reducible overQ, but with roots±i 6∈ Q.

(3.10) There is no general method for deciding if a polynomial over an arbitrary fieldF is irreducible:
the situation is not dissimilar to that of integration in calculus. There is no list of rules that collectively
apply to all situations. The best we can hope for is an ever expanding list of techniques, of which this is
the first:

Proposition 1 LetF be a field andf ∈ F [x] be a polynomial of degree≤ 3. If f has no roots inF then
it is irreducible overF .

Proof: Arguing by contradiction, iff is reducible thenf = gh with deg g, deg h ≥ 1. Sincedeg g +
deg h = deg f ≤ 3, we must have forg say, thatdeg g = 1. Thusf = (ax + b)h andf has the root
(−b × a−1). 2

Exercise 19 We need a new field to play with. Letp be a prime andFp the set{0, 1 . . . , p−1}. Define addition and multiplication
on this set to be addition and multiplication of integers modulo p.

1. Verify thatFp is a field by checking the axioms. The only tricky one is the existence of inverses under multiplication: use
the gcd theorem from§2. (but forZ rather than polynomials).

2. Show that a fieldF is an integral domain. Hence, show that ifn is notprime, then the addition and multiplication of integers
modulon is not a field.

(3.11) Consider polynomials with coefficients from, say,F2, ie: the ringF2[x], and in particular, the
polynomial

f = x4 + x + 1 ∈ F2[x].

Now, 04 + 0 + 1 6= 0 6= 14 + 1 + 1, sof has no roots inF2. Although this is a good start, we are in
no position to finish, as the Proposition above does not applyto quartics. But we can certainly say that
any factorisation off overF2, if there is one, must be as a product of two quadratics. Moreover, these
quadratics must themselves be irreducible overF2, for if not, they would factor into linear factors and the
factor theorem would give roots off .

There are only four quadratics overF2:

x2, x2 + 1, x2 + x andx2 + x + 1.
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The first two are reducible as they have roots0 and1 respectively; the third is also reducible with both
0 and1 as roots. By the Proposition above, the last is irreducible.Thus, any factorisation off into
irreducible quadratics must in fact be of the form,

(x2 + x + 1)(x2 + x + 1).

Unfortunately,f doesn’tfactorise this way (just expand the brackets). Thusf is irreducible overF2.

(3.12)As we delve deeper into Galois theory, it will transpire thatQ is where much of the action happens.
Consequently, determining the irreducibility of polynomials overQ will be of great importance. The first
useful test for irreducibility overQ has the following main ingredient:to see if a polynomial can be
factorised overQ it suffices to see whether it can be factorised overZ.

First we recall Exercise 14, which is used a number of times inthese notes so is worth placing in a,

Lemma 2 Letσ : R → S be a homomorphism of rings. Defineσ∗ : R[x] → S[x] by

σ∗ :
∑

i

aix
i 7→

∑

i

σ(ai)x
i.

Thenσ∗ is a homomorphism.

Lemma 3 (Gauss)Letf be a polynomial with integer coefficients. Thenf can be factorised non-trivially
as a product of polynomials with integer coefficients if and only if it can be factorised non-trivially as a
product of polynomials with rational coefficients.

Proof: If the polynomial can be written as a product ofZ-polynomials then it clearly can as a product
of Q-polynomials as integers are rational! Suppose on the otherhand thatf = gh in Q[x] is a non-trivial
factorisation. By multiplying through by a multiple of the denominators of the coefficients ofg we get a
polynomialg1 = mg with Z-coefficients. Similarly we haveh1 = nh ∈ Z[x] and so

mnf = g1h1 ∈ Z[x]. (2)

Now let p be a prime dividingmn, and consider the homomorphismσ : Z → Fp given byσ(k) = k
mod p. Then by the lemma above, the mapσ∗ : Z[x] → Fp[x] given by

σ∗ :
∑

i

aix
i 7→

∑

i

σ(ai)x
i,

is a homomorphism. Applying the homomorphism to (2) gives0 = σ∗(g1)σ
∗(h1) in Fp[x], asmn ≡

0 mod p. As the ringFp[x] is an integral domain the only way that this can happen is if one of the
polynomials is equal to the zero polynomial inFp[x], ie: one of the original polynomials, sayg1, has all
of its coefficients divisible byp. Thus we haveg1 = pg2 with g2 ∈ Z[x], and (2) becomes

mn

p
f = g2h1.

Working our way through all the prime factors ofmn in this way, we can remove the factor ofmn from
(2) and obtain a factorisation off into polynomials withZ-coefficients. 2

So to determine whether a polynomial withZ-coefficients isirreducibleoverQ, one need only check
that it has no non-trivial factorisations with all the coefficients integers.

Eisenstein Irreducibility Theorem. Let

f = cnxn + · · · + c1x + c0,

be a non-linear polynomial with integer coefficients. If there is a primep that divides all theci for i < n,
does not dividecn and such thatp2 does not dividec0, thenf is irreducible overQ.
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Proof: By virtue of the fact above, we need only show that under the conditions stated, there is no
factorisation off using integer coefficients. Suppose otherwise, ie:f = gh with

g = arx
r + · · · + a0 andh = bsx

s + · · · + b0,

and theai, bi ∈ Z. Expandinggh and equating coefficients,

c0 = a0b0

c1 = a0b1 + a1b0

...
ci = a0bi + a1bi−1 + · · · + aib0

...
cn = arbs.

By hypothesis,p | c0. Write botha0 andb0 as a product of primes, so ifp | c0, ie: p | a0b0, thenp must
be one of the primes in this factorisation, hence divides oneof a0 or b0. Thus, eitherp | a0 or p | b0, but
not both(for thenp2 would dividec0). Assume that it isp | a0 that we have. Next,p | c1, and this coupled
with p | a0 givesp | c1 − a0b1 = a1b0 (If we had assumedp | b0, we would still reach this conclusion).
Again, p must divide one of the these last two factors, and since we’vealready decided that it doesn’t
divideb0, it must bea1 that it divides. Continuing in this manner, we get thatp divides all the coefficients
of g, and in particular,ar. But thenp dividesarbs = cn, the contradiction we were after. 2

As a meta-mathematical comment, the proof of Eisenstein irreducibility is a nice example of the manner
in which mathematics is created. You start with as few assumptions as possible (in this case thatp divides
some of the coefficients off ) and proceed towards some sort of conclusion, imposing extra conditions
as and when you need them. In this way the correct statement ofthe theorem writes itself in an organic
fashion.

(3.13) To show the power of the result, we get immediately that

x4 − 5x3 + 10x2 + 25x− 35,

is irreducible overQ, a fact not easily shown another way. Even more useful, we have

xn − p,

is irreducible overQ for any primep. Thus, we can find polynomials overQ of arbitrary large degree that
are irreducible, which is to be contrasted strongly with thesituation for polynomials overR or C.

(3.14) It turns out that there is a fundamental connection between the multitude of irreducible polynomials
overQ (and the relative paucity of them overR andC) and the empirical observation that there are lots
of fields a “little bigger” thanQ (for example,Q(

√
2) andQ(α, ω) from §1.), but very few fields a “little

bigger” thanR or C.

(3.15) Another useful tool arises when you have polynomials with coefficients from some ringR and a
homomorphism fromR to some fieldF . If the homomorphism is applied to all the coefficients of the
polynomial (turning it from a polynomial withR-coefficients into a polynomial withF -coefficients), then
a reducible polynomial cannot turn into an irreducible one. The precise statement goes by the name of:

The Reduction Test. Let R be an integral domain,F a field andσ : R → F a ring homomorphism.
Letσ∗ : R[x] → F [x] be given by

σ∗ :
∑

i

aix
i 7→

∑

i

σ(ai)x
i.

be the homomorphism of Lemma 2. Moreover, letp ∈ R[x] be such that
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1. deg σ∗(p) = deg(p), and

2. σ∗(p) is irreducible overF .

Thenp cannot be written as a productgh with g, h ∈ R[x] anddeg g, deg h < deg p.

Although it is stated in some generality, the reduction testis very useful for determining the irreducibil-
ity of polynomials overQ. As an example, takeR = Z; F = F5 andp = 8x3 − 6x − 1 ∈ Z[x]. Forσ,
take reduction modulo5, ie: σ(n) = n mod5. It is not hard to show thatσ is a homomorphism. Since
σ(8) = 3 mod5, and so on, we get

σ∗(p) = 3x3 + 4x + 4 ∈ F5[x].

Clearly, the degree has not changed, and by substituting thefive elements ofF5 into σ∗(p), one can see
that it has no roots inF5. Since the polynomial is a cubic, it must therefore be irreducible overF5. Thus,
by the reduction test,8x3 − 6x − 1 cannot be written as a product of smaller degree polynomialswith
Z-coefficients. But by Gauss’ lemma, this gives that this polynomial is irreducible overQ.

F5 was chosen because withF2 instead, condition (i) fails; withF3, condition (ii) fails.

Proof: Suppose on the contrary thatp = gh with deg g, deg h < deg p. Thenσ∗(p) = σ∗(gh) =
σ∗(g)σ∗(h), the last part becauseσ∗ is a homomorphism. Nowσ∗(p) is irreducible, so the only way it
can factorise like this is if one of the factors,σ∗(g) say, is a constant, hencedeg σ∗(g) = 0. Then

deg p = deg σ∗(p) = deg σ∗(g)σ∗(h) = deg σ∗(g) + deg σ∗(h) = deg σ∗(h) ≤ deg h < deg p,

a contradiction. Thatdeg σ∗(h) ≤ deg h rather than equality necessarily, is because the homomorphism
σ may send some of the coefficients ofh (including quite possibly the leading one) to0 ∈ F . 2

(3.16) Our final tool requires a little more set-up. We’ve already observed the similarity between poly-
nomials and integers. The idea of irreducibility inZ is just that of a prime number, and perhaps this goes
some way to indicating its importance for polynomials as well. One thing we know about integers is
that they can be written uniquely as a product of primes. We would hope that something similar is true
for polynomials, and it is in certain situations. For the next few results, we deal only with polynomials
f ∈ F [x] for F a field (they are actually true in more generality, but this isbeyond the scope of these
notes). In what follows, it is worth comparing the situationwith what you know aboutZ.

Lemma 4 1. If gcd(f, g) = 1 andf | gh thenf |h.

2. If f is irreducible and monic, then for anyg monic withg | f we have eitherg = 1 or g = f .

3. If g is irreducible and monic andg does not dividef , thengcd(g, f) = 1.

4. If g is irreducible and monic andg | f1f2 . . . fn theng|fi for somei.

Proof: 1. Sincegcd(f, g) = 1 there area, b ∈ F [x] such that1 = af + bg, henceh = afh + bgh.
We have thatf | bgh by assumption, and it clearly dividesafh, hence it dividesafh + bgh = h
also.

2. If g dividesf andf is irreducible, then by definitiong must be either a constant or a constant
multiple off . But f is monic, sog = 1 or g = f are the only possibilities.

3. Thegcd of f andg is certainly a divisor ofg, and hence by irreducibility must be either a constant,
or a constant timesg. As g is also monic, the gcd must in fact be either1 or g itself, and sinceg
does not dividef it cannot beg, so must be1.

4. Proceed by induction, with the first step forn = 1 being immediate. Sinceg | f1f2 . . . fn =
(f1f2 . . . fn−1)fn, we either haveg | fn, in which case we are finished, or not, in which case
gcd(g, fn) = 1 by part (3). But then part (1) gives thatg | f1f2 . . . fn−1, and the inductive hypoth-
esis kicks in.

2
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Perhaps the best way of summarising the lemma is this: monic irreducible polynomials are like the
“prime numbers” ofF [x].

(3.17) And just as any integer can be decomposed uniquely as a product of primes, so too can any
polynomial as a product of irreducible polynomials:

Unique factorisation in F [x]. Every polynomial inF [x] can be written in the form

λp1p2 . . . pr,

whereλ is a constant and thepi are monic and irreducible∈ F [x]. Moreover, ifµq1q2 . . . qs is another
factorisation with theqj monic and irreducible, thenr = s, λ = µ and theqj are just a rearrangement
of thepi.

The last part says that the factorisation is unique, except for trivial matters like the order you write
down the factors. Like many such results in mathematics, thefirst impression is that the existence of the
factorisation is the useful part, but in fact it is the uniqueness that really is.

Proof: To get the factorisation in the first place is easy enough: just keep factorising reducible polyno-
mials until they become irreducible. At the end, pull out thecoefficient of the leading term in each factor,
and place them all at the front.

For uniqueness, suppose that
λp1p2 . . . pr = µq1q2 . . . qs.

Thenpr dividesµq1q2 . . . qs which by Lemma 4 part (4) means thatpr | qi for somei. Reorder theq’s so
that it ispr | qs that in fact we have. Since bothpr andqs are monic, irreducible, and hence non-constant,
pr = qs, which leaves us with

λp1p2 . . . pr−1 = µq1q2 . . . qs−1.

This givesr = s straight away: if says > r, then repetition of the above leads toλ = µq1q2 . . . qs−r,
which is absurd, as consideration of degrees gives different answers for each side. Similarly ifr > s. But
then we also have that thep’s are just a rearrangement of theq’s, and canceling down toλp1 = µq1, that
λ = µ. 2

(3.18) It is worth repeating that everything depends on the ambientfield F , even the uniqueness of the
decomposition. For example,x4 − 4 decomposes as,

(x2 + 2)(x2 − 2) in Q[x],
(x2 + 2)(x −

√
2)(x +

√
2) in R[x] and

(x −
√

2i)(x +
√

2i)(x −
√

2)(x +
√

2) in C[x].

To illustrate how unique factorisation can be used to determine irreducibility, we have inC[x] that,

x2 + 2 = (x −
√

2i)(x +
√

2i).

Since the factors on the right are not inR[x] we have an inkling that this polynomial is irreducible over
R. To make this more precise, any factorisation inR[x] would be of the form

x2 + 2 = (x − λ1)(x − λ2)

with the λi ∈ R. But this would be a factorisation inC[x] too, and there is only one such by unique
factorisation. This forces theλi to be

√
2i and−

√
2i, contradictingλi ∈ R. Hencex2 + 2 is indeed

irreducible overR. Similarly,x2 − 2 is irreducible overQ.

Exercise 20 Formulate the example above into a general Theorem.
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Further Exercises for§3.

Exercise 21 Prove that if a polynomial equation has all its coefficients in C then it must have all its roots inC.

Exercise 22

1. Letf = anxn + an−1xn−1 + · · ·+ a1x+ a0 be a polynomial inR[x], that is, all theai ∈ R. Show that complex roots
of f occur in conjugate pairs, ie:ζ ∈ C is a root off if and only if ζ̄ is.

2. Find an example of a polynomial inC[x] for which part (a) is not true.

Exercise 23

1. Letm,n andk be integers withm andn relatively prime (ie:gcd(m,n) = 1). Show that ifm dividesnk thenm must
dividek (hint: there are two methods here. One is to use Lemma 4 but inZ. The other is to use the fact that any integer can
be written uniquely as a product of primes. Do this form andn, and ask yourself what it means for this factorisation that
m andn are relatively prime).

2. Show that ifm/n is a root ofa0 + a1x + ...+ arxr, ai ∈ Z, wherem andn are relatively prime integers, thenm|a0
andn|ar (hint: use the first part!).

3. Deduce that ifar = 1 thenm/n is in fact an integer.

moral: If a monic polynomial with integer coefficients has a rational rootm/n, then this rational number is in fact an integer.

Exercise 24 If m ∈ Z is not a perfect square, show thatx2 −m is irreducible overQ (note: it isnot enough to merely assume
that under the conditions stated

√
m is not a rational number).

Exercise 25 Find the greatest common divisor off(x) = x3 − 6x2 +x+4 andg(x) = x5 − 6x+ 1 (hint: look at linear factors
of f(x)).

Exercise 26 Determine which of the following polynomials are irreducible over the stated field:

1. 1 + x8 overR;

2. 1 + x2 + x4 + x6 + x8 + x10 overQ (hint : Let y = x2 and factoriseyn − 1);

3. x4 + 15x3 + 7 overR (hint : use the intermediate value theorem from analysis);

4. xn+1 + (n+ 2)! xn + · · · + (i + 2)! xi + · · · + 3! x+ 2! overQ.

5. x2 + 1 overF7.

6. Let F be the field of order 8 from§4., and letF[X] be polynomials with coefficients fromF and indeterminateX. Is
X3 + (α2 + α)X + (α2 + α+ 1) irreducible overF?

7. a4x4 + a3x3 + a2x2 + a1x+ a0 overQ where theai ∈ Z; a3, a2 are even anda4, a1, a0 are odd.

Exercise 27 If p is a prime integer, prove thatp is a divisor of

„
p
i

«
, for 0 < i < p.

Exercise 28 Show that

xp−1 + pxp−2 + · · · +
„

p
i

«
xp−i−1 + · · · + p,

is irreducible overQ.

Exercise 29 A complex numberω is ann-th root of unity if ωn = 1. It is aprimitive n-th root of unity ifωn = 1, butωr 6= 1
for any0 < r < n. So for example,±1,±i are the 4-th roots of 1, but only±i are primitive 4-th roots.

Convince yourself that for anyn,

ω = cos
2π

n
+ i sin

2π

n

is ann-th root of1. In fact, the othern-th roots areω2, . . . , ωn = 1.

1. Show that ifω is aprimitiven-th root of1 thenω is a root of the polynomial

xn−1 + xn−2 + · · · + x+ 1. (3)

2. Show that for (3) to be irreducible overQ, n cannot be even.

3. Show that a polynomialf(x) is irreducible over a fieldF if f(x + 1) is irreducible overF .

4. Finally, if
Φp(x) = xp−1 + xp−2 + · · · + x+ 1

for p a prime number, show thatΦp(x+ 1) is irreducible overQ, and henceΦp(x) is too (hint: considerxp − 1 and use
the binomial theorem, Exercise 27 and Eisenstein).

The polynomialΦp(x) is called thep-th cyclotomic polynomial.
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§4. Fields I: Basics, extensions and concrete examples

(4.1) This course is primarily the study of solutions to polynomial equations. Broadly speaking, questions
in this direction can be restated as questions about fields. It is to these that we now turn.

(4.2) We remembered the definition of a field in Lecture§1.. Since then we have become more familar
with rings, so we can restate the definition as:

Definition. A field is a setF with two operations,⊕ and⊗, such that for anya, b, c ∈ F ,

1. F is an Abelian group under⊕ (with ⊕ normally called just+, e called0, anda−1 called−a),

2. F \ {0} is an Abelian group under⊗ (with ⊗ normally called just×, andf called1),

3. the two operations are linked by the distributive law.

The two groups are called theadditiveandmultiplicativegroups of the field. In particular, we will
write F ∗ to denote the multiplicative group (ie:F ∗ is the group with elementsF \ {0} and operation the
multiplication from the field). Even more succinctly,

Definition. A field is a setF with two operations,⊕ and⊗, such that for anya, b, c ∈ F ,

1. F is a commutative ring under⊕ and⊗ (with ⊕ normally called just+, e called0, inverses under
⊕ called−a, ⊗ just×, andf called1),

2. for anya ∈ F \ {e} there is ana−1 ∈ F with a ⊗ a−1 = f = a−1 ⊗ a,

In particular,a field is a very special kind of ring.

(4.3) More concepts from the first lecture that can now be properly defined are:

Definition. Let F andE be fields withF a subfield ofE. We callE anextensionof F . The standard
notation for an extension is to writeE/F , but in these notes we will use the more concreteF ⊆ E, being
mindful at all times that this meansF is a subfield ofE, and not just a subset.

If β ∈ E, we write, as in§1., F (β) for the smallest subfield ofE containing bothF and β (so
in particularF (β) is an extension ofF ). In general, ifβ1, . . . , βk ∈ E, defineF (β1, . . . , βk) =
F (β1, . . . , βk−1)(βk).

We say thatβ has isadjoinedto F to obtainF (β). The last bit of the definition just says that to adjoin
several elements to a field, you just adjoin them one at a time4. Finally, if we have an extensionF ⊂ E
and there is aβ ∈ E such thatE = F (β), then we callE asimple extensionof F .

(4.4) Trivially, R is an extension ofQ; C is an extension ofR, and so on. Any field is equally trivially an
extension of itself!

(4.5) Let F2 be the field of integers modulo2 arithmetic. Letα be an “abstract symbol” that can be
multiplied so that it has the following property:α × α × α = α3 = α + 1 (a bit like decreeing that the
imaginaryi squares to give−1). Let

F = {a + bα + cα2 | a, b, c ∈ F2},

Define addition onF by: (a1 +b1α+c1α
2)+(a2 +b2α+c2α

2) = (a1 +a2)+(b1 +b2)α+(c1 +c2)α
2,

where the addition of coefficients happens inF2. For multiplication, “expand” the expression(a1+b1α+
c1α

2)(a2 + b2α + c2α
2) like you would a polynomial withα the indeterminate, so thatααα = α3, the

coefficients are dealt with using the arithmetic fromF2, and so on. Replace anyα3 that result using the
ruleα3 = α + 1.

4Although the definition has you adjoining them in a particular order, the order doesn’t matter.
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For example,

(1 + α + α2) + (α + α2) = 1 and(1 + α + α2)(α + α2) = α + α4 = α + α(α + 1) = α2.

It turns out thatF forms a field with this addition and multiplication, see Exercise 40. For now we content
ourselves with the following observation: taking those elements ofF with b = c = 0, we obtain (an
isomorphic) copy ofF2 inside ofF.

Thus, we have an extension ofF2 that contains8 elements.

(4.6) Certainly,Q(
√

2) is a simple extension ofQ. On the other hand,Q(
√

2,
√

3) would appear not to
be; but looking at the definition closely you see that a simpleextension is onethat can be obtainedby
adjoining one element.

Consider nowQ(
√

2 +
√

3): certainly
√

2 +
√

3 ∈ Q(
√

2,
√

3), and soQ(
√

2 +
√

3) ⊂ Q(
√

2,
√

3).
On the other hand,

(
√

2 +
√

3)3 = 11
√

2 + 9
√

3,

as is readily checked using the Binomial Theorem. Since(
√

2 +
√

3)3 ∈ Q(
√

2 +
√

3), we get

(11
√

2 + 9
√

3) − 9(
√

2 +
√

3) ∈ Q(
√

2 +
√

3) ⇒ 2
√

2 ∈ Q(
√

2 +
√

3).

And so
√

2 ∈ Q(
√

2 +
√

3) as
1

2
is there too. Similarly it can be shown that

√
3 ∈ Q(

√
2 +

√
3). The

upshot is thatQ(
√

2,
√

3) ⊂ Q(
√

2 +
√

3). SoQ(
√

2,
√

3) is a simple extension! It didn’t appear to be
as we hadn’t written it the right way. We will see more precisely at the end of§9. when extensions are
simple.

(4.7) What do the elements of the fieldQ(
√

2) actually look like? Later we will be answer this question
in a general and completely satisfactory manner, but for nowwe can feel our way towards an ad-hoc
answer.

Certainly
√

2 and anyb ∈ Q are inQ(
√

2) by definition. Since fields are closed under×, any number
of the formb

√
2 ∈ Q(

√
2). Similarly, fields are closed under+, so anya + b

√
2 ∈ Q(

√
2) for a ∈ Q.

Thus, the set
F = {a + b

√
2 | a, b ∈ Q} ⊆ Q(

√
2).

But F is a field in its own right using the usual addition and multiplication of complex numbers. This is
easily checked from the axioms; for instance, the inverse ofa + b

√
2 can be calculated:

1

a + b
√

2
× a − b

√
2

a − b
√

2
=

a − b
√

2

a2 − 2b2
=

a

a2 − 2b2
− b

a2 − 2b2

√
2 ∈ F,

and you can check the other axioms for yourself. We also haveQ ⊂ F (lettingb = 0) and
√

2 ∈ F (letting
a = 0, b = 1). SinceQ(

√
2) is the smallest field having these two properties, we haveQ(

√
2) ⊆ F. Thus,

Q(
√

2) = F = {a + b
√

2 | a, b ∈ Q}.

Exercise 30 Letα be a complex number such thatα3 = 1 and consider the set

F = {a0 + a1α+ a2α
2 | ai ∈ Q}

1. By row reducing the matrix, 0
@

a0 2a2 2a1 1
a1 a0 2a2 0
a2 a1 a0 0

1
A

find an element ofF that is the inverse under multiplication ofa0 + a1α+ a2α2.

2. Show thatF is a field, henceQ(α) = F.

22



(4.8) The previous exercise shows that the following two fields have the form,

Q(
3
√

2) = {a + b
3
√

2 + c
3
√

2
2 | a, b, c ∈ Q} andQ(β) = {a + bβ + cβ2 | a, b, c ∈ Q},

where

β =
− 3
√

2 + 3
√

2
√

3i

2
∈ C.

Observe for now that these two fields are different. The first is clearly completely contained inR, but the
second containsβ, which is obviously complex but not real.

(4.9) A bijective homomorphism of ringsϕ : R → S is called anisomorphism.
A silly but instructive example is given by the Roman ring, whose elements are

{. . . ,−V,−IV,−III,−II,−I, 0, I, II, III, IV, V, · · · },

and with addition and mutiplication giving such things asIX + IV = XIII andIX × V I = LIV, . . .
Obviously the ring is isomorphic toZ, and it is this idea of a trivial relabelling that is capturedby the
idea of an isomorphism–two rings are isomorphic if they are really the same, just written in different
languages! The translation is carried out by the mappingϕ.

It seems a sensible enough idea, but we place a huge emphasis on the way things are labelled, often
without even realising that we are doing it. The two fields above are a good example, for,

Q(
3
√

2) andQ

(− 3
√

2 + 3
√

2
√

3i

2

)
are isomorphic!

(we’ll see why in§6.). To illustrate how we might now come unstuck, suppose we were to formulate the
following,

“Definition”. A subfield ofC is calledreal if and only if it is contained inR.

SoQ( 3
√

2) is a real field, butQ

(− 3
√

2 + 3
√

2
√

3i

2

)
is not. But they are the same field! A definition

should not depend on the way the elements are labelled. The problem is that we have become too bogged
down in the minutiae of real and complex numbers and we need tothink about fields in a more abstract
way.

(4.10) The previous example has motivated the direction of the nextfew sections. In the remainder of
this section we introduce a few more concepts associated with fields.

It is well known that
√

2 andπ are both irrational real numbers. Nevertheless, from an algebraic point
of view,

√
2 is slightly more tractable thanπ, as it is a root of a very simple equationx2 − 2, whereas

there is no polynomial with integer coefficients havingπ as a root (this is not obvious).
Let F ⊆ E be an extension of fields andα ∈ E. Call α algebraic overF if and only if

a0 + a1α + a2α
2 + · · · + anαn = 0,

for somea0, a1, . . . , an ∈ F . In otherwords,α is a root of the polynomialf = a0 + a1x + a2x
2 + · · ·+

anxn in F [x]. If α is not algebraic, ie: not the root of any polynomial withF -coefficients, then we say
that it istranscendentaloverF .

As the story of Galois theory develops, we will see that it is the algebraic elements overF that are the
most easily understood. It is tempting to think of them as having expressions in terms of elements ofF ,
the four field operations+,−,×,÷ and roots√, 3

√
, . . . , n

√
, . . ., but as we shall see in§16., the situation

is much more subtle than that. Indeed there are algebraic numbers that cannot be expressedalgebraically.
For now it is best just to stick to the definition and not read too much into it.
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(4.11) Some simple examples:
√

2,
1 +

√
5

2
and

5

√√
2 + 5

3
√

3,

are algebraic overQ, whereasπ ande are transcendental overQ; π is however algebraic overQ(π).

(4.12) A field can obviously contain many subfields: if we look atC, it containsQ(
√

2), R, . . .. It also
containsQ, but no subfields that are smaller than this, in the usual sense that they are properly contained
in Q. Indeed,anysubfield ofC containsQ. So,Q is the “smallest” subfield of the complex numbers.

For any fieldF , theprime subfieldF of F is the smallest subfield ofF in the sense that ifF ′ is any
subfield withF ′ ⊆ F thenF ′ = F.

Exercise 31 Show that the prime subfield can also be defined as the intersection of all the subfields ofF . Thus in particular, the
prime subfield iscontained in every subfield ofF .

Exercise 32 Consider the field of rational numbersQ or the finite fieldFp havingp elements. Show that neither of these fields
contain a proper subfield (hint: forFp, consider the additive group and use Lagrange’s Theorem from §11.. For Q, any subfield
must contain1, and show that it must then be all ofQ).

Whatever the prime subfield is, it must contain1, hence any expression of the form1 + 1 + · · ·+ 1 for
any number of summands. If no such expression equals the0 in the field, then we have infinitely many
distinct such elements, and their inverses under addition,so what we have is basically a copy ofZ in F .
Otherwise, ifn is the smallest number of summands for which such an expression is equal to0, then the
elements

1, 1 + 1, 1 + 1 + 1, . . . , 1 + 1 + · · · + 1︸ ︷︷ ︸
n times

= 0,

forms a copy ofZn inside ofF .
These comments can be made precise as in the following exercise. It looks ahead a little, requiring the

first isomorphism theorem for rings in§5.

Exercise 33 LetF be a field and define a mapZ → F by

n 7→

8
<
:

0, if n = 0,
1 + · · · + 1, (n times), ifn > 0
−1 − · · · − 1, (n times), ifn < 0.

Show that the map is a homomorphism. If the kernel consists ofjust {0}, then show thatF containsZ as a subring. Otherwise,
let n be the smallest positive integer contained in the kernel, and show thatF containsZn as a subring. AsF is a field, hence an
integral domain, show that we must haven = p a prime in this situation.

Thusany field contains a subring isomorphic toZ or to Zp for some primep. But the ringZp is the
field Fp, and we saw in Exercise 32 thatFp contains no subfields. The conclusion is that in the second
case above, the prime subfield is this copy ofFp. In the first case,Z is obviously not a field, but each
m in this copy ofZ has an inverse1/m in F , and the product of this with any othern gives an element
m/n ∈ F . The set of all such elements obtained is a copy ofQ insideF .

Exercise 34 Make these loose statements precise: letF be a field andR a subring ofF with ϕ : Z → R an isomorphism
of rings (this is what we mean when we say thatF contains a copy ofZ). Show that this can be extended to an isomorphism
bϕ : Q → F ′ ⊆ F with bϕ|Z = ϕ.

(4.13) Putting it all together we get:the prime subfield of a field is isomorphic either to the rationals Q

or to the finite fieldFp for some primep. Define thecharacteristicof a field to be0 if the prime subfield
is Q or p if the prime subfield isFp. Thus fields likeQ, R andC have characteristic zero, and indeed, any
field of characteristic zero must be infinte, to containQ. Fields likeF2, F3 . . . and the fieldF of order8
given above have characteristic2, 3 and2 respectively.

Exercise 35 Show that a fieldF has characteristicp > 0 if and only if p is the smallest number of summands such that the
expression1 + 1 + · · · + 1 is equal to0. Show thatF has characteristic0 if and only if no such expression is equal to0.
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Thus, all fields of characteristic0 are infinite, and the only examples we know of fields of characteristic
p > 0 are finite. It isnot true though that a field of characteristicp > 0 must be finite. There are some
examples of infinite fields of characteristicp > 0 below.

Exercise 36 Suppose thatf is an irreducible polynomial over a fieldF of characteristic0. Recalling Exercise 16, show that the
roots off in any extensionE of F aredistinct.

(4.14) A natural question is to ask what fields contain the integersZ?5 Obviously the rationalsQ do, and
indeed by Exercise 34, as soon as a field contains a copy ofZ it must also contain a copy ofQ.

It turns out that we can also constructQ abstractly fromZ without having to first position it inside
another field: consider the set

F = {(a, b) | a, b ∈ Z, b 6= 0, and(a, b) = (c, d) iff ad = bc}.

In otherwords, we take all ordered pairs of elements fromZ, but think of two ordered pairs(a, b) and
(c, d) as being the same ifad = bc, eg: think of(0, 1) and(0, 2) as being the same element ofF, and
similarly (1, 1) and(3, 3)

Aside. One makes these loose statements more preicse by defining an equivalence relation on the set of ordered pairsZ × Z as
(a, b) ∼ (c, d) if and only if ad = bc. The elements ofF are then the equivalence classes under this relation. We will nevertheless
stick with the looser formulation.

Define addition and multiplication onF in the following way:

(a, b) + (c, d) = (ad + bc, bd) and(a, b)(c, d) = (ac, bd).

Exercise 37

1. Show that these definitions are “well-defined”, ie: if(a, b) = (a′, b′) and (c, d) = (c′, d′), then (a, b) + (c, d) =
(a′, b′)+(c′, d′) and(a, b)(c, d) = (a′, b′)(c′, d′)–in otherwords, if two pairs are thought of as being the same,it doesn’t
matter which one we use in the arithmetic as we get the same answer.

2. Show thatF is a field.

3. Now define a mapϕ : F → Q by ϕ(a, b) = a/b. Show that the map is well defined, ie: if(a, b) = (a′, b′) then
ϕ(a, b) = ϕ(a′, b′). Show thatϕ is an isomorphism fromF to Q.

This construction can be generalised as the following Exercise shows:

Exercise 38 Repeat the construction above withZ replaced by an arbitrary integral domainR. The resulting field is called thefield
of fractions ofR.

The field of fractions construction provides some very interesting examples of fields, possibly new in
the reader’s experience. LetF [x] be the ring of polynomials withF -coefficients whereF is any field.
The field of fractions of this integral domain has elements ofthe formf(x)/g(x) for f andg polynomials,
in otherwords, rational functions withF -coefficients. The field is denotedF (x) and is called thefield of
rational functions overF .

An infinite field of characteristicp: If Fp is the finite field of orderp, then the field of rational functions
Fp(x) is obviously infinite (it contains for example all the polynomials overFp, of which there are an
infinite number). Moreover, the rational function1 adds to itselfp times to give0.

A field properly containing the complex numbers:any fieldF is properly contained inF (x), even
F = C.

Further Exercises for§4.

Exercise 39 Let F be the set of all matrices of the form

»
a b
2b a

–
wherea, b are in the fieldF5. Define addition and multiplica-

tion to be the usual addition and multiplication of matrices(and also the addition and multiplication inF5). Show thatF is a field.
How many elements does it have?

5or more precisely, which fields contain anisomorphic copyof the integers.
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Exercise 40 Let F2 be the field of integers modulo2, andα be an “abstract symbol” that can be multiplied so that it has the
following property:α× α× α = α3 = α+ 1 (a bit like decreeing that the imaginaryi squares to give−1). Let

F = {a+ bα+ cα2 | a, b, c ∈ F2},

Define addition onF by: (a1 + b1α + c1α2) + (a2 + b2α + c2α2) = (a1 + a2) + (b1 + b2)α + (c1 + c2)α2 , where the
addition of coefficients happens inF2. For multiplication, “expand” the expression(a1 + b1α + c1α2)(a2 + b2α + c2α2) like
you would a polynomial withα the indeterminate, the coefficients are dealt with using thearithmetic fromF2, and so on. Replace
anyα3 that result using the rule above.

1. Write down all the elements ofF.

2. Write out the addition and multiplication tables forF (ie: the tables with rows and columns indexed by the elementsof F,
with the entry in thei-th row andj-th column the sum/product of thei-th andj-th elements of the field). Hence show that
F is a field (you can assume that the addition and multiplication are associative as well as the distributive law, as these are a
bit tedious to verify!) Using your tables, find the inverses (under multiplication) of the elements1 +α and1 +α+α2, ie:
find

1

1 + α
and

1

1 + α+ α2
in F.

3. Is the extensionF2 ⊂ F a simple one?

Exercise 41 Take the setF of the previous exercise, and define addition/multiplication in the same way except that the rule for
simplification is nowα3 = α2 + α+ 1. Show that in this case youdon’t get a field.

Exercise 42 Verify the claim in lectures that the setF = {a+ b
√

2 | a, b ∈ Q} is a subfield ofC.

Exercise 43 Verify the claim in lectures thatQ( 3
√

2) = {a + b( 3
√

2) + c( 3
√

2)2 | a, b, c ∈ Q}.

Exercise 44 Find a complex numberα such thatQ(
√

2, i) = Q(α).

Exercise 45 Is Q(
√

2,
√

3,
√

7) a simple extension ofQ(
√

2,
√

3), Q(
√

2) or even ofQ?

Exercise 46 Let∇ be an “abstract symbol” that has the following property:∇2 = −∇− 1 (a bit like i squaring to give−1). Let

F = {a+ b∇| a, b ∈ R},

and define an addition onF by: (a1 + b1∇)+ (a2 + b2∇) = (a1 +a2)+ (b1 + b2)∇. For multiplication, expand the expression
(a1 + b1∇)(a2 + b2∇) normally (treating∇ like an indeterminate, so that∇∇ = ∇2, and so on), and replace the resulting∇2

using the rule above. Show thatF is a field, and is just the complex numbersC. Do exactly the same thing, but with symbol△
satisfying△2 =

√
2△− 3

√
5. Show that youstill get the complex numbers.
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§5. Rings II: Quotients

(5.1) Let R be a commutative ring. A subseta ⊆ R is called aprincipal ideal iff there is somer ∈ R
such that

a = {pr | p ∈ R}.
In other words,a is precisely the set of all multiples of some fixed elementr. Denote such an ideal by

〈r〉.
The name is “principal” ideal as there are more general kindsof ideal. Nevertheless, in all rings we

will be concerned with, every ideal in this more general sense turns out to be a principal ideal, so we will
drop the principal from now on and just say “ideal”.

Aside. Here is the more general notion:a ⊆ R is an ideal iffa is a subgroup of the abelian group(R,⊕) and for anys ∈ R we
havesa = {sp | p ∈ a} ⊆ a and similarlyas ⊆ a. For example, ifR = Z[x], then the seta of polynomials with even coefficients
and no constant term form an ideal. But there is no single polynomialf in Z[x] such that every polynomial ina is a multiple off .

Notice that ifs ∈ R and〈r〉 is an ideal, thens〈r〉 = {s(pr) | p ∈ R} = {(sp)r | p ∈ R} which is
⊆ 〈r〉. Similarly, 〈r〉s ⊆ 〈r〉 (asR is commutative). In other words, multiplying the elements of an ideal
by an arbitrary element of the ring gives elements of the ideal.

(5.2) In any ring there are the trivial ideals〈0〉 = {0} and〈1〉 = R, the second one as any element ofR
is a multiple of1.

Exercise 47

1. Show that the only ideals in a fieldF are the two trivial ones (hint: use the property of ideals mentioned at the end of the
last paragraph).

2. If R is a commutative ring whose only ideals are{0} andR, then show thatR is a field.

3. Show that in the non-commutative ringMn(F ) of n×nmatrices with entries from the fieldF there are only the two trivial
ideals, but thatMn(F ) is not a field.

(5.3) For another example, consider the ringQ[x], the number
√

2 ∈ R, and the evaluation homomor-
phismε√2 : Q[x] −→ R given by

ε√2(anxn + · · · + a0) = an(
√

2)n + · · · + a0.

(see§2.). Let a be the set of all polynomials inQ[x] that are sent to0 ∈ R by this map. Certainly

x2 − 2 ∈ a (as
√

2
2 − 2 = 0). If f = (x2 − 2)g ∈ Q[x], then

ε√2(f) = ε√2(x
2 − 2)ε√2(g) = 0 × ε√2(g) = 0,

using the fact thatε√2 is a homomorphism. Thus,f ∈ a, and so the ideal〈x2 − 2〉 is⊆ a.
Conversely, ifh is sent to0 by ε√2, ie: h ∈ a, we can divide it byx2 − 2 using the division algorithm,

h = (x2 − 2)q + r,

wheredeg r < 2, so thatr = ax + b for somea, b ∈ Q. But sinceε√2(h) = 0 we have

(
√

2
2 − 2)q(

√
2) + r(

√
2) = 0 ⇒ r(

√
2) = 0 ⇒ a

√
2 + b = 0.

If a 6= 0, then
√

2 ∈ Q asa, b ∈ Q, which is plainly nonsense. Thusa = 0, henceb = 0 too, so that
r = 0, and henceh = (x2 − 2)q ∈ 〈x2 − 2〉, and we get thata ⊆ 〈x2 − 2〉.

The conclusion is that the set of polynomials inQ[x] sent to zero by the evaluation homomorphism
ε√2 is an ideal.
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(5.4) This in fact always happens. Remember that ifR, S are rings andϕ : R −→ S a ring homomor-
phism, then thekernelof ϕ, denoted kerϕ, is the set of all elements ofR sent to0 ∈ S by ϕ, ie:

kerϕ = {r ∈ R |ϕ(r) = 0 ∈ S}.

Proposition 2 If F is a field andS a ring then the kernel of a homomorphismϕ : F [x] −→ S is an ideal.

Proof: Chooseg ∈ kerϕ non-zero of smallest degree (which we can do since the degrees of polynomials
come from the setZ+ ∪ {−∞}). We claim that kerϕ = 〈g〉, for which we need to show that these two
sets are mutually contained within each other. On the one hand, if pg ∈ 〈g〉 then

ϕ(pg) = ϕ(p)ϕ(g) = ϕ(p) × 0 = 0,

sinceg ∈ kerϕ. Thus,〈g〉 ⊆ kerϕ.
On the other hand, letf ∈ kerϕ and use the division algorithm to divide it byg,

f = qg + r,

wheredeg r < deg g. Now, r = f − qg ⇒ ϕ(r) = ϕ(f − qg) = ϕ(f) − ϕ(q)ϕ(g) = 0 − ϕ(q).0 = 0,
since bothf, g ∈ kerϕ. Thus,r is also in the kernel ofϕ. If r was a non-zero polynomial, then we would
have a contradiction becausedeg r < deg g, butg was chosen from kerϕ to have smallest degree. Thus
we must have thatr = 0, hencef = qg ∈ 〈g〉, ie: kerϕ ⊆ 〈g〉. 2

(5.5) Let 〈f〉 ⊂ F [x] be an ideal andg ∈ F [x] any polynomial. The set

g + 〈f〉 = {g + h |h ∈ 〈f〉},

is called thecoset of〈f〉 with representativeg (or the coset of〈f〉 determinedby g).

(5.6) As an example, consider the ideala = 〈x〉 in F2[x]. Thus,a is the set of all multiples ofx, which
is just the same thing as the collection of polynomials inF2[x] that have no constant term. What are the
cosets ofa? Letg be any polynomial and consider the cosetg + 〈x〉. The only possibilities are thatg has
no constant term, or it does, in which case this term is1 (we are inF2[x]).

If g has no constant term, then
g + 〈x〉 = 〈x〉.

For,g+ a polynomial with no constant term is another polynomial with no constant term, ie:g + 〈x〉 ⊆
〈x〉. On the other hand, ifp ∈ 〈x〉 is any polynomial with no constant term, thenp − g ∈ 〈x〉 so
p = g + (p − g) ∈ g + 〈x〉, ie: 〈x〉 ⊆ g + 〈x〉.

If g does have a constant term, you can convince yourself in exactly the same way that,

g + 〈x〉 = 1 + 〈x〉.

Thus, there are only two cosets of〈x〉 in F2[x], namely the ideala = 〈x〉 itself and1 + a; in English, the
first coset consists of those polynomialswithoutconstant term, and the second thosewith a constant term.

Notice that these two cosets are completely disjoint, but every polynomial is in one or the other of them
of them.

(5.7) Here are some basic properties of cosets:

1. Every polynomialg is in some coset of〈f〉, for g = g + 0 × f ∈ g + 〈f〉.

2. For anyq, we haveqf + 〈f〉 = 〈f〉, so multiples off get “absorbed” into the ideal〈f〉.
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3.

〈f〉

g1
g2

g2 + 〈f〉
=

g1 + 〈f〉

The following three things are equivalent: (i).g1 and g2 lie in the
same coset of〈f〉; (ii). g1 + 〈f〉 = g2 + 〈f〉; (iii). g1 andg2 differ
by a multiple off . To see this: (iii)⇒ (ii) If g1 − g2 = pf then
g1 = g2 + pf so thatg1 + 〈f〉 = g2 + pf + 〈f〉 = g2 + 〈f〉; (ii)
⇒ (i) Sinceg1 ∈ g1 + 〈f〉 andg2 ∈ g2 + 〈f〉, and these cosets are

equal we have thatg1, g2 lie in the same coset; (i)⇒ (iii) If g1 andg2 lie in the same coset, ie:
g1, g2 ∈ h + 〈f〉, then eachgi = h + pif ⇒ g1 − g2 = (p1 − p2)f .

It can perhaps best be summarised by saying thatg1 andg2 lie in the same coset if and only if this
coset has the two different names,g1 + 〈f〉 andg2 + 〈f〉, as in the picture.

4.

g1

g2

g2 + 〈f〉
g1 + 〈f〉

h

The situation in the picture oppositeneverhappens. If the two cosets
pictured are called respectivelyg1 + 〈f〉 andg2 + 〈f〉, thenh is in both
and so differs fromg1 andg2 by multiples off , ie: g1 − h = p1f and
h− g2 = p2f , so thatg1 − g2 = (p1 + p2)f . Sinceg1 andg2 differ by
a multiple off , we haveg1 + 〈f〉 = g2 + 〈f〉.

Thus, thecosets of an ideal partition the ring.

(5.8) As an example of all these ideas, letx2 − 2 ∈ Q[x] and consider the ideal

〈x2 − 2〉 = {p(x2 − 2) | p ∈ Q[x]}.

Certainly,(x3 − 2x + 15) + 〈x2 − 2〉 is a coset, but is it written in the nicest possible form? If wedivide
by x2 − 2:

x3 − 2x + 15 = x(x2 − 2) + 15,

we have thatx3 − 2x + 15 and15 differ by a multiple ofx2 − 2. That gives

(x3 − 2x + 15) + 〈x2 − 2〉 = 15 + 〈x2 − 2〉.

(5.9) If we look again at the example of the coset〈x〉 in F2[x], there were only two cosets,

〈x〉 = 0 + 〈x〉 and1 + 〈x〉,

that corresponded to the polynomials with constant term0 and the polynomials with constant term1
(these are the only possibilities for the coefficients inF2[x]!) We could try “adding” and “multiplying”
these two cosets together according to,

(0 + 〈x〉) + (0 + 〈x〉) = 0 + 〈x〉, (1 + 〈x〉) + (0 + 〈x〉) = 1 + 〈x〉, (1 + 〈x〉) + (1 + 〈x〉) = 0 + 〈x〉,

and so on, where all we have done is to add the representativesof the cosets together using the addition
from F2. Similarly for multiplying the cosets. This looks awfully like F2, but with0 + 〈x〉 and1 + 〈x〉
replacing0 and1.

(5.10) In fact this always happens. Let〈f〉 be an ideal inF [x], and define an addition and multiplication
of cosets of〈f〉 by,

(g1 + 〈f〉) + (g2 + 〈f〉) = (g1 + g2) + 〈f〉 and(g1 + 〈f〉)(g2 + 〈f〉) = (g1g2) + 〈f〉,

where the addition and multiplication of thegi’s is happening inF [x].

Theorem 3 The set of cosetsF [x]/〈f〉 together with the+ and× above is a ring.
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Call this thequotient ringof F [x] by the ideal〈f〉. All our rings have a “zero”, a “one”, and so on, and
for the quotient ring these are,

element of a ring corresponding element inF [x]/〈f〉
a g + 〈f〉
−a (−g) + 〈f〉
0 0 + 〈f〉 = 〈f〉
1 1 + 〈f〉

Exercise 48 To prove this theorem,

1. Show that the addition of cosets iswell defined, ie: if g′i + 〈f〉 = gi + 〈f〉, then

(g′1 + g′2) + 〈f〉 = (g1 + g2) + 〈f〉.

2. Similarly, show that the multiplication is well defined. Actually, it is because of this and the previous part that we can only
take the quotients of polynomials by ideals, and not just anyold subring.

3. Now verify the axioms for a ring.

Notice that the quotient is a ring, but not necessarily a field, So the motivating example above, where
the quotient turned out to be the fieldF2 was a little special.

(5.11) Let x2 +1 ∈ R[x], and look at the ideal〈x2 +1〉. We want to see what the quotientR[x]/〈x2 +1〉
looks like. First, any coset can be put into a nice form: for example,

x4 + x2 + x + 1 + 〈x2 + 1〉 = x2(x2 + 1) + (x + 1) + 〈x2 + 1〉,

where we have dividedx4 + x2 + x + 1 by x2 + 1 using the division algorithm. But

x2(x2 + 1) + (x + 1) + 〈x2 + 1〉 = x + 1 + 〈x2 + 1〉,

as the multiple ofx2+1 gets absorbed into the ideal. In fact, for anyg ∈ R[x] we can make this argument,

g + 〈x2 + 1〉 = q(x2 + 1) + (ax + b) + 〈x2 + 1〉 = ax + b + 〈x2 + 1〉,

for somea, b ∈ R, so the set of cosets can be written as

R[x]/〈x2 + 1〉 = {ax + b + 〈x2 + 1〉 | a, b ∈ R}.

Now take two elements of the quotient, say(x+1)+ 〈x2 +1〉 and(2x−3)+ 〈x2 +1〉, and add/multiply
them together:

{
(x + 1) + 〈x2 + 1〉

}
+

{
(2x − 3) + 〈x2 + 1〉

}
= 3x − 2 + 〈x2 + 1〉,

and
{

(x + 1) + 〈x2 + 1〉
}
×

{
(2x − 3) + 〈x2 + 1〉

}
= (2x2 − x − 3) + 〈x2 + 1〉

= 2(x2 + 1) + (−x − 5) + 〈x2 + 1〉
= −x − 5 + 〈x2 + 1〉.

Now “squint” your eyes, so that the “+〈x2 + 1〉” part in the above disappears, andax + b + 〈x2 + 1〉
becomes the complex numberai + b ∈ C. Then

(i + 1) + (2i − 3) = 3i − 2 and(i + 1)(2i − 3) = −i − 5.

The addition and multiplication of cosets inR[x]/〈x2 + 1〉 looks exactly like the addition and multipli-
cation of complex numbers!
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(5.12) In order to see what quotient ringsreally look like, you need to use the,

First Isomorphism Theorem. LetR, S be rings andϕ : R −→ S a ring homomorphism. Then

R/kerϕ ∼= Imϕ ⊂ S,

where the isomorphism̂ϕ : R/kerϕ → Imϕ is given byϕ̂(r + kerϕ) = ϕ(r).

Aside. For any ringR and homomorphismϕ, kerϕ is an ideal ofR in the more general sense mentioned at the beginning of the
section. Thus it makes sense to take the quotientR/kerϕ.

(5.13) Getting back to the example above, letR = R[x] andS = C. Let the homomorphismϕ be the
evaluation ati homomorphism,

εi :

(∑
akxk

)
7→

∑
ak(i)k.

In exactly the same way as an earlier example, one can show that

kerεi = 〈x2 + 1〉.

On the other hand, ifai + b ∈ C, thenai + b = εi(ax + b), so the image of the homomorphismεi is all
of C. Feeding all this into the first homomorphism theorem gives,

R[x]/〈x2 + 1〉 ∼= C.

Exercise 49 Going back to the general case of an ideala in a ringR, consider the mapη : R → R/a given by,

η(r) = r + a,

sending an element ofR to the coset ofa determined by it.

1. Show thatη is a homomorphism.

2. Show that ifb is an ideal inR containinga thenη(b) is an ideal ofR/a.

3. Show that ifb′ is an ideal ofR/a then there is an idealb of R, containinga, such thatη(b) = b′.

4. Show that in this way,η is a bijection between the ideals ofR containinga and the ideals ofR/a.

Further Exercises for§5.

Exercise 50 Let θ : R → S be a ring homomorphism. Show that,

1. θ(0) = 0 (hint : considerθ(0 + 0)),

2. θ is injective (ie:1 to 1) if and only if kerθ = {0}.

Exercise 51 Determine which of these maps are ring homomorphisms.

1. The mapθ : Z → Z given byθ(n) = 2n.

2. The mapθ : Z → Z given byθ(n) = −n.

3. The mapθ : R → R given byθ(x) = |x|.
4. The mapθ : C → C given byθ(z) = z (i.e. complex conjugation).

5. The mapθ : C → Mat2(R) defined byθ(x+ iy) =

»
x y
−y x

–
.

Exercise 52 Determine whether the following maps are ring homomorphisms.

1. θ : Z[x] → Z given byθ(f(x)) = f(0).

2. θ : Z[x] → Z given byθ(f(x)) = f(1).

3. θ : Z[x] → Z[x] given byθ(f(x)) = f(−x).
4. θ : Z[x] → Z given byθ(f(x)) = f(2)2 .

Exercise 53 Let φ = (1 +
√

5)/2 (in fact theGolden Number).

1. Show that the kernel of the evaluation mapǫφ : Q[x] → C (given byǫφ(f) = f(φ)) is the ideal〈x2 − x− 1〉.
2. Show thatQ(φ) = {a + bφ | a, b ∈ Q}.

3. Show thatQ(φ) is the image inC of the mapǫφ.
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§6. Fields II: Constructions and more examples

(6.1) An ideal〈f〉 is maximalif and only if 〈f〉 ⊂ F [x] and the only ideals ofF [x] containing it are itself
and the whole ringF [x], ie:

〈f〉 ⊆ a ⊆ F [x],

with a an ideal implies thata = 〈f〉 or a = F [x].

(6.2) The principle result of this section is,

Theorem B (Constructing Fields). The quotient ringF [x]/〈f〉 is a field if and only if〈f〉 is a maximal
ideal.

Proof: By Exercise 47, a commutative ringR is a field if and only if the only ideals ofR are the trivial
one{0} and the whole ringR. Thus the quotientF [x]/〈f〉 is a field if and only if its only ideals are
the trivial one〈f〉 and the whole ringF [x]/〈f〉. By Exercise 49, there is a one to one correspondence
between the ideals of the quotientF [x]/〈f〉 and the ideals ofF [x] that contain〈f〉. ThusF [x]/〈f〉 has
only the two trivial ideals precisely when there are only twoideals ofF [x] containing〈f〉, which is the
same as saying that〈f〉 is maximal. 2

(6.3) Suppose now thatf is an irreducible polynomial overF , and let〈f〉 ⊆ I ⊆ F [x] with I an ideal.
ThenI = 〈h〉 giving 〈f〉 ⊆ 〈h〉, and soh dividesf . Sincef is irreducible this means thath must be either
a constantλ ∈ F or λf , so that the idealI is either〈λ〉 or 〈λf〉. But 〈λf〉 is just the same as the ideal
〈f〉. On the otherhand, any polynomialg can be written as a multiple ofλ, just by settingg = λ(λ−1g),
and so〈λ〉 = F [x].

Thus, if f is an irreducible polynomial, then the ideal〈f〉 is a maximal one. Conversely, if〈f〉 is
maximal andh dividesf , then〈f〉 ⊆ 〈h〉, so that by maximality〈h〉 = 〈f〉 or 〈h〉 = F [x].

Exercise 54 Show that〈f〉 = 〈h〉 if and only if h = λf for some constantλ ∈ F . Similarly, 〈h〉 = F [x] if and only if h = λ
some constant.

Thus, the ideal〈f〉 is maximal precisely whenf is irreducible, giving,

Corollary. F [x]/〈f〉 is a field if and only iff is an irreducible polynomial overF .

(6.4) The polynomialx2 + 1 is irreducible over the realsR, so the quotient ringR[x]/〈x2 + 1〉 is a field.

(6.5) The polynomialx2 − 2x + 2 has roots1 ± i, hence is irreducible overR, giving the field,

R[x]/〈x2 − 2x + 2〉.
Consider the evaluation mapε1+iR[x] → C given as usual byε1+i(f) = f(1 + i). In exactly the
same way as the example forε√2 in §5., one can show that kerε1+i = 〈x2 − 2x + 2〉. Moreover,
a + bi = ε1+i(a − b + bx) so that the evaluation map is ontoC. Thus, by the first isomorphism theorem
we get that,

R[x]/〈x2 − 2x + 2〉 ∼= C.

What this means is that one can construct the complex numbersin the following (slightly non-standard)
way: start with the realsR, and define a new symbol,∇ say, which is defined by the property,

∇2 = 2∇− 2.

Now consider all expressions of the formc + d∇ for c, d ∈ R. Add and multiply two such expressions
together as follows:

(c1 + d1∇) + (c2 + d2∇) = (c1 + c2) + (d1 + d2)∇
(c1 + d1∇)(c2 + d2∇) = c1c2 + (c1d2 + d1c2)∇ + d1d2∇2

= c1c2 + (c1d2 + d1c2)∇ + d1d2(2∇− 2)

= (c1c2 − 2d1d2) + (c1d2 + d1c2 + 2d1d2)∇.

32



Exercise 55 By solving the equationscx− 2dy = 1 andcy + dx+ 2dy = 0 for x andy in terms ofc andd, find the inverse of
the elementc+ d∇.

Exercise 56 According to Exercise 18, iff is irreducible overR thenf must be either quadratic or linear. Suppose thatf =
ax2 + bx+ c is an irreducible quadratic overR. Show that the fieldR[x]/〈zx2 + bx+ c〉 ∼= C.

(6.6) We saw in§3. that the polynomialx4 + x + 1 was irreducible over the fieldF2. Thus the quotient

F2[x]/〈x4 + x + 1〉,

is a field. Each of its elements is a coset of the formg+〈x4 +x+1〉. Use the division algorithm, dividing
g by x4 + x + 1 to get

g + 〈x4 + x + 1〉 = q(x4 + x + 1) + r + 〈x4 + x + 1〉 = r + 〈x4 + x + 1〉,

where the remainderr must be of the formax3 + bx2 + cx + d, for a, b, c, d ∈ F2. Thus every element
of the field has the formax3 + bx2 + cx + d + 〈x4 + x + 1〉, of which there are at most16 possibilities
(2 choices fora, 2 choices forb, . . .).

Indeed these16 are all distinct, for if

a1x
3 + b1x

2 + c1x + d1 + 〈x4 + x + 1〉 = a2x
3 + b2x

2 + c2x + d2 + 〈x4 + x + 1〉

then,

(a1 − a2)x
3 + (b1 − b2)x

2 + (c1 − c2)x + (d1 − d2) + 〈x4 + x + 1〉
= 〈x4 + x + 1〉 ⇔ (a1 − a2)x

3 + (b1 − b2)x
2 + (c1 − c2)x + (d1 − d2) ∈ 〈x4 + x + 1〉.

Since the non-zero elements of the ideal are multiples of a degree four polynomial, they have degrees
that are at least four. Thus the only way the cubic can be an element is if it is the zero polynomial. In
particular,a1 − a2 = · · · = d1 − d2 = 0 so the two cosets are the same.

The upshot is that the quotient ring is a field with16 elements.

(6.7) Returning to the general situation of a quotientF [x]/〈f〉 by an irreducible polynomialf , the re-
sulting field contains a copy of the original fieldF , obtained by taking the cosetsλ + 〈f〉.

Exercise 57 Show that the mapλ 7→ λ+ 〈f〉 is an injective homomorphismF → F [x]/〈f〉, and soF is isomorphic to its image
in F [x]/〈f〉.

Blurring the distinction between the originalF and this copy insideF [x]/〈f〉, we get thatF ⊆
F [x]/〈f〉 is an extension of fields.

(6.8) Generalising the example of the field of order16 above, ifFp is the finite field withp elements and
f ∈ Fp[x] is an irreducible polynomial of degreed, then the quotientFp[x]/〈f〉 is a field containingpd

elements. They have the form,
ad−1x

d−1 + · · · a0 + 〈f〉,
wheref = bdx

d+ · · ·+b1x+b0 and theai ∈ Fp. Any two such are distinct by exactly the same argument
as above. Lettingα = x + 〈f〉 and replacingFp by its copy inFp[x]/〈f〉 (ie: identifyingλ ∈ Fp with
λ + 〈f〉 ∈ Fp[x]/〈f〉), we have,

Fp[x]/〈f〉 = {ad−1α
d+1 + · · · a0 | ai ∈ Fp},

where two such expressions are added and multiplied like “polynomials” in α. The only proviso is that
sincef + 〈f〉 = 〈f〉, we have the “rule”bdα

d + · · · + b1α + b0 = 0, which allows us to remove any
powers ofα bigger thand that occur in such expressions.

Call α a generatorfor the finite field.
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(6.9) The polynomialx3 + x + 1 is irreducible over the fieldF2 (it is a cubic and has no roots) so that

F2[x]/〈x3 + x + 1〉,

is a field with 23 = 8 elements of the formF = {a + bα + cα2 | a, b, c ∈ F2} subject to the rule
α3 + α + 1 = 0, ie: α3 = α + 1. This is the fieldF of order8 in §4..

Exercise 58 Construct fields with exactly:

1. 125 elements;

2. 49 elements;

3. 81 elements;

4. 243 elements.

(6.10) Theorem B and its Corollary clears up a little mystery that has lingered since the end of§4.
Remember from there that the fields

Q(
3
√

2) andQ

(− 3
√

2 + 3
√

2
√

3i

2

)
,

were different (that is, their elements were different), but isomorphic? The polynomialx3 − 2 is irre-
ducible overQ, either by Eisenstein, or by observing that its roots do not lie in Q. Thus

Q[x]/〈x3 − 2〉,

is an extension field ofQ. Consider the two evaluation homomorphismsε 3
√

2 : Q[x] → C andεβ :
Q[x] → C whereβ is the complex number adjoined toQ in the second extension above. Since, and this
is the key bit,

3
√

2 and
− 3
√

2 + 3
√

2
√

3i

2

are both roots of the polynomialx3 − 2, we can show in a similar manner to examples at the end of§5.
that kerε 3

√
2
∼= 〈x3 − 2〉 ∼= kerεβ. Thus,

Q[x]/〈x3 − 2〉Q[x]/kerε 3
√

2 Q[x]/kerεβ
= =

∼= ∼=1st Isomorphism Theorem

Imε 3
√

2 Imεβ

We can see what the image ofε 3
√

2 must be by considering the diagram,

anxn + · · · + a1x + a0 q(x3 − 2) + (a + bx + cx2)

an( 3
√

2)n + · · · + a1
3
√

2 + a0 (a + b 3
√

2 + c( 3
√

2)2)

ε 3
√

2 ε 3
√

2

division
algorithm

=

The point is thatε 3
√

2 is a ring homomorphism, so that

ε 3
√

2(anxn + · · · + a1x + a0) = ε 3
√

2(q(x
3 − 2) + (a + bx + cx2))

= ε 3
√

2(q)ε 3
√

2(x
3 − 2) + ε 3

√
2(a + bx + cx2)

= ε 3
√

2(q).0 + ε 3
√

2(a + bx + cx2) = a + b
3
√

2 + c(
3
√

2)2.
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Pictures like the one above, where you travel two routes but end up in the same place are called
commutative diagrams. The result of the argument provided by the diagram is that

Imε 3
√

2 ⊆ {a + b
3
√

2 + c(
3
√

2)2 ∈ C | a, b, c ∈ Q} = Q(
3
√

2).

On the other hand, any complex number of the forma + b 3
√

2 + c( 3
√

2)2 is the image ofa + bx + cx2.
Thus Imε 3

√
2 = Q( 3

√
2). Similarly one can show that Imεβ = Q(β). Filling this information into the first

of the two diagrams above gives the claimed isomorphism betweenQ( 3
√

2) andQ(β):

Q[x]/〈x3 − 2〉

Q( 3
√

2) Q(β)

“abstract” field

︸ ︷︷ ︸
“concrete” realisations inC

(6.11) A special place is reserved in number theory for those fields of the form Q[x]/〈f〉, for f an
irreducible polynomial over the rationalsQ. Such a field is called anumber field, and their detailed study
is the subject of algebraic number theory.

Suppose thatβ is a root of the polynomialf and consider the subfield ofC given byQ(β). The
reasoning in the example above can be extended to show that the two fieldsQ[x]/〈f〉 andQ(β) are
isomorphic (see also Theorem D). Indeed, if{β1, . . . , βn} are the roots off , then we haven mutually
isomorphic fields insideC, namelyQ(β1), . . . , Q(βn). The isomorphisms fromQ[x]/〈f〉 to each of these
are called theGalois monomorphismsof the number fieldQ[x]/〈f〉.

(6.12) Returning to some generality, the observation that the fieldF [x]/〈f〉 is an extension ofF has
far-reaching consequences that goes by the name of,

Kronecker’s Theorem. Let f be a polynomial inF [x]. Then there is an extension ofF containing a
root off .

Proof: If f is not irreducible overF , then factorise asf = gh with g irreducible overF and proceed as
below but withg instead off . The result will be an extension containing a root ofg, and hence off . Thus
we may suppose thatf is irreducible overF andf = anxn + an−1x

n−1 + · · · a1x+ a0 with theai ∈ F .
ReplaceF by its isomorphic copy in the quotientF [x]/〈f〉, so that instead ofai, we writeai + 〈f〉, ie,

f = (an + 〈f〉)xn + (an−1 + 〈f〉)xn−1 + · · · + (a1 + 〈f〉)x + (a0 + 〈f〉).

Consider the fieldE = F [x]/〈f〉which is an extension ofF and the elementx+〈f〉 ∈ E. If we substitute
x + 〈f〉 into the polynomial then we perform all our arithmetic inE, ie: we perform the arithmetic of
cosets, and bear in mind that the zero of this field is the coset〈f〉. Thus,

f(x + 〈f〉) = (an + 〈f〉)(x + 〈f〉)n + (an−1 + 〈f〉)(x + 〈f〉)n−1 + · · · + (a1 + 〈f〉)(x + 〈f〉) + (a0 + 〈f〉)
= (anxn + 〈f〉) + (an−1x

n−1 + 〈f〉) + · · · + (a1x + 〈f〉) + (a0 + 〈f〉)
= (anxn + an−1x

n−1 + · · · + a1x + a0) + 〈f〉 = f + 〈f〉 = 〈f〉,

which in the fieldE translates asf(µ) = 0 for µ = x + 〈f〉. 2

Corollary. Let f be a polynomial inF [x]. Then there is an extension ofF that contains all the roots of
f .

Proof: Repeat the process described in the proof of Kronecker’s Theorem at mostdeg f number of
times, until the desired field is obtained.
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Further Exercises for§6.

Exercise 59 Show thatx4 +x3 +x2 +x+1 is irreducible overF3. How many elements does the resulting extension ofF3 have?

Exercise 60 As linear polynomials are always irreducible, show that thefieldF [x]/〈ax+ b〉 is isomorphic toF .

Exercise 61

1. Show that1 + 2x+ x3 ∈ F3[x] is irreducible and hence thatF = F3[x]/〈1 + 2x+ x3〉 is a field.

2. Show that every coset can be written uniquely in the form(a + bx+ cx2) + 〈1 + 2x+ x3〉 with a, b, c ∈ F3.

3. Deduce that the fieldF has exactly 27 elements.

Exercise 62 Find an irreducible polynomialf(x) in F5[x] of degree2. Show thatF5[x]/〈f(x)〉 is a field with25 elements.

Exercise 63

1. Show that the polynomialx3 − 3x+ 6 is irreducible overQ.

2. Hence, or otherwise, if

α =
3

q
2
√

2 − 3, β = − 3

q
2
√

2 + 3 andω = −1

2
+

√
3

2
i,

prove that

(a) the fieldsQ(α+ β) andQ(ωα+ ωβ) aredistinct (that is, their elements are different), but,

(b) Q(α+ β) andQ(ωα + ωβ) areisomorphic.

You may assume thatωα+ ωβ is not a real number.
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§7. Ruler and Compass constructions I

If we allow ourselves a slightly fanciful historical interlude, we can imagine that the earliest civilizations
to embrace agriculture came up against the problem of subdividing arable land into portions to be worked.
Thus the Babylonians for instance would have needed the basics of surveying at their disposal. The most
basic surveying instruments are wooden pegs and rope, with which you can do two very basic things:
two pegs can be set a distance apart and the rope stretched between them; alternatively, one of the pegs
can be kept stationary and we can take the path traced by the other as you walk around keeping the rope
stretched taut. In otherwords, we can draw a line through twopoints and draw a circle centered at one
point and passing through the other.

(7.1) Instead of the Euphrates river valley, we work in the complexplaneC. We are thus able, given two
numbersz, w ∈ C, to draw a line through them using a straight edge, or to placeone end of a compass at
z, and draw the circle passing throughw:

z

w
z

w

Notice that neither of these operations involves any “measuring”.

(7.2) With these two constructions in hand, we call a complex number ζ constructibleiff there is a
sequence of numbers

0, 1, i = ζ1, ζ2, . . . , ζn = ζ,

with ζj obtained from earlier numbers in the sequence in one of the three following ways:

ζj

ζp

ζq
ζr

ζs

ζj
ζp

ζq

ζr
ζs

ζj

ζp

ζq

ζr

ζs

(i) (ii) (iii)

In these pictures,p, q, r ands are all< j. Notice that we are given the three numbers0, 1, i “for free”, so
that they are indisputably constructible. The reasoning isthis: if you stand in a plane (notR2 or C, but a
plane without coordinates), then your position can be takenas0; decree a direction to be the real axis and
a distance along it to be length1; construct the perpendicular bisector of the segment from−1 to 1 (as in
the next paragraph) and measure a unit distance along this new axis (in either direction) to geti.

(7.3) The basic two moves are a little restrictive for the purposesof determining which numbers are
constructible. There are a number of other constructions though, that follow immediately from them. For
instance, we can construct the perpendicular bisector of a segmentAB by the following three steps:

A B

r

r

1 2 3
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The pictures are supposed to be self-explanatory, modulo the following conventions. A ray, centered at
some point and tracing out a dotted circle is obviously meantto describe usage of the compass. If the ray
is markedr, as in the first two pictures above, this does not mean that theradius of the circle has been
set to some lengthr, as we can not do this. It merely means that in passing from thefirst picture to the
second, the setting on the compass is kept the same.

We can convince ourselves that the construction works as follows: think of the setS of points inC

that are an equal distance from bothA andB. After a moments thought, you see that this must be the
perpendicular bisector of the line segmentAB that we are constructing. Lines are determined by any two
of their points, so if we can find two points equidistant fromA andB, and we draw a line through them,
this must be the setS that we want (and hence the perpendicular bisector). But theintersections of the
two circular arcs are clearly equidistant fromA andB, so we are done.

(7.4) As well as bisecting segments, we can bisect angles, ie: if two lines meet in some angle we can
construct a third line meeting these in angles that are each half the original one:

1 2 3r

r

It is worth repeating that none of the angles in this picture can be measured. Nevertheless, the two new
ones must each be half the old one.

(7.5) Given a line and a pointP not on it, we can construct a new line passing throughP and perpendic-
ular to the line. We describe this as “dropping a perpendicular from a point to a line”:

A B

P

perpendicular bisector ofAB

A B

1 2

(7.6) Given a linel and a pointP not on it we can construct a new line throughP parallel tol:

P

Q line l

perpendicular fromP to l

Q

P

A B

r
r

Q

P R

A B

perpendicular bisector ofAB

P R

1 2

3 4
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Perhaps some explanation wouldn’t go amiss: the first step isto drop a perpendicular fromP to the line
l, meeting it at the new pointQ. Next, set your compass to the distance fromP to Q, and transfer this
circular distance along the line to some point, drawing a semicircle that meetsl at the pointsA andB.
Construct the perpendicular bisector of the segment fromA to B, which meets the semicircle at the new
pointR. Finally, draw a line through the pointsP andR. It should be obvious thatP areR are equidistant
from the linel, hence the line through them is parallel tol.

(7.7) Here are some basic examples that show that the numbers

3,
3

4
and

1√
2

+
1√
2
i

are constructible:

1 2 3
1

1√
2

+
1√
2
i

1

2

3

4
1

bisector of the right angle

In the second example, we have bisected the segment from0 to 1 and then the segment from12 to 1.

(7.8) Looking at the construction of34 above, it is less clear how one might construct the number27
129 , or

the golden ratio,

φ =
1 +

√
5

2
.

Nevertheless, these numbersare constructible, and the reason is the first non-trivial fact about con-
structible numbers: they can be added, subtracted, multiplied and divided6. DefiningK to be the set
of constructible numbers inC, we have,

Theorem C. K is a subfield ofC.

Proof: The proof proceeds in two steps: as it is easier to deal with real numbers rather than complex, we
show that the theorem can be reduced to the real case, and thenshow that the real constructible numbers
form a subfield ofR.

First observe thatζ ∈ K precisely when Reζ and Imζ are inK. For, if ζ ∈ K then dropping per-
pendiculars to the real and imaginary axes give the numbers Reζ and Imζi, the second of which can be
transferred to the real axis by drawing the circle centered at 0 passing through Imζi. On the otherhand,
if we have Reζ and Imζ on the real axis, then we have Imζi too, and constructing a line through Reζ
parallel to the imaginary axis and a line through Imζi parallel to the real axis givesζ.

We now reduce the Theorem to the real case by showing thatK is a subfield ofC if and only if K ∩R

is a subfield ofR. As the intersection of two subfields ofC is a subfield ofC, the “only if” case is
immediate.

Suppose then that the real constructible numbers form a subfield of the reals. We show thatK is then
a subfield ofC, for which we need to show that ifz, w are constructible complex numbers then so are

6In principle you can now throw away your calculator, and perform arithmetic operations with ruler and compass! This is not as
far-fetched as it sounds, even if it is a little impractical.To computecos x of a constructable numberx, construct as many terms of
the Taylor series,

cos x = 1 − x2

2!
+
x4

4!
− · · ·

as you need (your calculator only ever gives you approximations anyway).
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z + w,−z, zw and1/z. By the observation above we have that the real and imaginaryparts ofz andw
are real constructible numbers. Then

−z = −Rez − Imzi

z + w = (Rez + Rew) + (Imz + Imw)i

zw = (RezRew − ImzImw) + (RezImw + ImwRez)i

1

z
=

Rez
Rez2 + Imz2

− Imz

Rez2 + Imz2
i,

As the constructible numbers form a subfield ofR, hence are closed under the four basic field operations,
the real and imaginary parts ofz andw are constuctible. Thus, the complex numbers are constructible as
their real and imaginary parts are.

In light of this, it suffices to show that the real constructible numbers are a subfield of the reals, for
which we need to show that ifa, b ∈ K ∩ R then so are−a, a + b, ab and1/a.

1. K ∩ R is closed under+ and−: The picture below left shows that ifa ∈ K ∩ R then so is−a.

a−a

a b a b a + b

1 2

Similarly, the two on the right givea, b ∈ K ∩ R ⇒ a + b ∈ K ∩ R.

2. K ∩ R is closed under×, as can be seen by following through the steps:

1 2 3 4

1

ai

1

ai

b 1

ai

r r

s

s

ab

parallel

Seeing that the construction works involves studying a pairof similar triangles.

3. K ∩ R is closed under÷, which is of course just the previous construction backwards:

1 2 3

a

1

r

r

s
s

1

a
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2

(7.9) As any subfield ofC containsQ we thus have the,

Corollary. Any rational number is constructible.

(7.10) Not only can we perform the four basic arithmetic operationswith constructible numbers, but we
can extract square roots too:

Theorem 4 If ζ ∈ K then
√

ζ ∈ K.

Proof: First of all, we can construct the square root of any real number:

1 2 3 4

Pa
1

r r

s

s

√
a

midpoint of0P

For a justification that this works, see Exercise 64. Next, any complex number:

1 2 3

ζ

a

ζ

a
√

a

ζ

a
√

a

√
ζ

bisector

where we have used the construction of real square roots in the second step. 2

Exercise 64 Show that in the following picture,

1 a

x

the lengthx =
√
a.

Constructing angles and polygons

(7.11) We say that an angle can be constructed when we can construct two lines intersecting in that angle.

Exercise 65

1. Show that we can always assume that one of the lines giving an angle is the positive real axis.

2. Show that anangleθ can be constructed if and only if thenumbercos θ can be constructed. Do the same forsin θ and
tan θ.

Exercise 66 Show that ifϕ, θ are constructible angles then so areϕ+ θ andϕ− θ.
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(7.12) A regularn-sided polygonor regularn-gon is a polygon inC with n sides of equal length andn
interior angles of equal size.

Exercise 67 Show that a regularn-gon can be constructed centered at0 ∈ C if and only if the angle2π
n

can be constructed. Show
that a regularn-gon can be constructed centered at0 ∈ C if and only if the complex number

ζ = cos
2π

n
+ i sin

2π

n
,

can be constructed.

Exercise 68 Show that if ann-gon and anm-gon can be constructed forn andm relatively prime, then so can amn-gon (hint:
use theZ-version of Theorem 1).

(7.13) For whatn can one construct a regularn-gon? It makes sense to consider first thep-gons forp
a prime. The complete answer even to this question will not berevealed until§15.. It turns out that the
p-gons that can be constructed areextremely rare. Nevertheless, the first two (odd) primes do work.

Exercise 69 Show that a regular3-gon, ie: an equilateral triangle, can be constructed with any side length. Using Exercises 4 and
67, show that a regular5-gon can also be constructed.

(7.14) Here is a “proof” that a regular17-gon is constructible. Gauss proved the following remarkable

identity, which is still found in trigonometric tables:cos
π

17
=

1

8

√√√√√2

(
2

√√√√
√

17(17−
√

17)

2
−

√
17 −

√
17

2
− 4

√
34 + 2

√
17 + 3

√
17 + 17 +

√
34 + 2

√
17 +

√
17 + 15

)

Thus the numbercosπ/17 can be constructed as this expression involves only integers, the four field
operations and square roots, all of which are operations we can perform with a ruler and compass. Hence,
by Exercise 65(2) the angleπ/17 can be constructed and so adding it to itself gives the angle2π/17.
Exercise 67 then gives that the17-gon is constructible.

Further Exercises for§7.

Exercise 70 Using the fact that the constructible numbers includeQ, show that any given line segment can be trisected in length.

Exercise 71 Show that if you can construct a regularn-sided polygon, then you can also construct a regular2kn-sided polygon
for anyk ≥ 1.

Exercise 72 Show thatcos θ is constructible if and only ifsin θ is.

Exercise 73 If a, b andc are constructible numbers (ie: inK), show that the roots of the quadratic equationax2 + bx+ c are also
constructible.
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§8. Linear Algebra I: Dimensions

We have met rings and and fields so far in our study of Galois Theory. Time for our third algebraic object:
vector spaces.

(8.1) A vector space over a fieldF is a setV of vectorstogether with two operations: additionu, v 7→
u+ v of vectors and scalar multiplicationλ, v 7→ λv of a vector by an elementλ of the fieldF , such that,

1. (u + v) + w = u + (v + w), for all u, v, w ∈ V ;

2. There exists a zero vector:0 ∈ V s.t.v + 0 = v = 0 + v for all v ∈ V ,

3. Everyv ∈ V has a negative−v s.t.v + (−v) = 0 = −v + v, for all v ∈ V .

4. u + v = v + u, for all u, v ∈ V .

5. λ(u + v) = λu + λv, for all u, v andλ ∈ F ;

6. (λ + µ)v = λv + µv,

7. λ(µv) = (λµ)v,

8. 1v = v for 1 ∈ F .

Aside. Alternatively we can say that the setV of vectors forms an Abelian group under+ (these are the first four axioms) together
with the scalar multiplication which satisfies the last fouraxioms.

(8.2) The setR2 of 2×1 column vectors is a well known real vector space under the normal addition and
scalar multiplication of vectors. Alternatively, the complex numbersC form a vector space overR, and
of course these two spaces are the same space after making theidentification,

[
a
b

]
↔ a + bi.

The complex numbers also form a vector spaceover themselves: addition of complex numbers gives an
Abelian group and now we can scalar multiply a complex numberby another one, just using the usual
multiplication of complex numbers. It may seem a little confusing (especially the idea of thinking of a
complex number as beingbotha vector and a scalar) but from a purely formal point of view, it satisfies
the axioms and so is an admissible example. As we shall see below, the idea of thinking of the sameset
of objects as a vector space over two different fields is an important one for Galois Theory.

(8.3) We can consider vector spaces over finite fields too:

000
100

001

010
110

011
111 Consider the set of all3-tuples where the coordinates come from the

field F2, so are either0 or 1, and add two such coordinate-wise, using
the addition fromF2. Scalar multiply a tuple coordinate-wise using the
multiplication fromF2. As there are only two possibilities for each co-
ordinate and three coordinates in total, we get a total of23 = 8 elements
in this space. Indeed, the elements can be arranged around the vertices

of a cube as shown at left, where we have abbreviated so thatabc is the vector with the three coordinates
a, b, c ∈ F2.

(8.4) We saw in§4. that the fieldQ(
√

2) consisted precisely of those elements ofC of the forma + b
√

2
for a, b ∈ Q. By making the identification,

↔a + b
√

2

[
a
b

]
coordinate in “1 direction”
coordinate in “

√
2 direction”
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we realiseQ(
√

2) as a vector space overQ. It is easy to check that the vector space operations match up
with (a + b

√
2) + (c + d

√
2) = (a + c) + (b + d)

√
2 corresponding to,

[
a
b

]
+

[
c
d

]
=

[
a + c
b + d

]
,

andc(a + b
√

2) = ac + bc
√

2 corresponding to,

c

[
a
b

]
=

[
ac
bc

]
.

(8.5) The polynomialx3 − 2 is irreducible overQ so thatQ[x]/〈x3 − 2〉 is a field with elements having
the form(a + bx + cx2) + 〈x3 − 2〉. It becomes aQ-vector space under the identification,

(a + bx + cx2) + 〈x3 − 2〉 ↔




a
b
c




coordinate in “1 + 〈x3 − 2〉 direction”
coordinate in “x + 〈x3 − 2〉 direction”
coordinate in “x2 + 〈x3 − 2〉 direction”

(Check for yourself that the addition and scalar multiplications match up).

(8.6) The previous two are special cases of the following situation: if F ⊆ E is an extension of fields
thenE can be turned into a vector space overF in the following way: the “vectors” are the elements of
E and the scalars are obviously the elements ofF . Addition of vectors is just the addition of elements in
E, and to scalar multiply av ∈ E by aλ ∈ F , just multiplyλv using the multiplication of the fieldE.
That the first four axioms for a vector space hold follows fromthe addition of the fieldE, and the second
four from the multiplication of the fieldE.

(8.7) Some more fundamental notions to do with vector spaces: forv1, . . . , vn ∈ V vectors, any vector
of the form

α1v1 + . . . + αnvn,

for α1, . . . , αn ∈ F , is alinear combinationof thev1, . . . , vn. Thelinear spanof v1, . . . , vn ∈ V is the
set of all linear combinations of these vectors,

span{v1, . . . , vn} =

{ n∑

j=1

αjvj : αj ∈ F

}
.

Sayv1, . . . , vn spanV whenV = span{v1, . . . , vn}.
A set of vectorsv1, . . . , vn ∈ V is linearly dependentif and only if there exist scalarsα1, . . . , αn, not

all zero, s.t.
α1v1 + . . . + αnvn = 0.

The vectorsv1, . . . , vn arelinearly independentotherwise, ie: wheneverα1v1 + . . . + αnvn = 0 implies
that theαi are all0.

(8.8) In the examples above, the complex numbersC are spanned, as a vector space overR, by the two
elements{1, i}, and indeed by any two complex numbers that are not scalar multiples of each other. As
a vector space overC, the complex numbers are spanned byjust one element, for example, any element
ζ ∈ C can be written asζ × 1, so that every element is a complex scalar multiple of1. Indeed,C is
spanned as a complex vector space by any single one of its elements, except for0. The moral is that in
changing the field of scalars, you need to keep your wits aboutyou.

(8.9) A basisfor V is a linear independent set{vj : j ∈ J} (hereJ is a not necessarily finite index set),
that spansV . We sayV is finite dimensionalif it has a finite basis.

It can be proved that there is a 1-1 correspondence between the elements of any two bases for a vec-
tor spaceV . Correspondingly, wheneverV is finite dimensional we definethe dimension ofV to be
dim(V ) = number of elements in any basis.
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(8.10) ThusC is 2-dimensional as a vector space overR but1-dimensional as a vector space overC. We
will see later in this section thatC is infinitedimensional as a vector space overQ.

With the other examples above,Q(
√

2) is 2-dimensional overQ with basis{1,
√

2} andQ[x]/〈x3−2〉
is 3-dimensional overQ with basis the cosets

1 + 〈x3 − 2〉, x + 〈x3 − 2〉 andx2 + 〈x3 − 2〉.

In Exercise 128 in§14., we will see that ifα = 4
√

2, thenQ(α, i) is a2-dimensional space overQ(α)
or Q(αi) or evenQ((1 + i)α); a 4-dimensional space overQ(i) or Q(iα2), and an8-dimensional space
overQ (and these are almost, but not quite, all the possibilities;see the exercise for the full story).

(8.11) Vector spaces, like groups, rings and fields, are algebraic objects, and so like these other examples,
there is a notion of ahomomorphismof vector spaces. This is a mapϕ : V1 → V2 that preserves any
operations we may have, which in the case of vector spaces is the addition and scalar multiplications:

ϕ(u + v) = ϕ(u) + ϕ(v), ϕ(λv) = λϕ(v) for u, v ∈ V andλ ∈ F.

For historical reasons, homomorphisms of vector are more commonly calledlinear maps.

Aside. Although we don’t need these concepts here, there is an algebraic theory of vector spaces akin to that for groups, rings and
fields. For example, linear maps havekernels, there arequotientsof vector spaces, and so on. There is a first isomorphism theorem
for vector spaces, which as usual reads asV/kerϕ ∼= imageϕ. We get things likedim(V1/V2) = dim(V1) − dim(V2), so in
particular for a linear map,

dim(V ) = dim(kerϕ) + dim(imageϕ).

In the linear theory of vector spaces (rather than the algebraic theory),dim(imageϕ) is called therank, dim(kerϕ) the nullility
anddim(V ) the number of columns of a matrix. So the first isomorphism theorem for vector spaces translates into the mantra,
“rank + nullility = the number of columns”.

(8.12) Let F ⊆ E be an extension of fields. ConsiderE as a vector space overF , and define thedegree
of the extensionto be the dimension of this vector space, denoted[E : F ]. Call F ⊆ E a finite extension
if the degree is finite.

(8.13) The extensionsQ ⊆ Q(
√

2) andQ ⊆ Q[x]/〈x3 − 2〉 have degrees2 and3.

(8.14) It is no coincidence that the degree of extensions of the formF ⊆ F [x]/〈f〉 turn out to be the
same as the degree of the polynomialf as the next result shows.

Theorem 5 Letf be an irreducible polynomial inF [x] of degreed. Then the extension,

F ⊆ F [x]/〈f〉,

has degreed.

Hence the name degree!

Proof: Replace, as usual, the fieldF by its copy inF [x]/〈f〉, so thatλ ∈ F becomesλ+ 〈f〉. Consider
the set of cosets,

B = {1 + 〈f〉, x + 〈f〉, x2 + 〈f〉, . . . , xd−1 + 〈f〉}.
ThenB is a basis forF [x]/〈f〉 overF , for which we have to show that it spans the field/vector spaceand
is linearly independent. To see that it spans, consider a typical element, which has the form,

g + 〈f〉 = (qf + r)〈f〉 = r + 〈f〉 = (a0 + a1x + · · · + ad−1x
d−1) + 〈f〉.

using the division algorithm and basic properties of cosets. This is turn gives,

(a0+a1x+· · ·+ad−1x
d−1)+〈f〉 = (a0+〈f〉)(1+〈f〉)+(a1+〈f〉)(x+〈f〉)+· · ·+(ad−1+〈f〉)(xd−1+〈f〉),
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where the last is anF -linear combination of the elements ofB. Thus this sets spans the space.
For linear independence, suppose we have anF -linear combination of the elements ofB giving zero,

ie:
(b0 + 〈f〉)(1 + 〈f〉) + (b1 + 〈f〉)(x + 〈f〉) + · · · + (bd−1 + 〈f〉)(xd−1 + 〈f〉) = 〈f〉,

remembering that the zero of the fieldF [x]/〈f〉 is the coset0 + 〈f〉 = 〈f〉. Multiplying and adding all
the cosets on the left hand side gives,

(b0 + b1x + · · · + bd−1x
d−1) + 〈f〉 = 〈f〉,

so thatb0 + b1x + · · · + bd−1x
d−1 ∈ 〈f〉 (using another basic property of cosets). The elements of〈f〉,

being multiples off , must have degree at leastd, except for the zero polynomial. On the other hand
b0 + b1x + · · · + bd−1x

d−1 has degree≤ d − 1. Thus it must be the zero polynomial, giving that all the
bi are zero, and that the setB is linearly independent overF as claimed. 2

(8.15) What is the degree of the extensionQ ⊆ Q(π)? If it was finite, say[Q(π) : Q] = d, then any
collection of more thand elements would be linearly dependent. In particular, thed + 1 elements,

1, π, π2, . . . , πd,

are dependent overQ, so thata0 + a1π + a2π
2 + . . . + adπ

d = 0 for somea0, a1, . . . , ad ∈ Q, not all
zero, and soπ is a root of the polynomiala0 + a1x + a2x

2 + . . . + adx
d, which contradictsπ being

transcendental overQ. Thus, the degree of the extension is infinite, and so forQ ⊂ Q(α) to be finite, we
clearly cannot have thatα is transcendental overQ.

(8.16) In fact this is always true:

Proposition 3 LetF ⊆ E andα ∈ E. If the extensionF ⊆ F (α) is finite, thenα is algebraic overF .

Proof: The proof is very similar to the example above. Suppose that the extensionF ⊆ F (α) has degree
n, so that any collection ofn + 1 elements ofF (α) must be linearly dependent. In particular then + 1
elements

1, α, α2, . . . , αn

are dependent overF , so that there area0, a1, . . . , an in F with

a0 + a1α + · · · + anαn = 0,

giving thatα is algebraic overF as claimed. 2

Thus, any fieldE that contains transcendentals overF will be infinite dimensional overF . In particular,
R andC are infinite dimensional overQ.

(8.17) The converse to Proposition 3 is partly true, as we summarisenow in an important result

Theorem D (Complete Description of Simple Extensions).Let F ⊆ E andα ∈ E be algebraic over
F . Then,

1. There is a unique polynomialf ∈ F [x] that is monic, irreducible overF , and hasα as a root;

2. The simple extensionF (α) is isomorphic to the quotientF [x]/〈f〉;

3. if deg f = d, then the extensionF ⊆ F (α) has degreed with basis{1, α, α2, . . . , αd−1}, and so,

F (α) = {a0 + a1α + a2α
2 + · · · + ad−1α

d−1 | a0, . . . , ad−1 ∈ F}.
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Proof: Hopefully most of the proof will be recognisable from the specific examples we have discussed
already. Asα is algebraic overF there is at least oneF -polynomial havingα as a root. Choosef ′ to
be a non-zero one having smallest degree. This polynomial must then be irreducible overF , for if not,
we havef ′ = gh with deg(g), deg(h) < deg(f ′), andα must be a root of one ofg or h, contradicting
the original choice off ′. Divide through by the leading coefficient off ′, to getf , a monic, irreducible
(by Exercise 17)F -polynomial, havingα as a root. Iff1, f2 are polynomials with these properties then
f1 − f2 has degree strictly less than eitherf1 or f2 and still hasα as a root, so the only possibility is that
f1 − f2 is zero, hencef is unique.

Consider the evaluation homomorphismεα : F [x] → E defined as usual byεα(f) = f(α). To show
that the kernel of this homomorphism is the ideal〈f〉 is completely analogous to the example at the
beginning of Section§5.: clearly〈f〉 is contained in the kernel, as any multiple off must evaluate to zero
whenα is substituted into it. On the otherhand, ifh is in the kernel ofεα, then by division algorithm,

h = qf + r,

with deg(r) < deg(f). Finding theεα image of both sides gives0 = εα(h) = εα(qf) + εα(r) = εα(r),
so thatr hasα as a root. Asf is minimal with this property, we must have thatr = 0, so thath = qf , ie:
h is in the ideal〈f〉, and so the kernel is contained in this ideal. Thus, kerεα = 〈f〉.

In particular we have an isomorphism̂εα : F [x]/〈f〉 → Imεα, given by,

ε̂α(g + 〈f〉) = εα(g) = g(α),

with the left hand side a field asf is irreducible overF . Thus, Imεα is a subfield ofE. Clearly, both
the elementα (εα(x) = α) and the fieldF (εα(λ) = λ) are contained in Imεα, henceF (α) is too
as Imεα is subfield ofE, andF (α) is the smallest one enjoying these two properties. Conversely, if
g =

∑
aix

i ∈ F [x] thenεα(g) =
∑

aiα
i, which is an element ofF (α) as fields are closed under sums

and products. Hence Imεα ⊆ F (α) and so these two are the same. Thusε̂α is an isomorphism between
F [x]/〈f〉 andF (α).

This final part follows immediately from Theorem 5, where we showed that the set of cosets

{1 + 〈f〉, x + 〈f〉, x2 + 〈f〉, . . . , xd−1 + 〈f〉},

formed a basis forF [x]/〈f〉 overF . Their images under̂εα, namely{1, α, α2, . . . , αd−1}, must then
form a basis forF (α) overF . 2

Notice from the proof of the first part of Theorem D that the polynomialf has the smallest degree of
any polynomial havingα as a root. For this reason it is called theminimum polynomialof α overF .

(8.18) An important property of the minimum polynomial is that it dividesanyotherF -polynomial that
hasα as a root. Suppose thatg is such anF -polynomial. By unique factorisation inF [x], we can
decomposeg as

g = λf1f2 . . . fk,

where thefi are monic and irreducible overF . Being a root ofg, the elementα must be a root of one of
thefi. By uniqueness, thisfi must be the minimum polynomial ofα overF .

(8.19) It is labouring the point, but to find the degree of a simple extensionF ⊆ F (α), you want to find
the degree of the minimum polynomial overF of α.

How do you find this polynomial? Its simple: guess! A sensiblefirst guess is a polynomial with
F -coefficients that hasα as root. If your guess is also monic and irreducible, then youhave guessed
right–Theorem D says there is only once such polynomial! If your guess is not monic, then replace it by
a suitable scalar multiple.

Thus, the only way you can go wrong is if you inadvertently guess a polynomial that is not irreducible.
In this case,your next guess should be a factor of your first guess. In this way, the search for minimum
polynomials is no harder than determining irreducibility.
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(8.20) As an example of this process, consider the minimum polynomial overQ of thep-th root of1,

cos
2π

p
+ i sin

2π

p
,

for p a prime. Your first guess isxp−1 which satisfies all the criteria bar irreducibility asx−1 is a factor.
Factorising,

xp − 1 = (x − 1)Φp(x),

for Φp thep-th cyclotomic polynomial shown to be irreducible overQ in Exercise 29.

(8.21) How does one find the degree of extensionsF ⊆ F (α1, . . . , αk) that are not simple, but the result
of adjoining several elements? Such extensions are just a sequence of simple extensions. one after the
other. If we can find the degrees of each of these simple extensions, all we need is a way to patch the
answers together. The result that does this is called the,

Tower Law. Let F ⊆ E ⊆ L be a sequence or “tower” of extensions. If both of the intermediate
extensionsF ⊆ E andE ⊆ L are finite, thenF ⊆ L is too, and indeed

[L : F ] = [L : E][E : F ].

(8.22) Before tackling the proof of the tower law, consider the example of the extensionQ ⊆ Q( 3
√

2, i),
which is nothing other than a sequence of two simple extensions,

Q ⊆ Q(
3
√

2) ⊆ Q(
3
√

2, i).

We can use Theorem D to find the degrees of each of these individual simple extensions. Firstly, the
minimum polynomial overQ of 3

√
2 mustx3 − 2, for this polynomial is monic inQ[x] with 3

√
2 as a root

and irreducible overQ by Eisenstein (usingp = 2). Thus the first of the two extensions above has degree
deg(x3 − 2) = 3 and{1, 3

√
2, ( 3

√
2)2} is a basis forQ( 3

√
2) overQ.

Now let F = Q( 3
√

2) so that the second extension isF ⊆ F(i) and where the minimum polynomial of
i overF must bex2 + 1: it is monic inF[x] with i as a root, and irreducible overF as its two roots±i are
not in F ( asF ⊂ R). Thus Theorem D again gives thatF ⊆ F(i) is a degreedeg(x2 + 1) = 2 extension
with {1, i} a basis forF(i) overF.

Now consider the elements,
{1,

3
√

2, (
3
√

2)2, i,
3
√

2i, (
3
√

2)2i},
obtained by multiplying the two bases together. The claim isthat they form a basis forQ( 3

√
2, i) = F(i)

over Q, so we need to show that theQ-span of these six is all of this field and that they are linearly
independent overQ. For the first, letx be an arbitrary element ofQ( 3

√
2, i) = F(i). As {1, i} is a basis

for F(i) overF, x can be expressed as anF-linear combination,

x = a + bi, a, b ∈ F.

As {1, 3
√

2, ( 3
√

2)2} is a basis forF overQ, botha andb can be expressed asQ-linear combinations,

a = a0 + a1
3
√

2 + a2(
3
√

2)2, b = b0 + b1
3
√

2 + b2(
3
√

2)2,

with theai, bi ∈ Q. This gives,

x = a0 + a1
3
√

2 + a2(
3
√

2)2 + b0i + b1
3
√

2i + b2(
3
√

2)2i,

aQ-linear combination forx, and so these six elements do indeed span theQ-vector spaceQ( 3
√

2, i).
Suppose we have,

a0 + a1
3
√

2 + a2(
3
√

2)2 + b0i + b1a3
3
√

2i + b2(
3
√

2)2i = 0,
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with theai, bi ∈ Q. Gathering together real and imaginary parts,

(a0 + a1
3
√

2 + a2(
3
√

2)2) + (b0 + b1
3
√

2 + b2(
3
√

2)2)i = a + bi = 0,

for a andb now elements ofF. As {1, i} independent overF we must have that the coefficients in this
last expression are zero, ie: thata = b = 0. This now gives,

a0 + a1
3
√

2 + a2(
3
√

2)2 = 0 = b0 + b1
3
√

2 + b2(
3
√

2)2,

and as{1, 3
√

2, ( 3
√

2)2} are independent overQ we deduce that all the coefficients in these two expressions
are zero, ie: thata0 = a1 = a2 = b0 = b1 = b2 = 0, so that the six elements are independent and form a
basis as claimed.

This certainly agrees with the answer given to us by the towerlaw in that,

6 = [Q(
3
√

2, i) : Q] = 3 × 2 = [Q(
3
√

2, i) : Q(
3
√

2)][Q(
3
√

2) : Q].

(8.23) The example above is more than a specific verification of the tower law. It also shows us exactly
how to prove it:

Proof: Let {α1, α2, . . . , αn} be a basis forE as anF -vector space and{β1, β2, . . . , βm} a basis for
L as anE-vector space, both containing a finite number of elements asthese extensions are finite by
assumption. We then show that themn elements

{αiβj}, 1 ≤ i ≤ n, 1 ≤ j ≤ m,

form a basis for theF -vector spaceL. Working “backwards” as in the example above, ifx is any element
of L we can express it as anE-linear combination of the{β1, . . . , βm},

x =
m∑

i=1

aiβi,

where, as they are elements ofE, each of theai can be expressed asF -linear combinations of the
{α1, α2, . . . , αn},

ai =

n∑

j=1

bijαj ⇒ x =

m∑

i=1

n∑

j=1

bijαjβi.

Thus the elements{αiβj} span the fieldL. If we have

m∑

i=1

n∑

j=1

bijαjβi = 0,

with thebij ∈ F , we can collect together all theβ1 terms, all theβ2 terms, and so on (much as we took
real and imaginary parts in the example), to obtain anE-linear combination,

( n∑

j=1

b1jαj

)
β1 +

( n∑

j=1

b2jαj

)
β2 + · · ·

( n∑

j=1

bmjαj

)
βm = 0.

The independence of theβi overE forces all the coefficients to be zero so that

( n∑

j=1

b1jαj

)
= · · · =

( n∑

j=1

bmjαj

)
= 0,

and the independence of theαj over F forces all the coefficients in each of these to be zero too, ie:
bij = 0 for all i, j. 2
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Further Exercises for§8.

Exercise 74 Show that the following two fields are isomorphic:

Q

„
cos

2π

p
+ sin

2π

p
i

«
andQ

„
cos

4π

p
+ sin

4π

p
i

«

wherep is an (odd) prime number.

Exercise 75

1. Show that ifF ⊆ L are fields with[L : F ] = 1 thenL = F .

2. LetF ⊆ L ⊆ E be fields with[E : F ] = [L : F ]. Show thatE = L.

Exercise 76 Let F = Q(a), wherea3 = 2. Express(1 + a)−1 and(a4 + 1)(a2 + 1)−1 in the formba2 + ca+ d, whereb, d, c
are inQ.

Exercise 77 Let α = 3
√

5. Express the following elements ofQ(α) as polynomials of degree at most 2 inα (with coefficients in
Q):

1. 1/α.

2. α5 − α6.

3. α/(α2 + 1).

Exercise 78 Find the minimum polynomial overQ of α =
√

2 +
√
−2. Show that the following are elements of the fieldQ(α)

and express them as polynomials inα (with coefficients inQ) of degree at most 3:

1.
√

2.

2.
√
−2.

3. i.

4. α5 + 4α+ 3.

5. 1/α.

6. (2α + 3)/(α2 + 2α + 2).

Exercise 79 Find the minimum polynomials overQ of the following numbers:

1. 1 + i.

2. 3
√

7.

3. 4
√

5.

4.
√

2 + i.

5.
√

2 + 3
√

3.

Exercise 80 Find the minimum polynomial overQ of the following:

1.
√

7.

2. (
√

11 + 3)/2.

3. (i
√

3 − 1)/2.

Exercise 81 For each of the following fieldsL andF , find [L : F ] and compute a basis forL overF .

1. L = Q(
√

2, 3
√

2), F = Q;

2. L = Q( 4
√

2, i), F = Q(i);

3. L = Q(ξ), F = Q, whereξ is a primitive complex 7th root of unity;

4. L = Q(i,
√

3, ω), F = Q, whereω is a primitive complex cube root of unity.

Exercise 82 Let a = eπi/4. Find [F (a) : F ] whenF = R and whenF = Q.
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§9. Fields III: A Menagerie

This section collects together a number of miscellaneous but important concepts and examples of fields.

Splitting Fields

(9.1) In the first lecture we were interested in fields containing just enough numbers to solve some poly-
nomial equation.

Supposef is a polynomial withF coefficients. We say thatf splits in an extensionF ⊆ E iff we can
factorise

f =

deg f∏

i=1

(x − αi),

in the polynomial ringE[x]. Thusf splits inE precisely whenE contains all the roots{α1, α2, . . . , αdeg f}
of f .

There will in general be many such extension fields: we are after the smallest one. CallE a splitting
field for f overF , if f splits inE andE = F (α1, α2, . . . , αdeg f ), where{α1, α2, . . . , αdeg f} are the
roots off .

Exercise 83 Show thatE is a splitting field of the polynomialf overF if and only if f splits inE but not in any subfield ofE
containingF (so in this sense,E is thesmallestfield containingF and all the roots).

(9.2) Our example from the first lecture again: the polynomial wasx3 − 2 with rootsα, αω, αω2 where
α = 3

√
2 ∈ R and

ω = −1

2
+

√
3

2
i.

Thus a splitting field forf overQ is given byQ(α, αω, αω2), which is the same thing asQ(α, ω).

(9.3) The example above shows that we can always find a splitting field for a polynomial overF : by
Kronecker’s Theorem we can find an extensionE of F that contains all the roots{α1, α2, . . . , αdeg f} of
f , and so adjoining them toF gives a splitting fieldF (α1, α2, . . . , αdeg f ) ⊆ E.

Aside. In §12. we will prove (Theorem??) that an isomorphism of a field to itselfσ : F → F can always be extended to an
isomorphismbσ : E1 → E2 whereE1 is a splitting field of some polynomialf overF andE2 is another splitting field of this
polynomial. Thus,any two splitting fields of a polynomial overF are isomorphic.

Finite Fields

We have already met a number of examples of finite fields: theFp of course, and a few others such as the
field of order8 in §4..

(9.4) To get more examples, we saw in§6. that by taking irreducible polynomials over finite fields we
could, in principle, construct fields with a prime power number of elements. The idea was to find a
polynomial of degreen, irreducible over the fieldFp, giving a field of orderpn. Here is a very concrete
example of that idea.

Consider the polynomialf = x2 + x + 2 ∈ F3[x]. Substituting the three elements ofF3 into f gives

02 + 0 + 2 = 2, 12 + 1 + 2 = 1 and22 + 2 + 2 = 2,

so thatf has no roots inF3. Being a quadratic, this gives thatf is irreducible over the fieldF3, and so
F3[x]/〈x2 + x + 2〉 is a field of order32 called, sayF9.

Let α = x + 〈x2 + x + 2〉 in F9 be a generator for this field as in§6., so that the elements ofF9 have
the forma + bα with a, b ∈ F3 and multiplication satisfying the ruleα2 + α + 2 = 0, or equivalently7,

7Note that−1 = 2 and−2 = 1 in F3.
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α2 = 2α + 1. Now let X be a new indeterminate, and consider the polynomialsF9[X ] overF9 in this
new variable. In particular,

g = X3 + (2α + 1)X + 1.

As g is a cubic, it will be irreducible overF9 precisely when it has no roots in this field, which can be
verified as usual by a straight, albeit tedious, substitution:

g(0) = 1,

g(1) = 13 + 2α + 1 + 1 = 2α,

g(2) = 23 + 2(2α + 1) + 1 = α + 2,

g(α) = α3 + α(2α + 1) + 1 = α(2α + 1) + α(2α + 1) + 1 = 4α2 + 2α + 1 = 2α + 1 + 2α + 1

= α + 2,

g(α + 1) = (α + 1)3 + (α + 1)(2α + 1) + 1 = α3 + 1 + 2α2 + 1 + 1 = α(2α + 1) + 2(2α + 1)

= (α + 2)(2α + 1) = 2(α2 + α + 1) = 1,

g(α + 2) = (α + 2)3 + (α + 2)(2α + 1) + 1 = α3 + 2 + (α + 2)(2α + 1) + 1 = (2α + 2)(2α + 1)

= α2 + 2 = (2α + 1) + 2 = 2α,

g(2α) = (2α)3 + 2α(2α + 1) + 1 = 2α(2α + 1) + 2α(2α + 1) + 1 = α(2α + 1) + 1

= 2α2 + α + 1 = α + 2 + α + 1 = 2α,

g(2α + 1) = (2α + 1)3 + (2α + 1)(2α + 1) + 1 = 2α3 + 1 + α2 + α + 1 + 1 = 2α(2α + 1) + α2 + α

= α2 + 2α + α2 + α = α + 2,

g(2α + 2) = (2α + 2)3 + (2α + 2)(2α + 1) + 1 = 2α3 + α + α2 + 2 + 1 = 2α(2α + 1) + α + α2

= 2α2 = α + 2.

We have a used an energy saving device in these computations as summarised in the following exercise.

Exercise 84 If F is a field of characteristicp > 0, then(a + b)p = ap + bp (hint: refer to Exercise 27).

Thusg is irreducible overF9, giving a field

F9[X ]/〈X3 + (2α + 1)X + 1〉

of order93 = 36 = 729, called sayF729. As we have a sequence of extensionsF3 ⊆ F9 ⊆ F729, we can
view F729 in two ways. Using the extensionF9 ⊆ F729, the elements have the form,

A0 + A1β + A2β
2,

where theAi ∈ F9 andβ = X + 〈g〉. Multiplication uses the ruleβ3 = (α + 2)β + 2. Alternatively, the
extensionF3 ⊆ F729 has, by the tower law, elements of the form,

a0 + a1β + a2β
2 + a3α + a4αβ + a5αβ2,

with theai ∈ F3.

Exercise 85

1. Construct a fieldF8 with 8 elements by showing thatx3 + x+ 1 is irreducible overF2.

2. Find a cubic polynomial that is irreducible inF8[x] (hint: refer to Exercise 26).

3. Hence, or otherwise, construct a field with29 = 512 elements.
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(9.5) Recall that the prime subfield of a field is the smallest subfield, and is isomorphic toFp for somep
or toQ. In particular, the prime subfield of a finite fieldF must be isomorphic toFp.

Using the ideas from§8., we have an extension of fieldsFp ⊆ F and hence the finite fieldF forms a
vector space over the fieldFp. This space must be finite dimensional (forF to be finite), so each element
of F can be written uniquely as a linear combination,

a1α1 + a2α2 + · · · + anαn,

of some basis vectorsα1, α2, . . . , αn with theai ∈ Fp. In particular there arep choices for eachai, and
the choices are independent, givingpn elements ofF in total.

Thus,a finite field must havepn elements for some primep.

(9.6) Here is an extended example that shows the converse, ie: gives a standard construction of a field
with q = pn elements for any primep and positive integern. Consider first the polynomialxq − x over
the fieldFp of p elements.

Let L be an extension of the fieldFp containing all the roots of the polynomial, as guaranteed usby the
Corollary to Kronecker’s Theorem. In Exercise 16 we used theformal derivative whether a polynomial
has distinct roots. We have that∂(xq − x) = qxq−1 − 1 = pnxpn−1 − 1 = −1 aspn = 0 in Fp. Clearly
the constant polynomial−1 has no roots inL, and so the original polynomialxq − x has no repeated
roots inL by Exercise 16.

In fact, thepn distinct roots ofxq − x in L form a subfield, and this is the field of orderpn that we are
after. To show this, we need that ifλ, µ are roots, then so are−λ, λ + µ, λµ andλ−1.

Firstly, (−λ)q − (−λ) = (−1)qλq + λ. If p is a prime, then it is eitherp = 2 or odd, in which case we
have two cases to consider. Ifp = 2, then−1 = 1 in F2, so that(−1)qλq + λ = λq + λ = λ + λ (asλ is
a root ofxq − x so thatλq = λ) = 2λ = 0. If p is odd then(−1)q = −1 and(−1)qλq +λ = −λq + λ =
−λ + λ = 0. In either case,−λ is also a root of the polynomialxq − x.

Next,

(λ + µ)q =

q∑

i=0

(
q
i

)
λiµq−i = λq + µq + q(other terms),

where inFp we have thatq = pn = 0. Thus(λ + µ)q = λq + µq. Substitutingλ+µ into our polynomial
then gives

(λ + µ)q − (λ + µ) = λq + µq − λ − µ = 0,

as bothλ andµ are roots so thatλq − λ = 0 = µq − µ. Thusλ + µ is also a root of the polynomial.
Now, (λµ)q − λµ = λqµq − λµ = λµ − λµ = 0. Finally, (λ−1)q − (λ−1) = (λq)−1 − (λ−1) =

λ−1 − λ−1 = 0. In both cases we have usedλq = λ.
Thus theq = pn roots of the polynomial inL form a subfield as claimed, and we have constructed a

field with this many elements.

(9.7) Looking back at this example, we letL be an extension ofFp containing all the roots of the polyno-
mial xq − x. In particular, if these roots are{α1, . . . , αq}, thenFp(α1, . . . , αq) is a, hencethe, splitting
field overFp of the polynomial. In the example we constructed the subfieldF of L consisting of the roots
of xq − x. As any subfield containsFp, we haveFp(α1, . . . , αq) ⊆ F, whereasF = {α1, . . . , αq} so that
F ⊆ Fp(α1, . . . , αq). Hence the field we constructed in the examplewasthe splitting field overFp of the
polynomialxq − q.

If F is now an arbitrary field withq elements, then it has prime subfieldFp. Moreover, as the mul-
tiplicative group ofF has orderq − 1, by Lagrange’s Theorem (see§11.), every element ofF satisfies
xq−1 = 1, hence is a root of theFp-polynomialxq = x ⇔ xq − x = 0. Thus, a finite field of orderq is
the splitting field overFp of the polynomialxq − x, and by the uniqueness of such things,any two fields
of orderq are isomorphic.

(9.8) We finish with a fact about finite fields that will prove useful later on. Remember that a field
is, among other things, two groups spliced together in a compatible way: the elements form a group
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under addition (theadditive group) and the non-zero elements form a group under multiplication (the
multiplicative group) .

Looking at the complex numbers as an example, we can find a number of finite subgroups of the
multiplicative groupC∗ of C by considering roots of1. For anyn, the powers of then-th root of1,

ω = cos
2π

n
+ i sin

2π

n
,

form a subgroup ofC∗ of ordern. Indeed, by definition, this subgroup is cyclic.

Proposition 1 LetF be any field andG a finite subgroup of the multiplicative groupF ∗ of F . ThenG is
a cyclic group.

In particular, ifF is now a finite field, then the whole multiplicative groupF ∗ of F is finite. Hencethe
multiplicative group of a finite field is cyclic.

Proof: By Exercise 97 the order in an Abelian group of the elementgh is the lowest common multiple
of the orders ofg andh. As G is finite we can write a list1 = m1, m2, . . . , mk of all the possible orders
of elements and find1 = g1, g2, . . . , gk such thatgi has ordermi. Thusg1g2 . . . gk has order the lowest
common multiple of all the possible orders in the group. Thus, if we call this orderm, there is an element
g of the group of orderm, and any other elementh satisfieshm = 1. Hence every element of the group
is a root ofxm − 1, and since this polynomial has at mostm roots inF , the order ofG must be≤ m. As
g ∈ G has orderm its powers must exhaust the whole group, henceG is cyclic. 2

Algebraically closed fields

(9.9) In the first part of this section we dealt with fields in which a particular polynomial of interest split
into linear factors. On the otherhand, there are fields like the complex numbers in whichanypolynomial
splits.

A field F is said to bealgebraically closedif and only if every (non-constant) polynomial overF splits
in F .

(9.10) If F is algebraically closed andα is algebraic overF then there is a polynomial withF -coefficients
havingα as a root. AsF is algebraically closed, this polynomial splits inF , so that in particularα is
in F . This explains the terminology: an algebraically closed field is closedwith respect to the taking of
algebraic elements. Contrast this with fields likeQ, over which there are algebraic elements like

√
2 that

are not contained inQ.

Exercise 86 Show that the following are equivalent:

1. F is algebraically closed;

2. every non-constant polynomial overF has a root inF ;

3. the irreducible polynomials overF are precisely the linear ones;

4. if F ⊆ E is a finite extension thenE = F .

Theorem 6 Every field is contained in an algebraically closed one.

Proof (sketch): The full proof is beyond the scope of these notes, although the technical difficulties are
not algebraic or number theoretical, but set theoretical. If the field is countable, the proof sort of runs as
follows: there are countably many polynomials over a countable field, so take the union of all the splitting
fields of these polynomials. Note that for a finite field, this is an infinite union, so an algebraically closed
field containing even a finite field is very large. 2
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Simple extensions

(9.11)We saw in§4. that an extension likeQ ⊆ Q(
√

2,
√

3) is, despite appearances, simple. It is certainly
a finite extension, and this turns out to give simplicity as wenow show:

Theorem 7 LetF ⊆ E be a finite extension so that the roots of any irreducible polynomialf ∈ E[x] are
distinct. ThenE is simple, ie:E = F (α) for someα ∈ E.

The following proof is for the case thatF is infinite.

Proof: Let {α1, α2, . . . , αk} be a basis forE overF and consider the fieldF1 = F (α3, . . . , αk), so that
E = F1(α1, α2). We will show thatF1(α1, α2) is a simple extension ofF1, ie: thatF1(α1, α2) = F1(θ)
for someθ ∈ E. ThusE = F (α1, α2, . . . , αk) = F (θ, α3 . . . , αk), and so by repeatedly applying this
procedure,E is a simple extension.

Letf1, f2 be the minimum polynomials overF1 of α1 andα2, and letL be an algebraically closed field
containing of the fieldF . As theαi are algebraic overF , we have that the fieldsF1 andE are contained
in L too. In particular the polynomialsf1 andf2 split in L,

f1 =

deg f1∏

i=1

(x − βi), f2 =

deg f2∏

i=1

(x − δi),

with β1 = α1 andδ1 = α2. As the roots of these polynomials are distinct we have thatβi 6= βj and
δi 6= δj for all i 6= j. For anyi and anyj 6= 1, the equation.βi + xδj = β1 + xδ1 has preciselyone
solution inF1, namely

x =
βi − β1

δ1 − δj
.

(notice that if we hadδj = δ1 then there would be infinitely many solutions to the equationβ1 + xδj =
β1 + xδ1). As there only finitely many such equations and infinitely many elements ofF1, there must be
anc ∈ F1 which is a solution tononeof them, ie: such that,

βi + cδj 6= β1 + cδ1

for any i and anyj 6= 1. Let θ = β1 + cδ1 = α1 + cα2, and we show thatF1(α1, α2) = F1(θ) =
F1(α1 + cα2).

Clearlyα1 + cα2 ∈ F1(α1, α2) so thatF1(α1 + cα2) ⊆ F1(α1, α2). We will show thatα2 ∈ F1(α1 +
cα2) = F1(θ), for then if so,α1 + cα2− cα2 = α1 ∈ F1(α1 + cα2), and soF1(α1, α2) ⊆ F1(α1 + cα2).

We have0 = f1(α1) = f1(θ − cα2), so if we letr(t) ∈ F1(θ)[t] be given byr(t) = f1(θ − ct), then
we have thatα2 is a root of bothr(t) andf2(x). If γ is another common root ofr andf2, thenγ is one
of theδj , andθ − cγ (being a root off1) is one of theβi, so that,

γ = δj andθ − cγ = βi ⇒ βi + cδj = β1 + cδ1,

a contradiction. Thusr andf2 have just the single common rootα2. Let h be the minimum polynomial
of α2 overF1(θ), so thath divides bothr andf2 (recall that the minimum polynomial divides any other
polynomial havingα2 as a root). This means thath must have degree one, for a higher degree would give
more than one common root forr andf2, ie: h = t + b for someb ∈ F1(θ). As h(α2) = 0 we thus get
thatα2 = −b and soα2 ∈ F1(θ) as required. 2

The theorem is true for finite extensions offinite fields (even without the condition on the roots of
the polynomials), but we omit the proof here. We saw in Exercise 36 that irreducible polynomials over
fields of characteristic0 have distinct roots. Thus,any finite extension of a field of characteristic zero is
simple. For example, ifα1, . . . , αk are algebraic overQ, thenQ(α1, . . . , αk) = Q(θ) for someθ. This is
a fundamental fact in algebraic number theory, the proof of which we have merely adapted.
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§10. Ruler and Compass constructions II

(10.1) The degree of an extension is the only concept we need to completely answer the question of
which complex numbers are constructible:

Theorem E. The numberζ ∈ C is constructible if and only if there exists a sequence of field extensions,

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

such thatQ(ζ) is a subfield ofKn, and eachKi is a degree two extension ofKi−1.

Proof: (⇒) We prove the “only if” part first. Recall thatζ is constructible if and only if there is a
sequence of numbers

0, 1, i = ζ1, ζ2, . . . , ζn = ζ,

with ζi obtained from earlier numbers in the sequence in one of the three forms,

ζi

ζp

ζq
ζr

ζs

ζi
ζp

ζq

ζr
ζs

ζi

ζp

ζq

ζr

ζs

(i) (ii) (iii)

with p, q, r, s ∈ {1, 2, . . . , n − 1}. Let Kj be the fieldQ(ζ1, . . . , ζj), giving a “tower” of extensions,

Q ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn.

We will show the following two things: (a). each of the fieldsKj is closed under conjugation, ie: if
z ∈ Kj thenz̄ ∈ Kj , and (b). the degree of each extensionKj−1 ⊆ Kj is at most two. Part (a) is just a
technical convenience, the main point of which is illustrated by the exercise following the proof. We will
prove it by induction:K1 = Q(i) is clearly closed under conjugation, so we assume thatKi is closed
under conjugation ifi < j.

Suppose thatζj is obtained as in case (i), ie: as the intersection of two straight lines. The Cartesian
equation for one of the straight lines isy = m1x + c1, and suppose this line passes through the points
ζp, ζq, with ζp, ζq ∈ Kj−1. As this field is closed under conjugation, Exercise 87 givesthat the real and
imaginary parts ofζp andζq are inKj−1 too. Asζp, ζq lie on the line with this equation we have,

Imζp = m1Reζp + c1

Imζq = m1Reζq + c1

}
⇒ m1 =

Imζp − Imζq

Reζp − Reζq
∈ Kj−1 andc1 = Imζp − m1Reζp ∈ Kj−1

(unless the line is vertical with equationx = c1, in which casec1 = Reζp ∈ Kj−1). Similarly if the
equation of the other line isy = m2x + c2, we havem2, c2 ∈ Kj−1. As ζj lies on both these lines we
have

Imζj = m1Reζj + c1

Imζj = m2Reζj + c2

}
mi, ci ∈ Kj−1⇒Reζj =

c2 − c1

m1 − m2
and Imζj =

m1(c2 − c1)

m1 − m2
+ c1,

and so Reζj and Imζj are in Kj−1 as well. As this field is closed under conjugation we have that
ζj ∈ Kj−1 too, so that in factKj = Kj−1(ζj) = Kj−1. Thus the degree of the extensionKj−1 ⊆ Kj,
being one, is certainly≤ 2. Moreover,Kj is closed under conjugation asKj−1 is.

For case (ii), suppose that the line has equationy = mx + c and the circle equation(x − Reζs)
2 +

(y − Imζs)
2 = r2, wherer2 = (Reζr − Reζs)

2 + (Imζr − Imζs)
2, so that in particularr2 ∈ Kj−1
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asζp, ζq, ζr, ζs ∈ Kj−1 hence their real and imaginary parts are too. Asζj lies on the line we have
Imζj = mReζj + c, and it lies on the circle too, so that,

(Reζj − Reζs)
2 + (mReζj + c − Imζs)

2 = r2.

Thus the polynomial(x−Reζs)
2 +(mx+ c− Imζs)

2 = r2 is a quadratic withKj−1 coefficients having
Reζj as a root. As the minimum polynomial overKj−1 of Reζj divides any otherKj−1-polynomial
having Reζj as a root, we get that this minimum polynomial has degree≤ 2. Theorem D then gives,

[Kj−1(Reζj) : Kj−1] ≤ 2.

In fact, Imζj ∈ Kj−1(Reζj) as Imζj = mReζj + c, thusζj itself is in Kj−1(Reζj), asi also is. Hence
we have the sequence,

Kj−1 ⊆ Kj = Kj−1(ζj) ⊆ Kj−1(Reζj),

giving that the degree of the extensionKj−1 ⊆ Kj is also≤ 2 by the tower law. Finally, we show that
the fieldKj is closed under conjugation, for which we can assume that thedegree is two (it is trivially
the case if the degree is one). Now,Kj = Kj−1(ζj) = Kj−1(Reζj), so that in particularζj and its real
part are inKj , hence its imaginary part

Imζj =
ζj − Reζj

i
,

is too. The upshot is that Reζj − iImζj = ζ̄j is in Kj, and as the elements of this field have the form
a + bζj with a, b ∈ Kj−1, we get that it is indeed closed under conjugation.

Finally, case (iii). Asζj lies on both circles we have,

(Reζj − Reζs)
2 + (Imζj − Imζs)

2 = r2 and(Reζj − Reζp)
2 + (Imζj − Imζp)

2 = s2,

with bothr2 ands2 in Kj−1 for the same reason as in case (ii). Expanding both expressions, they contain
terms of the form Reζ2

j + Imζ2
j , and equating leads to,

Imζj =
β1

α
Reζj +

β2

α
, whereα = 2(Imζs − Imζp), β1 = 2(Reζp − Reζs)

andβ2 = Reζ2
s + Imζ2

s − (Reζ2
p + Imζ2

p ) + s2 − r2.

Combining thisKj−1-expression for Imζj with the first of the two circle equations above puts us into a
similar situation as part (ii), from which the result follows in the same way.

(⇐) Now for the “if” part. Suppose that we have a tower of fields,

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

with Q(ζ) in Kn. EachKj is a simple extensionKj = Kj−1(ζj), so Kj = Q(ζ1, . . . , ζj), and in
particular,Kn = Q(ζ1, . . . , ζn). We may as well assume thatQ(ζ) is not contained inKn−1, so that
ζ 6∈ Kn−1. As Q(ζ1, . . . , ζn−1, ζ) ⊆ Q(ζ1, . . . , ζn−1, ζn), we have thatQ(ζ1, . . . , ζn−1, ζ) is a degree
two extension ofQ(ζ1, . . . , ζn−1), so by Exercise 75, part 2,

Q(ζ1, . . . , ζn−1, ζ) = Q(ζ1, . . . , ζn−1, ζn).

Thus, the tower of extensions has the form,

Q ⊆ Q(ζ1) ⊆ · · · ⊆ Q(ζ1, . . . , ζn−1) ⊆ Q(ζ1, . . . , ζn−1, ζ).

It suffices to prove therefore, that whenever we have an extensionK ⊆ K(θ) of degree two, then there
are finitely many elements ofK from whichθ can be constructed in a finite number of steps. For if so,
thenζ can be constructed from finitely many elements ofQ(ζ1, . . . , ζn−1), each of which in turn can be
constructed from finitely many elements ofQ(ζ1, . . . , ζn−2), and so on.
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GivenK ⊆ K(θ) as above then, the minimum polynomial ofθ overK has the formx2 + bx + c, with
b, c ∈ K, so thatθ is one of,

−1 ±
√

b2 − 4c

2
,

which can be constructed from1, 2, 4, b, c ∈ K, using the arithmetical and square root constructions of
§7. 2

Exercise 87 LetK be a field such that
Q(i) ⊆ K ⊆ C,

as well as being closed under conjugation, ie: ifz ∈ K thenz̄ ∈ K. Show thatz ∈ K if and only if the real and imaginary parts
of z are inK.

(10.2) It is much easier to use the “only if” part of the Theorem, which shows when numberscannotbe
constructed, so we restate this part as a separate,

Corollary. If ζ ∈ C is constructible then the degree of the extensionQ ⊆ Q(ζ) must be a power of two.

To use the “if” part, in otherwords, to show that numberscan be constructed by finding a tower of
fields as in Theorem E, is a little harder. We will need to know agreat deal more about the fields stacked
in betweenQ andQ(ζ) before we can do this. The Galois Correspondence in§14.will give us the control
to do this, so we postpone any attempts at using the “if” part of Theorem E until then.

Proof: If ζ is constructible then we have the tower of degree two extensions as given in Theorem E, with
ζ ∈ Kn. Thus we have the sequence of extensionsQ ⊆ Q(ζ) ⊆ Kn, which by the tower law gives,

[Kn : Q] = [Kn : Q(ζ)][Q(ζ) : Q].

Thus[Q(ζ) : Q] divides[Kn : Q], which is a power of two, so[Q(ζ) : Q] must also be a power of two.2

(10.3) Notice that the Corollary is only stated in one direction. Indeed, the converse, that if the extension
has degree a power of two, then the number is constructible,is not true.

(10.4) A regularp-gon, forp a prime, can be constructed, by Exercise??, precisely when the complex
numberζ = cos(2π/p) + i sin(2π/p) can be constructed, so we need to find the degree of the extension
Q ⊆ Q(ζ). By Exercise 29, the minimum polynomial ofζ overQ is thep-th cyclotomic polynomial,

Φp(x) = xp−1 + xp−2 + · · · + x + 1.

Thus the degree of the extensionQ ⊆ Q(ζ) is p − 1, hence by the Corollary to Theorem E we require,
for thep-gon to be constructible, thatp − 1 is a power of two. In otherwords, the primep is of the form

p = 2n + 1.

Actually, even more can be said. Ifm is odd, the polynomialxm + 1 has−1 as a root, thus can be
factorised asxm + 1 = (x + 1)(xm−1 − xm−2 + xm−3 − · · · − x + 1). Thus ifn = mk for m odd, we
have

2n + 1 = (2k)m + 1 = (2k + 1)((2k)m−1 − (2k)m−2 + (2k)m−3 − · · · − (2k) + 1),

so that2n + 1 cannot be prime unlessn has no odd divisors, which means thatn itself must be a power
of two.

Thus for ap-gon to be constructible, we must have thatp is a prime number of the form

22t

+ 1,

a so-calledFermat prime. Such primes are extremely rare: the only ones< 10900 are

3, 5, 17, 257 and65537.

We will see in§15. that the converse is true: ifp is a Fermat prime, then a regularp-gon can be con-
structed!
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(10.5) A square plot of land can always be doubled in area using a ruler and compass:

(t, 0)

(0, t)

(
√

2t,
√

2t)

Whatever the side lengtht of the original square is, it is constructible: just set the compass to the side
length. As

√
2 is also a constructible number, we can construct the point with coordinates(

√
2t,

√
2t),

hence doubling the area.

0 1 2
0

1

2

What about a regular cube: is there a similar procedure? Suppose the original cube
has side length1, so that the task is to produce a new cube ofvolume2. If this could
be accomplished via a ruler and compass construction, then by setting the compass to
the side length of the new cube, we would have constructed3

√
2. But the minimum

polynomial overQ of 3
√

2 is clearlyx3−2, with the extensionQ ⊆ Q( 3
√

2) thus having
degree three. Thus, such a construction cannot be possible.

(10.6) The subset2n of Rn given by

2
n = {x ∈ Rn | |xi| ≤

t

2
for all i}

is ann-dimensional cube of side lengtht having volumetn. In particular, in4-dimensions we have the
so-calledhypercube,

8-cell or hypercube,the vertices of which can be placed on

the3-sphereS3 in R4. Stereograpically projectingS3 to R3

gives a picture as at right. It is the shadow cast by a hypercube

on a 3-dimensional table top sitting in the 4-dimensional sun.

which can always be doubled in volume because the point with coordinates( 4
√

2t, 4
√

2t, 4
√

2t, 4
√

2t) can
be constructed!

(10.7) One of our basic ruler and compass constructions was to bisect an angle. It is therefore natural to
ask if there is a construction thattrisectsan arbitrary angle. Certainly there are particular angles that can
be trisected, for instance, if the angleφ is constructible then the angle3φ can be trisected!

However, the angleπ/3 cannot be trisected, as we show by demonstrating that the angle π/9 cannot
be constructed.

Exercise 88 Evaluate the complex number(cos φ+ i sinφ)3 in two different ways: using the binomial theorem and De Moivre’s
theorem. By equating real parts, deduce that

cos 3φ = 4 cos3 φ− 3 cos φ.

Derive a similar expression forcos 5φ andcos 7φ. What about the general case?
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We have from Exercise?? that the angleπ/9 is constructible precisely when the complex number
cosπ/9 can be constructed, for which it is necessary in turn that thedegree of the extensionQ ⊆
Q(cosπ/9) be a power of two. Using Exercise 88 withφ = π/9 we get that,

cos
π

3
= 4 cos3

π

9
− 3 cos

π

9
⇔ 1 = 8 cos3

π

9
− 6 cos

π

9
.

Thus, ifu = 2 cos(π/9), thenu3 − 3u − 1 = 0. This polynomial is irreducible overQ by the reduction
test applied withp = 2, so it is the minimum polynomial overQ of 2 cos(π/9). Thus, the extension
Q ⊆ Q(2 cos(π/9)) = Q(cos(π/9)) has degree three, and the angleπ/9 cannot be constructed.

We will be able to say more about which angles of the formπ/n can be constructed in§15..

Exercise 89

1. Can you construct an angle of400?

2. Assuming720 is constructible, what about240 and80?

Further Exercises for§10.

Exercise 90 Theoctahedronandicosahedronare two of the five Platonic solids.

VO =
x3

√
2

3
VI =

5x3(3 +
√

5)

12

The volume of each is given by the formula, wherex is the length of any edge. Show that in each case, there is no general
method, using a ruler and compass, to construct a new solid from a given one, and havingtwice the volume.

Exercise 91 Consider a regular dodecahedron with volume as given.

VD =
x3(15 + 7

√
5)

4

Show that there is no general method, using a ruler and compass, to construct a new dodecahedron from a given one, and having
five timesthe volume.

Exercise 92 LetSO, SD andSI be the surface areas of the three Platonic solids of Exercise90. If,

SO = 2x2
√

3, SD = 3x2

q
5(5 + 2

√
5) andSI = 5x2

√
3,

determine whether or not a solid can be constructed from a given one with twice the surface area.
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Exercise 93 Using the identity
cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.

Show that is is impossible, using a ruler and compass, toquinsect(that is, divide into5 equal parts) any angleψ that satisfies,

cosψ =
5

6

Exercise 94 Using the identity,

cos 7θ = 64 cos7 θ − 112 cos5 θ + 56 cos3 θ − 7 cos θ

show that it is impossible, using ruler and compass, toseptsect(that is, divide intosevenequal parts) any angleϕ such that

cosϕ =
7

8

Exercise 95 Show that if a general angle can ben-sected (that is, divided inton equal parts) then a regularn-gon can be con-
structed. Use this to re-deduce the result of the last exercise and to obtain conditions on a primep, such that a general angle can be
divided intop equal parts.
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§11. Groups I: A Miscellany

As the title suggests, this section collects together some (carefully chosen) random facts about groups.

(11.1) A permutationof a setX is a bijectionX → X . Mostly we are interested in the case where
X is finite, sayX = {1, 2, . . . , n}, so that a permutation is just a rearrangement of these numbers.
Permutations are most compactly written using the cycle notation

(α11, α12, . . . , α1n1
)(α21, α22, . . . , α2n2

) . . . (αk1, αk2, . . . , αknk
)

where theαij are elements of{1, 2, . . . , n}. Each(αi1, αi2, . . . , αini
) indicates that the points are per-

muted in a cycle as

αi1
αi2

αi3

αini

The cumulative effect of the cycles is obtained by dealing with them from right to left, eg:(1, 2)(1, 2, 4, 3)
(1, 3)(2, 4) = (1, 2, 3). A permutation can always be rewritten so that the points in the cycles are all
distinct.

The set of all permutations of the setX forms a group under composition of bijections called the
symmetric groupSX , or Sn if X = {1, 2, . . . , n}.

(11.2) Any permutation can be written as a composition of permutations where just two things are
swapped, and everything else is left fixed. In other words, any permutation can be written as a com-
position oftranspositionsof the form(a, b):

(α1, α2, . . . , αi) = (α1, αi)(αi, αi−1) . . . (α1, α3)(α1, α2).

Indeed, much more is true: there may be several ways that a permutation can be decomposed into trans-
positions like this, and different ways may not involve the same number of transpositions, but any two
such decompositions will either both involve an even numberof transpositions or both an odd number.

We can thus, without any ambiguity, call a permutationevenif it can be decomposed into an even
number of transpositions, andoddotherwise. TheAlternating groupAn consists of all those elements of
Sn that are even.

Exercise 96 Show thatAn is indeed a group comprising exactly half of the elements ofSn. Show that the odd elements inSn do
not form a group.

Exercise 97 Recall that theorder of an elementg of a groupG is the leastn such thatgn = 1. Show that ifG is Abelian then
(gh)n = gnhn for everyg, h ∈ G. Deduce that the order ofgh is then the lowest common multiple of the orders ofg andh.

(11.3) If G is a group and{g1, g2, . . . , gn} are elements ofG, then we say that thegi generateG when
every elementg ∈ G can be obtained as a product

g = g±1
i1

g±1
i2

. . . g±1
ik

,

of thegi and their inverses. WriteG = 〈g1, g2, . . . , gn〉.

(11.4) We find generators for the symmetric and alternating groups.Firstly, we have already seen that
the transpositions(a, b) generateSn, for any permutation can be written as a product

(α1, α2, . . . , αi) = (α1, αi)(αi, αi−1) . . . (α1, α3)(α1, α2).
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Symbol Name

Zp cyclic
An alternating

notes:p is a prime;
n 6= 1, 2, 4

Table 1: The simplest two families of simple groups

of transpositions. The transpositions themselves can be expressed in terms of just some of them: letting
(i, j) be our transposition now withi < j, we have

(i, j) = (i, i + 1)(i + 1, i + 2) . . . (j − 1, j − 2)(j, j − 1) . . . (i + 1, i + 2)(i, i + 1)

where the easiest way to see that this works is to consider thepicture,

i i+1 i+2 j−1 j· · ·

and perform the swaps indicated in the picture in the following order: do the swaps across the top first,
from left to right, and then the swaps along the bottom from right to left. Any number strictly in betweeni
andj moves one place to the right and then one place to the left, with net effect that it remains stationary.
The pointi is moved progressively along toj by the top swaps, but then stays there. Similarlyj stays put
for a while but is then moved progressively rightwards by thebottom swaps.

Substituting this new expression for each transposition gives any permutation inSn as a product of
transpositions of the form(i, i + 1). But in fact even these transpositions can be further reduced, by
transferringi andi+1 to the two points1 and2, performing the swap between these two and transferring
the answer back toi andi + 1. Indeed ifτ = (1, 2, . . . , n) then the picture,

1 2 i i+1
τ i−1

τ1−i

gives(i, i + 1) = τ i−1(1, 2)τ1−i asτ i−1 sends1 to i, 2 to i + 1 and so on, whileτ1−i is its inverse.
The conclusion is thatSn is generated byjust twopermutations, namely(1, 2) and(1, 2, . . . , n).

Exercise 98 Show that the Alternating group is generated by the permutations of the form(a, b, c). Show that in fact just the
3-cycles of the form(1, 2, i) will suffice.

(11.5) Lagrange’s theorem tells us that ifG is a finite group andH a subgroup ofG, then the order|H |
of H divides the order|G| of G. The converse, that if asubsetof a group has size dividing the order of
the group then it is a subgroupis false.

Exercise 99 By considering the Alternating groupA4, justify this statement.

Exercise 100 Show that ifG is a cyclic group, then the converse to Lagrange’s theoremis true, ie: ifG has ordern andk divides
n thenG has a subgroup of orderk.

Exercise 101 Use Lagrange’s Theorem to show that if a groupG has order a prime numberp, thenG is isomorphic to a cyclic
group. Thus,any two groups of orderp are isomorphic.

There is however apartial converse to Lagrange’s Theorem, due to the Norwegian Peter Sylow8

Sylow’s First Theorem. SupposeG is a finite group of orderpkm, wherep does not dividem (ie: k is
the largest power ofp dividing the order ofG). ThenG has a subgroup of orderpi for any1 ≤ i ≤ k.

8pronounced Soo-lov, not Si-low.

63



(11.6) It is often useful to considerall the subgroups of a group at once, rather than just one at a time.
The information is summarised in thesubgroup lattice, which is a diagram depicting all the subgroups
and the relations between them. Specifically, ifH1, H2 are subgroups ofG with H1 ⊆ H2, placeH2

higher in the diagram thanH1 with a line connecting them like so,

H1

H2

At the very base of the diagram is the trivial subgroup{id} and at the apex is the other trivial subgroup,
namelyG itself. For example, the subgroups of the integersZ all have the formnZ for somen (ie: the
multiples ofn) and arrange themselves into the lattice:

Z

2Z

4Z

3Z 5Z 7Z 11Z

6Z 9Z 10Z

8Z 27Z

· · ·

· · ·

...
...

...
...

...
...

As another example, the group of symmetries of a square consists of the eight elements,

{id, σ, σ2, σ3, τ, στ, σ2τ, σ3τ},
whereσ is a rotation anticlockwise through14 of a turn andτ is a reflection in the horizontal axis. The
subgroup lattice looks like,

G

{id, σ2, τ, σ2τ} {id, σ, σ2, σ3} {id, σ2, στ, σ3τ}

{id, σ2τ} {1, τ} {id, σ2} {id, σ3τ} {id, στ}

{id}

(11.7) Suppose we have a finite groupG and a sequence of subgroupsH0 = {1}, H1, . . . , Hn−1, Hn =
G arranged as follows:

{1} = H0 � H1 � · · · � Hn−1 � Hn = G,

ie: H0 is a normal subgroup ofH1, which is in turn a normal subgroup ofH2, and so on. In fact, we
can always ensure this if the group is finite: find a normal subgroup ofG, then a normal subgroup of that
normal subgroup, and so on. Eventually the process must stopwith the identity subgroup.

Whenever we have normal subgroups we get new groups by takingthe quotient. Given a sequence like
the above then, we get a sequence of quotient groups,

H1/H0, H2/H1, . . . , Hn/Hn−1.

In principle these quotient groups could be anything. In thequite special situation that they all turn out to
be Abelian, call the groupG soluble.
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Symbol Name Discovered

PSLnFq projective 1870
PSP2nFq simplectic 1870
PΩ+

2n orthogonal 1870
PΩ2n+1 orthogonal 1870
E6(q) Chevalley 1955
E7(q) Chevalley 1955
E8(q) Chevalley 1955
F4(q) Chevalley 1955
G2(q) Chevalley 1955
2An(q2) = PSUnFq2 unitary or twisted Chevalley 1870
2Dn(q2) = PΩ−

2n orthogonal or twisted Chevalley 1870
2E6(q

2) twisted Chevalley c. 1960
3D4(q

3) twisted Chevalley c. 1960
2B2(2

2e+1) Suzuki 1960
2G2(2

2e+1) Ree 1961
2F4(2

2e+1) Ree 1961

notes:n ande are∈ Z There are some restrictions onn
q is a prime power; andq, left off here for clarity.

Table 2: The simple groups of Lie type

(11.8) If G is an Abelian group, then consider the sequence of subgroups,

{1} � G,

(note that the trivial subgroup isalwaysa normal subgroup). There is only one quotient group to consider
here, namelyG/{1} ∼= G, an Abelian group. Thus Abelian groups themselves are soluble, and indeed,
one can think of solubility as a generalisation of Abelian.

(11.9) For another example, take the symmetries, both rotations and reflections, of a regularn-gon in the
plane, and the sequence,

{1} � {rotations} � {rotations and reflections}

To convince ourselves first of all that this is indeed a propersequence, we need that the rotations form a
normal subgroup of the full group of symmetries. That they form a subgroup is not hard to see, and the
normality follows from the fact that the rotations comprisehalf of all the symmetries and Exercise 110.

Moreover, the rotations are isomorphic as a group to the cyclic groupZn, and so the quotients of this
sequence are

{rotations}/{1} ∼= {rotations} ∼= Zn and{rotations and reflections}/{rotations} ∼= Z2,

both Abelian groups. Thus the dihedral groups are soluble9.

(11.10)It turns out, although for quite technical reasons (see the next couple of exercises) that a subgroup
of a soluble group is also soluble.

Exercise 102 LetH be a subgroup andN a normal subgroup of some groupG and,

NH = {nh |n ∈ N,h ∈ H}.

9Groups like this, where you have a2-step sequence{1}�H �G, with Abelian quotients are sometimes calledmeta-Abelian.
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1. Define a mapϕ : H → NH/N byϕ(h) = Nh. Show thatϕ is an onto homomorphism with kernelN ∩H.

2. Use the first isomorphism theorem for groups to deduce thatH/H ∩N is isomorphic toNH/H.

(This is called thesecond isomorphismor diamond isomorphismtheorem. Why diamond? Draw a picture of all the subgroups–the
theorem says that two “sides” of a diamond are isomorphic).

Exercise 103 LetG be a soluble group with series,

{1} = H0 �H1 � · · · �Hn−1 �Hn = G,

andK a subgroup ofG. IntersectK with all theHi and use the second isomorphism theorem to show that

{1} = H0 ∩K �H1 ∩K � · · · �Hn−1 ∩K �Hn ∩K = K,

is a series with Abelian quotients forK, henceK is soluble too.

(11.11) In some sense the antithesis of the soluble groups are thesimplegroups: groupsG whose only
normal subgroups are the trivial subgroup{1} and the whole groupG. These two are always normal
subgroups, so one could say that a group is simple when it has no non-trivial normal subgroups.

Whenever we have normal subgroups we can take quotients, so another way of putting it to say that a
group is simple whenever its only quotients are itselfG/{1} ∼= G and the trivial groupG/G ∼= {1}. In
this way simple groups are analogous to prime numbers, whichare integers whose only quotients10 are
themselvesp/1 = p and the trivial integerp/p = 1.

The reason that simple groups are at the opposite end of a spectrum to soluble ones is this: ifG is
non-Abelian and simple, thenG cannotbe soluble. For, the only sequence of normal subgroups thatG
can have is

{1} � G,

and asG is non-Abelian the quotients of this sequence are non-Abelian. Thus, non-Abelian simple groups
provide a ready source of non-soluble groups.

(11.12)So what are these groups then? Amazingly, there is a completelist, compiled over approximately
150 years, through the efforts of over a 100 mathematicians,and running to roughly 15000 pages of
research articles. It is quite possibly the greatest taxonomic (if not necessarily conceptual) achievement
of 20th Century Mathematics. The list is contained in Tables1-3.

Exercise 104 Show that ifp is a prime number then the cyclic groupZp hasno non-trivial subgroups whatsoever, and so is
certainly a simple group.

(11.13) Looking at Table 1 we see that the Alternating groupsAn are simple forn 6= 1, 2 or 4. Thus
these Alternating groups are not soluble, and as any subgroup of a soluble group is soluble, any group
containingthe Alternating group will also not be soluble. Thus,the symmetric groupsSn are not soluble
if n 6= 1, 2 or 4..

Exercise 105 Show that the previous statement isnot quitecorrect in that the symmetric groupS3 is soluble.

(11.14) Tables 2 and 3 list the really interesting simple groups. Thegroups of Lie type are basically
groups of matrices whose entries come from finite fields. We have already seen that ifq = pn a prime
power, then there is a fieldFq with q = pn elements. The group SLnFq consists of then × n matrices
with entries from this field and the usual matrix multiplication. Unfortunately this group is not simple as
the subset

N = {λIn |λ ∈ Fq},
consisting of all scalar multiples of the identity matrix forms a normal subgroup. But it turns out that this
is the biggest normal subgroup you can find in the sense that the quotient group,

SLnFq/N,

10Obviously the way it is normally put is to say that the only divisors are itself and one, but as the notion of divisor does notcarry
over quite so easily to group theory, we use quotients instead.

66



Symbol Name Discovered Order

1. First generation of the Happy Family.
M11 Mathieu 1861 24 32 5 11
M12 Mathieu 1861 24 33 5 11
M22 Mathieu 1873 27 32 5 7 11
M23 Mathieu 1873 27 32 5 7 11 23
M24 Mathieu 1873 210 33 5 7 11 23
2. Second generation of the Happy Family.
HJ Hall-Janko 1968 27 33 52 7
HiS Higman-Sims 1968 29 32 53 7 11
McL McLaughlin 1969 27 36 53 7 11
Suz Suzuki 1969 21337 52 7 11 13
Co1 Conway 1969 221 39 54 72 11 13 23
Co2 Conway 1969? 218 36 53 7 11 23
Co3 Conway 1969? 210 37 53 7 11 23
3. Third generation of the Happy Family.
He Held 1968 210 32 52 73 17
Fi22 Fischer 1968 217 39 52 7 11 13
Fi23 Fischer 1968 218 313 52 7 11 13 17 23
Fi24 Fischer 1968 221 316 52 73 11 13 17 23 29
F5 Harada-Norton 1973 214 36 56 7 11 19
F3 Thompson 1973 215 310 53 72 13 19 31
F2 Fischer or “Baby Monster” 1973 241 313 56 72 11 13 17 19 23 47
M Fischer-Griess or “Friendly Giant” or “Monster” 1973 ≈ 1055

4. The Pariahs.
J1 Janko 1965 23 5 7 11 19
J3 Janko 1968 27 35 5 17 19
J4 Janko 1975 221 33 5 7 113 23 29 31 37 43
Ly Lyons 1969 28 37 56 7 11 31 37 67
Ru Rudvalis 1972 214 33 53 7 13 29
O’N O’Nan 1973 29 34 5 73 11 19 31

Table 3: The sporadic simple groups
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has no non-trivial normal subgroups, ie: is a simple group. It is denoted PSLnFq, and called then-
dimensional projective11 special linear group overFq. The remaining groups in Table 2 come from more
complicated constructions.

Table 3 lists groups that don’t seem to fall into any of the categories described so far–for this reason they
are called the “sporadic” simple groups. They arise from various (often quite complicated) constructions
that are well beyond the remit of these notes. The most interesting of them is the largest one–the Monster
simple group (which actually contains quite a few of the others as subgroups). The Monster has a number
of fascinating connections with a diverse range of mathematical areas, including number theory (where it
plays a central role in something called “Monstrous Moonshine”) and even Mathematical Physics.

All of this notwithstanding, the simple groups in Tables 2 and 3 are all non-Abelian, hence provide
ready examples of non-soluble groups.

Further Exercises for§11.

Exercise 106 Show that any subgroup of an abelian group is normal.

Exercise 107 LetG be a group. Show thatG/G ∼= {id} andG/{id} ∼= G.

Exercise 108 Let n be a positive integer that isnot prime (sometimes called a composite integer). Show that thecyclic groupZn

is not simple.

Exercise 109 Show thatA2 andA4 are not simple groups, butA3 is.

Exercise 110 LetG be a group andH a subgroup such thatH has exactlytwo cosets inG. LetC2 be the group of order two with
elements{−1, 1} and operation just usual multiplication. Define a mapf : G −→ C2 by

f(g) =


1 g ∈ H
−1 g 6∈ H

1. Show thatf is a homomorphism.

2. Deduce thatH is a normal subgroup.

Exercise 111 Consider the group of symmetries (rotations and reflections) of a regularn-sided polygon forn ≥ 3. Show that this
is not a simple group.

Exercise 112 Show thatS2 is simple butSn isn’t for n ≥ 3. Show thatAn has no subgroups of index2 for n ≥ 5.

Exercise 113 Show that ifG is abelian and simple then it is cyclic. Deduce that ifG is simple and notZp thenG is non-Abelian.

Exercise 114 For each of the following groupsG, draw the subgroup latticeLG:

1. G = the group of symmetries of a square, pentagon or hexagon.

2. G = the cyclic group{1, σ, σ2, . . . , σn−1} whereσiσj = σi+j modn andσn = 1.

11the name “projective” comes fom the fact that the group is thegroup of symmetries of projective geometry over the fieldFq .
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§12. Groups II: Symmetries of Fields

We are finally in a position to introduce the idea of symmetry into the solutions of polynomial equations.

(12.1) An automorphismof a fieldF is an isomorphismσ : F → F , ie: a bijective map fromF to F
such thatσ(a + b) = σ(a) + σ(b) andσ(ab) = σ(a)σ(b) for all a, b ∈ F .

We commented in§4. that an isomorphism of fields (indeed of any algebraic object) was just a rela-
belling of the elements using different symbols. The “algebra” is identical though. An automorphism is
then a relabelling that is achieved merely by moving the elements ofF around amongst themselves. So
it is a way of picking the field up and placing it down upon itself so it looks like the same field: it is thus
asymmetryof the field.

Exercise 115 Show that ifσ is an automorphism of the fieldF thenσ(0) = 0 andσ(1) = 1.

(12.2) A familiar example of a field symmetry/automorphism is complex conjugation: the mapz 7→ z is
an automorphism ofC, for, from elementary complex analysis we have,

z + w = z + w andzw = z w,

with conjugation a bijectionC → C. This symmetry captures the idea that from an algebraic point of
view, we could have just as easily adjoined−i to R, rather thani, to obtain the complex numbers (they
look the same upside down as right side up!).

We will see at the end of this section that if a non-trivial automorphism ofC fixes pointwise the real
numbers, then it must be complex conjugation. If we drop the requirement thatR be fixed then there may
be more possibilities: if we only insist thatQ is fixed pointwise, there are infinitely many.

(12.3) Every fieldF has a prime subfield that is eitherFp or Q. Every element of the prime subfield has
the form,

m times︷ ︸︸ ︷
1 + 1 + · · · + 1

1 + 1 + · · · + 1︸ ︷︷ ︸
n times

.

If σ is now an automorphism ofF we have

σ

(
m times︷ ︸︸ ︷

1 + 1 + · · · + 1

1 + 1 + · · · + 1︸ ︷︷ ︸
n times

)
= σ(

m︷ ︸︸ ︷
1 + 1 + · · · + 1)σ

(
1

1 + 1 + · · · + 1︸ ︷︷ ︸
n

)

= (

m︷ ︸︸ ︷
σ(1) + σ(1) + · · · + σ(1))

(
1

σ(1) + σ(1) + · · · + σ(1)︸ ︷︷ ︸
n

)
=

m times︷ ︸︸ ︷
1 + 1 + · · · + 1

1 + 1 + · · · + 1︸ ︷︷ ︸
n times

.

asσ(1) = 1. Thus the elements of the prime subfield arefixed pointwiseby the automorphism.

Exercise 116 We saw above that the mapa + bi 7→ a − bi is an automorphism ofC. Show thata + bi 7→ −a + bi is not an
automorphism ofC.

(12.4) Symmetries of things normally arrange themselves into a group, and field symmetries are no
exception. We could talk just of the symmetry group of a field,but it turns out to be more instructive to
make a slightly more elaborate definition that takes into consideration not just fields, but their extensions:

Definition. Let F ⊆ E be an extension of fields. The automorphisms of the fieldE that fix pointwise
the elements ofF form a group under composition called theGalois group ofE over F and denoted
Gal(E/F ).
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Thus an elementσ of Gal(E/F ) has the property thatσ(λ) = λ for all λ ∈ F .

Exercise 117 ForF ⊂ E fields, show that the set of automorphisms Gal(E/F ) ofE that fixF pointwise do indeed form a group
under composition.

(12.5) Consider as an example the fieldQ(
√

2, i). From the proof of the tower law, a basis for this field
overQ is given by{1,

√
2, i,

√
2i}, so that the elements of the field are, by Theorem D,

Q(
√

2, i) = {a + b
√

2 + ci + d
√

2i | a, b, c, d ∈ Q}.

Suppose we have a symmetryσ ∈ Gal(Q(
√

2, i)/Q) and consider its effect on a typical element,

σ(a+b
√

2+ci+d
√

2i) = σ(a)+σ(b)σ(
√

2)+σ(c)σ(i)+σ(d)σ(
√

2i) = a+bσ(
√

2)+cσ(i)+dσ(
√

2i)

using the properties of automorphisms and the fact thatσ fixes rational numbers. Thus, the symmetryσ
is completely determined by its effect on the basis elements{1,

√
2, i,

√
2i}, in that once their images are

decided, thenσ is uniquely known.

Aside. We can see that this is really no surprise. When we have fieldsF ⊆ E, then among other things,E is a vector space over
F . Given a symmetryσ ∈ Gal(E/F ), then this is, among other things, a linear map of vector spacesE → E, and we know from
linear algebra that such things are completely determined by their effect on a basis.

Actually we can say even more. Clearlyσ(1) = 1 is always true, andσ(
√

2i) = σ(
√

2)σ(i). Thus the
symmetryσ is completely determined by its effect on

√
2 andi, the elements adjoined toQ.

(12.6) And indeed this is a general fact. IfF ⊆ F (α1, α2, . . . , αk) = E andσ ∈ Gal(E/F ), thenσ is
completely determined by its effect on theα1, . . . , αk. For, suppose that{β1, . . . , βn} is a basis forE
overF , so thatσ is completely determined as above by its effect on theβi. From the proof of the tower
law, eachβi is a product of the form,

βi = αi1
1 αi2

2 . . . αik

k ,

and soσ(βi) = σ(α1)
i1σ(α2)

i2 . . . σ(αk)ik . Thusσ(β) in turn is determined by theσ(αi).

(12.7) The structure of Galois groups can sometimes be determined via ad-hoc arguments, at least in very
simple cases.

1

ω2

ω Let ω be the primitive cube root of1,

ω = −1

2
+

√
3

2
i,

and consider the extensionQ ⊆ Q(ω). Although the most obvious polynomial that
ω is a root of isx3 − 1, this is reducible, so the minimum polynomial ofω overQ is in factx2 + x + 1
(see Exercise 29 where we showed1 + x + x2 + · · · + xp−1 to be irreducible overQ for p a prime).
Thus by Theorem D,Q(ω) = {a + bω | a, b ∈ Q}, giving thatQ(ω) is 2-dimensional overQ with basis
{1, ω}. Suppose thatσ ∈ Gal(Q(ω)/Q), whose effect we now know is completely determined by where
it sendsω. Supposeσ(ω) = a + bω for somea, b ∈ Q to be determined. On the one hand we have
σ(ω3) = σ(1) = 1, while on the other,

σ(ω3) = σ(ω)3 = (a + bω)3 = (a3 + b3 − 3ab2) + (3a2b − 3ab2)ω.

The last bit uses the fact thatω2 = −ω − 1.
One of the consequences of{1, ω} being a basis forQ(ω) overQ is that elements haveuniqueexpres-

sions as linear combinations of these two basis elements (this is a consequence of linear independence).
This means that given two expressions for an element as linear combinations of1 andω, we can “equate
the1 andω parts12”. Thus,

1 = σ(ω3) = (a3 + b3 − 3ab2) + (3a2b − 3ab2)ω, so thata3 + b3 − 3ab2 = 1 and3a2b − 3ab2 = 0.

12Just as we equate real and imaginary parts of complex numbers, and for the same reason:{1, i} is a basis forC overR. On the
other hand, we couldnot do this for two expressions in terms of1, ω andω2
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Solving these last two equations (inQ!) gives three solutionsa = 0, b = 1, a = 1, b = 0 anda =
−1, b = −1, coresponding toσ(ω) = ω andσ(ω) = −1 − ω = ω2 (the middle solution givesσ(ω) = 1
which is impossible asσ is a bijection and we already have thatσ(1) = 1). Thus the Galois group
Gal(Q(ω)/Q) = {id, σ} has order two.

(12.8) Our first major tool for unpicking the structure of Galois groups is,

Theorem F (The Extension Theorem). LetF1, F2 be fields andτ : F1 → F2 an isomorphism between
them withτ∗ : F1[x] → F2[x] the resulting homomorphism of rings given byτ∗(

∑
aix

i) =
∑

τ(ai)x
i.

If α is algebraic overF1, then the isomorphismτ extends to an isomorphismσ : F1(α) → F2(β) with
σ(α) = β if and only ifβ is a root ofτ∗(f), wheref is the minimum polynomial ofα overF1.

The elementsα andβ are assumed to lie in some extensionsFi ⊆ Ei of the two fields, and when we
say thatτ extends toσ we mean thatσ|F = τ .

F F

F (α) F (α)

id

σ
The theorem is quite technical, but nevertheless has an intuitive meaning. Suppose

we have the special case whereF1 = F2 = F andσ is the identity isomorphism (hence
σ∗ is also the identity map). Then we have an extensionσ̂ : F (α) → F (β) precisely
whenβ is a root of the minimum polynomialf of α overF . Indeed we can say even
more: if β is an element ofF (α), thenF (β) ⊆ F (α), is anF -vector subspace, but

sincef must also be the minimum polynomial ofβ, F (β) is (deg f)-dimensional overF , just likeF (α),
and soF (β) = F (α). Thusσ̂ is an automorphism ofF (α) fixing F pointwise, and so an element of the
Galois group Gal(F (α)/F ). Summarising everything we know about Galois groups so far,

Corollary. Letα be algebraic overF with minimum polynomialf overF . A mapσ : F (α) → F (α) is
an element of the Galois group Gal(F (α)/F ) if and only if for any

∑deg f−1
k=0 akαk ∈ F (α) we have,

σ

(deg f−1∑

k=0

akαk

)
=

deg f−1∑

k=0

akβk,

whereβ is also a root off contained inF (α).

Thus the elements of the Galois group permute the roots of theminimum polynomial that are contained
in F (α) amongst themselves.

Proof of the Extension Theorem: We give a “grungy” proof that nevertheless makes the situation nice
and concrete. For the only if part, we have that iff =

∑
aix

i with f(α) = 0, then
∑

aiα
i = 0 in E1 so

that

σ

(∑
aiα

i

)
= 0 ⇒

∑
σ(ai)σ(α)i = 0 ⇒

∑
τ(ai)β

i = 0 in E2,

giving thatβ is a root ofτ∗(f) as claimed.
For the if part, we need to define an isomorphism with the desired properties. The elements ofF (α)

all have the form
∑d−1

i=0 aiα
i, whered = deg f . Defineσ by

σ

( m∑

i=0

aiα
i

)
=

m∑

i=0

τ(ai)β
i, (4)

for anym. From this definition we see thatσ(a) = τ(a) for anya ∈ F1 and also thatσ(α) = β.
The proof then proceeds in three parts.σ is well-defined and 1-1: Suppose we have two expressions

∑
aiα

i =
∑

biα
i,

representing the same element ofF1(α). Thus
∑

(ai−bi)α
i = 0 giving thatα is a root of the polynomial

g =
∑

(ai − bi)x
i ∈ F1[x]. As f is the minimum polynomial ofα overF1 we must have thatf is a

factor ofg, and so,
g = fh ⇔ τ∗(g) = τ∗(fh) = τ∗(f)τ∗(h).
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Henceτ∗(f) is a factor ofτ∗(g). As β is a root ofτ∗(f) it must then also be a root ofτ∗(g), ie;

τ∗(g)(β) = 0 ⇔
∑

τ(ai−bi)β
i = 0 ⇔

∑
τ(ai)β

i =
∑

τ(bi)β
i ⇔ σ

(∑
aiα

i

)
= σ

(∑
biα

i

)
.

Thus the two expressions for the same element are sent to the same element ofF2(β), giving thatσ is
well-defined. This is the “only if” part of all the equivalences above, with the “if” part giving thatσ is
1-1.

σ is a homomorphism: we need to show thatσ respects the addition and multiplication in the field
F1(α). Let

λ =
n∑

i=0

aiα
i andµ =

m∑

i=0

biα
i,

be two elements. Then

σ(λ + µ) = σ

(max{m,n}∑

i=0

(ai + bi)α
i

)
=

max{m,n}∑

i=0

τ(ai + bi)β
i

=
n∑

i=0

τ(ai)β
i +

m∑

i=0

τ(bi)β
i = σ(λ) + σ(µ).

Similarly,

σ(λµ) = σ

(n+m∑

k=0

( ∑

i+j=k

aibj

)
αk

)
=

n+m∑

k=0

τ

( ∑

i+j=k

aibj

)
βk =

n+m∑

k=0

( ∑

i+j=k

τ(ai)τ(bj)

)
βk

=
n∑

i=0

τ(ai)β
i

m∑

j=0

τ(bj)β
j = σ(λ)σ(µ).

One comment: in both cases we hadσ of an expression, and we replaced this by the definition givenat
(4). Certainly in the case of multiplication, the expression was quite possibly not of the form a polynomial
in α of degree< d. If we had definedσ for just these expressions we wouldn’t have been able to use (4)
as it stands. Thus we definedσ for anyexpression, but this then requires we show the definition to be
well-defined, for an element has many different expressionsas polynomials inα, if we relax the condition
that these expressions have degree< d.

σ is onto: Certainly we haveσ(F1(α)) is contained inF2(β) by the definition at (4)–the right hand
side is contained inF2(β). On the otherhand, anyµ ∈ F2 arises as the imageτ(λ) for someλ ∈ F1, as
τ is onto. Alsoβ = σ(α) by definition, soF2, β ∈ σ(F1(α)), henceF2(β) ⊆ σ(F1(α)), giving that the
image σ(F1(α)) is F2(β). 2

(12.9) If we compute instead the Galois group of the extensionQ ⊂ Q( 3
√

2), we have the freedom to
send 3

√
2 to those roots of its minimum polynomial overQ that are also contained in the fieldQ( 3

√
2).

This minimum polynomial isx3 − 2 which has the rootsα, αω andαω2 for α = 3
√

2 and

ω = −1

2
+

3
√

2

2
i.

But now the rootsαω andαω2 are not contained inQ( 3
√

2) as this field contains only real numbers while
these roots are clearly non-real. Thus the only possible image forα is α itself, giving that Gal(Q(α)/Q)
is just the trivial group.

(12.10) Returning to the example we calculated in an ad-hoc fashion immediately before the extension
theorem, any automorphism ofQ(ω) that fixesQ pointwise is determined by where it sendsω, and this
must be to a root of the minimum polynomial overQ of ω. As this polynomial is1 + x + x2 with roots
ω andω2, we get that the possible automorphisms sendω to itself or toω2, ie:

Gal(Q(ω)/Q) = {id, σ},
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whereσ(a + bω) = a + bω2 is in fact just complex conjugation. This answers Exercise 3, in showing
that the left hand figure depicts an automorphism, but the right hand figure does not:

1

ω2

ω

1

ω2

ω

(12.11)The only if part of the proof of the Extension Theorem is usefully stated as a separate,

Corollary. If g is a polynomial withF -coefficients and with a rootα ∈ E, then for anyσ ∈ Gal(E/F ),
the imageσ(α) is also a root ofg.

An immediate and important consequence is,

Corollary. If F ⊆ E is a finite extension then the Galois group Gal(E/F ) is finite.

Proof: If {α1, α2, . . . , αk} is a basis forE over F , then we haveE = F (α1, α2, . . . , αk), and by
Proposition 3, each of theαi is algebraic overF with some minimum polynomialfi ∈ F [x]. If σ is an
element of the Galois group, thenσ is completely determined by where it sends eachαi, for which there
are only finitely many possiblities: to the roots offi. 2

(12.12)Let p be a prime and let

ω = cos
2π

p
+ i sin

2π

p
,

be a root of1.

1

ω

ω2

ωp−1

ωp−2

ωk

ωk+1

σ

By the Extension Theorem we have an element of the Galois group
Gal(Q(ω)/Q) precisely when it sendsω to some root contained in
Q(ω) of its minimum polynomial overQ. The minimum polynomial
is thep-th cyclotomic polynomial,

Φp = 1 + x + x2 + · · · + xp−1,

as we saw in Exercise 29, with roots the other roots of1 (except for1
itself) namelyω, ω2, . . . , ωp−1. Clearly all these roots are contained
in Q(ω), and so we are free to sendω to any one of them. Thus, the
Galois group has orderp − 1, with an element corresponding to each

of the possible images ofω. If σ(ω) = ωk thenσi(ω) = ωki

, whereωp = 1.
We saw in§9. that the multiplicative group of the finite fieldFp is cyclic. In otherwords, there is ak

with 1 < k < p, such that the powerski of k exhaust all of the non-zero elements ofFp, ie: the powers
ki run through{1, 2, . . . , p − 1} modulop, or k generatesF∗

p.
Putting the previous two paragraphs together, if we take aσ in the Galois group withσ(ω) = ωk for k

a generator ofF∗
p, then the elements,

σ(ω), σ2(ω), . . . , σp−1(ω),

run through the roots{ω, ω2, . . . , ωp−1}. Thus the elementsσ, σ2, . . . , σp−1 exhaust the Galois group,
and sothe Galois group of the extensionQ ⊆ Q(ω) is cyclic. This (I imagine) is the reason behind the
term cyclotomic.
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(12.13) The extension theorem gives theexistenceof extended automorphisms, but also indicates the
number of such extensions: there is one for each root ofσ∗(f) contained inE2. Making this more
precise:

Theorem G. Let τ : F1 → F2 be an isomorphism andF1 ⊆ E1 andF2 ⊆ E2 be extensions withE1 a
splitting field of some polynomialf overF1 andE2 a splitting field ofτ∗(f) overF2. Assume that the
roots ofτ∗(f) in E2 are distinct. Then the number of extensions ofτ to an isomorphismσ : E1 → E2 is
equal to the degree of the extensionF2 ⊆ E2.

Proof: The proof proceeds by induction and the Extension Theorem.

F1 F2

F1(α) F2(β)

E1 E2

τ

τ ′

We have thatE1 = F1(α1, . . . , αdeg f ) as it is a splitting field forf overF1. Let
α = α1 and consider the extensionF1 ⊆ F1(α) and the picture at left whereβ is some
element ofE2. We have by the Extension Theorem thatτ extends to an isomorphism
τ ′ : F1(α) → F2(β) if and only if β is a root inE2 of τ∗(p), wherep is the minimum
polynomial ofα overF1. In particular,F2(β) is isomorphic as a vector space overF2

to the vector spaceF1(α) overF1 (∼= F2), and so they must have the same dimension.
Thus any polynomial that hasβ as a root, has, by Theorem D, degree at least that ofp,
so thatτ∗(p) does. On the otherhand we always havedeg τ∗(p) < deg p. Thusτ∗(p)

must be the minimum polynomial ofβ overF2.
As α is a root off we have thatp dividesf , ie: f = ph in F1[x] so thatτ∗(f) = τ∗(p)τ∗(h) in F2[x]

giving thatτ∗(p) dividesτ∗(f). As the roots ofτ∗(f) are distinct, those ofτ∗(p) must be too.
Thus the number of possible extensionsτ ′, which is equal to the number of distinct roots ofτ∗(p), must

in fact be equal to the degree ofτ∗(p), which is in turn the degree of the extension[F2(β) : F2] > 1. By
the tower law,

[E2 : F2] = [E2 : F2(β)][F2(β) : F2],

and by induction, any isomorphismτ ′ : F1(α) → F2(β) will have

[E2 : F2(β)] =
[E2 : F2]

[F2(β) : F2]
,

extensions to an isomorphismσ : E1 → E2. Finally then, starting from the very bottom,τ extends to
[F2(β) : F2] possibleτ ′’s, and extending each in turn gives,

[F2(β) : F2]
[E2 : F2]

[F2(β) : F2]
= [E2 : F2],

extensions in total. 2

The reason that the roots ofτ∗(f) need to be distinct is that we can then relate the number of auto-
morphisms to degrees of extensions by passing through the midway house of the roots of polyomials. If
the polynomial has repeated roots then the number of automorphisms would be less that the degree of the
extension and so the set-up is less conveniently described.

Thus the requirement in the Theorem, and later in the notes, that the roots be distinct is not essential to
the theoryper se, but allows the theorems to be stated in a nice way.

(12.14) To summarise where we are at, Theorem D gives a connection between the degrees of field
extensions and minimum polynomials, while the Extension Theorem and Theorem connect minimum
polynomials with the number of automorphisms of a field. Perhaps the following theorem is not then so
surprising:

Corollary. Let f be a polynomial overF andE = F (α1, . . . , αm) its splitting field overF with the
rootsαi of f distinct. Then

|Gal(E/F )| = [E : F ].
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The polynomialf is contained in thering F [x] over thefield F , with E a vector spaceoverF and
Gal(E/F ) thegroupof automorphisms. In this concise statement appears all themajor algebraic objects
of undergraduate mathematics.

Proof: The result follows immediately from Theorem by lettingF1 = F2 = F , E1 = E2 = E andτ
be the identity automorphism. This gives that there are[E : F ] extensions of the identity automorphism
F → F to automorphisms ofE. On the otherhand, any automorphism ofE fixing F pointwise is an
extension of the identity automorphism onF , and so we obtain all the elements of the Galois group this
way. 2

(12.15)The criterion thatE be a splitting field is important in using Theorem and it’s Corollary properly.
If you consider the extensionQ ⊆ Q( 3

√
2), thenσ is an element of the Galois group Gal(Q( 3

√
2)/Q)

precisely when it sends3
√

2 to a root contained inQ( 3
√

2) of its minimum polynomial overQ. As these
roots are3

√
2 itself and the other two are complex and the fieldQ( 3

√
2) is completely contained inR, the

only automorphism we can have is the one that sends3
√

2 to itself, ie: the identity automorphism.
Thus the Galois group has order1, whereas the degree of the extension is3.

(12.16)

Theorem 8 Let f be a polynomial overF andE = F (α1, . . . , αm) its splitting field overF with the
rootsαi of f distinct. Moreover, suppose that

[E : F ] =
∏

i

[F (αi) : F ].

Then there is aσ ∈ Gal(E/F ) with σ(αi) = βi if and only ifβi is a root of the minimum polynomial
overF of αi.

Proof: That is is necessary forβi to be a root offi has already been established. On the other hand, the
condition on the degree of the extension means that the orderof the Galois group Gal(E/F ) is equal to
the product of the degrees of thefi, and so for the correct number of automorphisms to be realised, it
must be possible to sendαi to any root of its minimum polynomialfi. 2

(12.17) In the first lecture we looked at the automorphisms ofQ(α, ω) for

α =
3
√

2 ∈ R andω = −1

2
+

√
3

2
i,

which in our new language translates as finding the elements of the Galois group Gal(Q(α, ω)/Q). The
minimum polynomial ofα overQ is x3 − 2 with rootsα, αω, αω2 and the minimum polynomial ofω
overQ is 1 + x + x2 with rootsω, ω2. The Tower law then gives that

[Q(α, ω) : Q] = [Q(α, ω) : Q(α)][Q(α) : Q] = [Q(ω) : Q][Q(α) : Q].

Thus by the Theorem above, we may sendα to anyone ofα, αω, αω2 andω to any one ofω, ω2 and get
an automorphism. This gives six possible automorphisms, agreeing with the six we found in Lecture 1,
one for each symmetry of the equilateral triangle formed by the roots inC. Following this through with
the vertices of the triangle, we have three automorphisms with ω mapped to itself:

α 7→ α
ω 7→ ω

α 7→ αω
ω 7→ ω

α 7→ αω2

ω 7→ ω
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and another three withω mapped toω2:

α 7→ α
ω 7→ ω2

α 7→ αω
ω 7→ ω2

α 7→ αω2

ω 7→ ω2

Exercise 118 Let α = 5
√

2 andω = cos(2π/5) + i sin(2π/5) (so thatα5 = 2 andω5 = 1). Letting β = α + ω, eliminate
radicals by considering the expression(β − ω)5 = 2 and find a polynomial of degree20 havingβ as a root. Show that this
polynomial is irreducible overQ and hence that

[Q(α+ ω) : Q] = [Q(α) : Q][Q(ω) : Q].

Finally, show thatQ(α+ ω) = Q(α, ω).

(12.18) Returning to some of the other examples from the first lecture, the extensionQ ⊂ Q(α, ω)
satisfies the criterion of the Theorem above, whereα = 5

√
2 andω is a primitive5-th root of1. Thus

an automorphism is free to sendα to any root of the polynomialx5 − 2 andω to any root of the5-th
cyclotomic polynomial1+x+x2 +x3 +x4. Thus there are twenty elements of the Galois group in total.

α

αω

αω3

αω2

αω4

α = 5
√

2

ω =

√
5 − 1

4
+

√
2
√

5 +
√

5

4
i

In particular we have the automorphism that sendsα to itself andω to ω3 as depicted in the picture.

(12.19)So far we have only considered the Galois groups of fields, butif we are to get closer to the spirit
of the first lecture, then we should be more interested in the Galois groups ofpolynomials. In the first
lecture we achieved this using the smallest field containingthe roots of the polynomial, and indeed we
define: theGalois group of the polynomialf ∈ F [x] is the Galois group Gal(E/F ) of the splitting field
E of f . Denote the group by Gal(f).

Proposition 4 The Galois group of a polynomial of degreed is isomorphic to a subgroup of the symmetric
groupSd.

Proof: If {α1, α2, . . . , αd} are the roots off , then Gal(f) = Gal(E/F ) where the splitting fieldE
is given byE = F (α1, α2, . . . , αd). Any element of Gal(f) is determined by where it sends eachαi,
which must be to some root of its minimum polynomial overF . For anyi, this minimum polynomial
dividesf (recall that the minimum polynomial ofα divides any polynomial havingα as a root) so its
roots are contained amongst the roots off , ie: amongst the{α1, α2, . . . , αd}. Thus, any element of the
Galois group can be identified with a permutation of thesed roots. Different automorphisms correspond
to different permutations, as the effect of the automorphism on the roots determines the whole automor-
phism. Thus Gal(f) may be identified with a subgroup of the group of permutationsof thed roots, which
is clearly isomorphic toSd. 2

Aside. There is a slick algebraic (some would sayproper) way to put this, although it loses a little of the intuitive nature of what is
going on. As any element of Galois group defines a permutationof the roots, define a map Gal(E/F ) → Sym{α1, α2, . . . , αd}
by sending aσ ∈ Gal(E/F ) to this permutation. As the group operation is composition of maps in both these groups, we get that
this is a homomorphism. Ifσ ∈ Gal(E/F ) is sent to the identity permutation, then as an automorphismit fixes all the roots, so
must be the identity automorphism, ie: the kernel of the homomorphism is trivial. The first isomorphism theorem for groups then
gives that Gal(E/F )/{id} ∼= Gal(E/F ) ∼= H, a subgroup of Sym{α1, α2, . . . , αd} ∼= Sd.
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Further Exercises for§12.

Exercise 119 Show that the following Galois groups have the given orders:

1. |Gal(Q(
√

2)/Q)| = 2.

2. |Gal(Q( 3
√

2)/Q)| = 1.

3. |Gal(Q(− 1

2
+

√
3

2
i)/Q)| = 2.

4. |Gal(Q( 3
√

2,− 1

2
+

√
3

2
i)/Q)| = 6.

Exercise 120 Find the orders of the following Galois groups:

1. Gal(L/Q), whereL is the splitting field of the polynomialx− 2.

2. Gal(L/Q), whereL is the splitting field of the polynomialx2 − 2.

3. Gal(L/Q), whereL is the splitting field of the polynomialx5 − 2.

4. Gal(L/Q), whereL is the splitting field of the polynomial1 + x+ x2 + x3 + x4.

5. Gal(L/Q), whereL is the splitting field of the polynomial1 + x2 + x4 (hint : (x2 − 1)(1 + x2 + x4) = x6 − 1).

Exercise 121 Let p > 2 be a prime number. Show that

1. |Gal(Q(cos
2π

p
+ i sin

2π

p
)/Q)| = p− 1.

2. |Gal(L/Q)| = p(p− 1), whereL is the splitting field of the polynomialxp − 2. Compare the answer whenp = 3 and5
to Lecture§1..

Exercise 122 Let p1, . . . , pm be distinct primes. Show that,

Gal(Q(
√
p1, . . . ,

√
pm)/Q) ∼= Z2 × · · · × Z2| {z }

m times
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§13. Linear Algebra II: Solving equations

This section exists purely to provide some of the technical results we need for the big theorem of the next.
It can be skipped over on a first reading.

(13.1) Let V be an-dimensional vector space over the fieldF , with fixed basis{α1, α2, . . . , αn}. A
homogenous linear equationoverF is an equation of the form,

a1x1 + a2x2 + · · · + anxn = 0,

with theai in F . The vectorv ∈ V is a solution if

v =
n∑

i=1

tiαi ⇒ a1t1 + a2t2 + · · · + antn = 0.

Call a system of linear equations,

a11x1 + a12x2 + · · · + a1nxn = 0,

a21x1 + a22x2 + · · · + a2nxn = 0,

...

ak1x1 + ak2x2 + · · · + aknxn = 0,

independentoverF iff the collection of vectors,

v1 =
∑

a1jαj , v2 =
∑

a2jαj , . . . , vk =
∑

akjαj ,

in V are independent.

Exercise 123

1. LetS be an independent system of equations inn unknowns. Show thatS has the unique solutionv = 0 in V .

2. Let S be a system of independent equations inV and letS′ be aproper subset of the equations. Show that the set of
solutions inV to S is apropersubspace of the set of solutions inV to S′.

Exercise 124 LetF ⊆ E be an extension of fields andB a finite set. LetVF be theF -vector space with basisB, ie: the elements
of VF are formal sums X

λibi,

with theλi ∈ F and thebi ∈ B. Formal sums are added together and multiplied byλ ∈ F in the obvious way. Similarly letVE

be theE-vector space with basisB, and identifyVF with a subset (it is not a subspace) ofVE in the obvious way. Now letS, S′

be systems of equations inVE as in the previous exercise. Show that the conclusion reached there is still true when looking at the
solution sets inVF .

Exercise 125 LetF be a field andα1, . . . , αn+1 distinct elements of it. Show that

det

0
B@

αn
1

· · · α1 1
...

...
...

αn
n+1 · · · αn+1 1

1
CA 6= 0.

(hint: suppose not, and find a polynomial of degreen havingn + 1 distinct roots inF , thus contradicting Theorem 2). This is
called theVandermonde determinant.

Lemma 5 LetF be a field andf, g ∈ F [x] two polynomials of degreen overF . Suppose that there exist
n + 1 distinct valuesαi ∈ F , such thatf(αi) = g(αi) for all i. Thenf = g.

Proof: Let
f(x) =

∑
aix

i andg(x) =
∑

bix
i.

78



We getn + 1 expressions of the form

∑
aiα

i
j =

∑
biα

i
j ⇔

∑
ai

jyi = 0,

whereyi = ai − bi. Think of these last asn + 1 equations in then + 1 unknownsyi. The matrix of
coefficients is 


αn

1 · · · α1 1
...

...
...

αn
n+1 · · · αn+1 1




which is the matrix given in Exercise 125. Its determinant isnon-zero, and thus the system of equations
has the unique solutionyi = 0 for all i, so thatai = bi for all i and hencef = g. 2

(13.2) Here is the result we will require in the next section.

Theorem 9 Let F ⊆ E = F (α) be a simple extension of fields with the minimum polynomial ofα
overF having distinct roots. Let{σ1, σ2 . . . , σk} be distinct non-identity elements of the Galois group
Gal(E/F ). Then

σ1(x) = σ2(x) = · · · = σk(x) = x,

is a system of independent linear equations overE.

Proof: By Theorem D we have a basis{1, α, α2, . . . , αd} for E overF where the minimum polynomial
f of α has degreed + 1. Thus anyx ∈ E has the form

x = x0 + x1α + x2α
2 + · · · + xdα

d,

for somexi ∈ F . By the Extension Theorem, the elements of the Galois group sendα to roots off .
Suppose these roots are{α = α0, α1, . . . , αd} whereσi(α) = αi (as none of theσi are the identity, we
have that noσi sendsα to itself). Thenx satisfiesσi(x) = x if and only if,

(α0 − αi)x1 + (α2
0 − α2

i )x2 + · · · + (αd
0 − αd

i )xd = 0.

Thus we have a system of equationsAx = 0 where the matrix of coefficientsA is made up of rows from
the largerd × d matrix Â given by,

Â =




α0 − α1 α2
0 − α2

1 · · · αd
0 − αd

1

α0 − α2 α2
0 − α2

2 · · · αd
0 − αd

2
...

...
...

α0 − αd α2
0 − α2

d · · · αd
0 − αd

d


 .

Suppose we havêAb = 0 for some vectorb ∈ En, so that

b0α0 + b1α
2
0 + · · · + bdα

d
0 = b0αi + b1α

2
i + · · · + bdα

d
i ,

for each1 ≤ i ≤ d. Thus if f = b0x + b1x
2 + · · · + bdx

d, then we havef(α0) = f(α1) = f(α2) =
· · · = f(αd) = a, say. Thus the degreed polynomialg = f − a agrees with the zero polynomial atd + 1
distinct values, hence by the lemma, must be the zero polynomial, and so all theai are zero. Thus, the
system of equationŝAx = 0, hence the systemAx = 0, is independent. 2
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§14. The Fundamental Theorem of Galois Theory

(14.1) In §10. we saw that a complex numberζ was constructible precisely when there was a tower of
fields,

Q = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Kn,

with eachKi a degree two extension ofKi−1 andQ(ζ) contained in the top field. All the examples we
have given so far that use this result have showed that no suchtower exists. In otherwords, they have been
negative results, and for good reason: to use the theorem positively, to show that a number can actually
beconstructed, requires a knowledge of the fields sandwiched in betweenQ andQ(ζ). In this section we
prove the theorem that gives us that knowledge.

(14.2) First we need a picture of all the fields we are interested in, analogous to the picture of all the
subgroups of a group that we drew in§11..

K1

K2
Let F ⊆ E be an extension of fields. CallK an intermediate fieldprecisely when

K is an extension ofF andE is an extension ofK: ie: F ⊆ K ⊆ E. The lattice
of intermediate fieldsis a diagram such that ifK1 andK2 are two such fields and
K1 ⊆ K2, thenK2 is placed higher in the diagram thanK1, with a line connecting
them as shown at left. Denote this lattice byL (E/F ).

(14.3) From now on we will work in the following situation: we have anextensionF ⊆ E such that
every irreducible polynomial overF has distinct roots inE. For example we saw in Exercise 36 that this
is the case ifF has characteristic0. It is also true ifF is a finite field, although we omit the proof here.

Thus, the following theorem includes in its remit the fields we have spent most of the time considering:
subfields ofC and finite fields. It is only examples likeFp(t), the rational function field overFp (being
infinite of characteristicp > 0, see Exercise 38) that are left out in the cold.

The Galois Correspondence (part 1). Let F ⊆ E be a finite extension as above withE the splitting
field overF of some polynomialf ∈ F [x], and G = Gal(E/F ) its Galois group. LetL (G) and
L (E/F ) be the subgroup and intermediate field lattices.

1. For any subgroupH of G, let

EH = {λ ∈ E |σ(λ) = λ for all σ ∈ H}.

ThenEH is an intermediate field, called the fixed field ofH .

2. For any intermediate field, Gal(E/K) is a subgroup ofG.

3. The mapsH 7→ EH and K 7→ Gal(E/K) are mutual inverses, hence bijectionsL (G) ↔
L (E/F ).

4. Both maps reverse order: ifH1 ⊆ H2 ⊆ G thenF ⊆ EH2 ⊆ EH1 ⊆ E, and ifF ⊆ K1 ⊆ K2 ⊆
E then Gal(E/K2) ⊆ Gal(E/K1) ⊆ G.

5. The degree of the extensionEH ⊆ E is equal to the order|H | of the subgroupH .

In otherwords, once you know the lattice of subgroups of the Galois group, you can find the lattice of
intermediate fields just by turning it upside down (and vice-versa)! Schematically,
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Gal(E/F )

H2

H1

{id}

E

EH1

EH2

F

H 7→ EH

K 7→ Gal(E/K)

There are a few other things worth noticing. The whole Galoisgroup Gal(E/F ) fixesF pointwise,
so its fixed field isF , while the trivial subgroup, consisting of just the identity automorphism, fixes
everything, hence its fixed field is all ofE. Thus, the largest subgroup corresponds to the smallest
intermediate field and the smallest subgroup to the largest intermediate field.

The Theorem also says that the two mapsX 7→ EX andY 7→ Gal(E/Y ) are bijections, hence in
particular are 1-1: ifEH1 = EH2 thenH1 = H2 and if Gal(E/K1) = Gal(E/K2) thenK1 = K2.

If the upside down nature of the correspondence seems puzzling, it is simply linear algebra (and indeed
this is how we will prove it). IfH is a subgroup, think of the fixed fieldEH as the set of solutions inE
to the equations,

σ(x) = x, σ ∈ H.

The more equations you have, the greater the number of conditions being imposed onx, hence the smaller
the number of solutions. So larger subgroups should correspond to smaller intermediate fields. That the
correspondence is exact, so that as soon as we addjust one moreequation the number of solutions strictly
decreases, will follow from§13.as these equations are linear andindependent.

Proof: In the situation described, whereE is a finite extension ofF , the extension must be simple by
Theorem 7, ie: of the formF ⊆ F (α) for someα algebraic overF .

For the first part, we haveEH ⊆ E by definition, andF ⊆ EH , as every element ofG, so in particular,
every element ofH fixesF . If λ, µ ∈ EH thenσ(λ + µ) = σ(λ) + σ(µ) = λ + µ and similarly for
σ(λµ) andσ(1/λ). ThusEH is an intermediate field.

If an automorphism ofE fixes the intermediate fieldK pointwise, then it certainly fixes the fieldF
pointwise. Thus Gal(E/K) ⊆ Gal(E/F ) and we indeed have a mapL (E/F ) → L (G) given by
K 7→ Gal(E/K). If λ is fixed by every automorphism inH2, then it is fixed by every automorphism
in H1 and soEH2 ⊆ EH1 . If σ fixes every element ofK2 pointwise then it fixes every element ofK1

pointwise too, so that Gal(E/K2) ⊆ Gal(E/K1).
To show that the two maps are inverses of each other, we take a subgroupH and show that their

composition,
H → EH → Gal(E/EH),

gets us back to where we started, ie: that Gal(E/EH) = H . This will then give the desired bijection.
By definition, every element ofH fixes EH pointwise, and since Gal(E/EH) consists ofall the

automorphisms ofE that fix EH pointwise, we have thatH ⊆ Gal(E/EH). In fact, both of the sub-
groupsH and Gal(E/EH) have the same fixed field, ie:EGal(E/EH) = EH . To see this, certainly
anyσ ∈ Gal(E/EH) fixesEH pointwise by definition, soEH ⊆ EGal(E/EH ). On the otherhand, as
H ⊆ Gal(E/EH) and the maps reverse order, we have,EGal(E/EH ) ⊆ EH .

By the results of§13., the elements of the fixed fieldEGal(E/EH) are obtained by solving the system of
linear equationsσ(x) = x for all σ ∈ Gal(E/EH), and these equations are independent. In particular, a
propersubset of these equations has a strictly larger solution set. We already have thatH ⊆ Gal(E/EH),
so suppose thatH is a proper subgroup of Gal(E/EH). The fixed fieldEH would then properly contain
the fixed fieldEGal(E/EH). As this contradictsEH = EGal(E/EH), we must have thatH = Gal(E/EH).
Thus the mapH 7→ EH is a bijection as desired.
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As E is a splitting field we can apply Theorem G to get|Gal(E/EH)| = [E : EH ], where we now
have that Gal(E/EH) = H , so that|H | = [E : EH ]. 2

(14.4) We are certainly long overdue an example. In§12.we reverified the example of the first lecture to
show that the splitting fieldQ(α, ω) of the polynomialx3 − 2 had Galois group,

G = Gal(Q(α, ω)/Q) = {id, σ, σ2, τ, στ, σ2τ},

whereσ(α) = αω, σ(ω) = ω andτ(α) = α, τ(ω) = ω2.
We claim that the subgroup latticeL (G) is,

G

{id, τ}

{id, σ, σ2}

{id, στ} {id, σ2τ}

{id}

Firstly, the subsets given are easily seen to be subgroups, so we just need to check that the picture is
complete. LetH be an arbitrary subgroup ofG and suppose thatH contains the elementσ. Then it
must contain all the powers ofσ, hence must contain the subgroup{id, σ, σ2}. Thus the order ofH is
constrained by3 ≤ |H | ≤ 6, and by Lagrange’s Theorem|H | divides6, so we must have|H | = 3 or 6.
ThusH must equal{id, σ, σ2} or be all ofG. This completely describes all the subgroups that contain
the elementσ. The same argument (and conclusion) applies to the subgroups containingσ2. Thus we
are left to describe the subgroups containing any one of the three “reflections”τ, στ, σ2τ but notσ or σ2.
Let H be a subgroup containingτ . As H contains{id, τ}, and by Lagrange, it has order2, 3 or 6. The
only one of these three possibilities not already in the lattice is the order3 case, so we show that this is
not possible. To have order3, H must also contain one ofστ or σ2τ . If the former, then it also contains
σττ = σ, a contradiction, and similarly for the other case. Thus thelatticeL (G) is as depicted13.

The Galois Correspondence now gives the latticeL (E/F ) of intermediate fields to be,

Q(α, ω)

F1

F2

F3 F4

Q

with F2 the fixed field of the subgroup{id, σ, σ2} and the others the fixed fields (in no particular order)
of the three order two subgroups. By the fourth part of the Galois correspondence, each of the exten-
sionsFi ⊆ Q(α, ω) has degree the order of the appropriate subgroup, so thatQ(α, ω) is a degree three
extension ofF2, and a degree two extension of the other intermediate fields.

Suppose thatF1 is the fixed field of the subgroup{id, τ}. We find an explicit description of its elements.
From the Tower law, a basis forQ(α, ω) overQ is given by

{1, α, α2, ω, αω, α2ω},

13In general such arguments become more complicated as the order of the Galois group increases.
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so that an arbitrary elementx of Q(α, ω) has the form,

x = a0 + a1α + a2α
2 + a3ω + a4αω + a5α

2ω,

with theai ∈ Q. The elementx is in F1 if and only if τ(x) = x where,

τ(x) = a0 + a1α + a2α
2 + a3ω

2 + a4αω2 + a5α
2ω2

= a0 + a1α + a2α
2 + a3(−1 − ω) + a4α(−1 − ω) + a5α

2(−1 − ω)

= (a0 − a3) + (a1 − a4)α + (a2 − a5)α
2 − a3ω − a4αω2 − a5α

2ω.

Because we are using a basis, we can equate coefficients to get,

a0 − a3 = a0, a1 − a4 = a1, a2 − a5 = a2,−a3 = a3,−a4 = a4 and − a5 = a5.

Thus,a3 = a4 = a5 = 0 anda0, a1, a2 are completely arbitrary. Hencex has the formx = a0 + a1α +
a2α

2 so is an element ofQ(α). This gives thatF1 ⊆ Q(α). On the otherhand,τ fixesQ pointwise and
fixesα by definition, hence fixes every element ofQ(α). This gives thatQ(α) ⊆ F1 and soF1 = Q(α).

(14.5) The Galois correspondence allows us to “model” the subgroups of the Galois group by the inter-
mediate fields (and vice-versa). But there are subgroups andthere are subgroups: what about the normal
subgroups? As they are slightly special, they should correspond to slightly special intermediate fields. Is
the Galois correspondence sensitive enough to spot the difference?

Let F ⊆ E be an extension of fields with Galois group Gal(E/F ), and letK be an intermediate field
andσ ∈ Gal(E/F ). The image ofK by the automorphismσ is another intermediate field, and so we get
the picture below left. By the Galois correspondence, thereare subgroups Gal(E/K) and Gal(E/σ(K))
corresponding to the two intermediate fields as shown below right:

E

K σ(K)

F

Gal(E/F )

Gal(E/K) Gal(E/σ(K))

{id}

Galois
Correspondence

The two intermediate fields are then related by,

Proposition 5 The subgroups Gal(E/K) and Gal(E/σ(K)) are conjugate, indeed,

Gal(E/σ(K)) = σ−1Gal(E/K)σ.

(We are reading expressions in a group from left to right).

Proof: If x ∈ σ(K), thenx = σ(y) for somey ∈ K. Thus ifσ ∈ Gal(E/K), thenσ−1σσ (read from
left to right) fixesx, and so is contained in Gal(E/σ(K)). Thusσ−1Gal(E/K)σ ⊆ Gal(E/σ(K)).
The proof of the opposite inclusion is the same. 2

(14.6) Remembering that a subgroupN of G is normal wheng−1Ng = N for all g ∈ G (see§11.). We
haveσ−1Gal(E/K)σ = Gal(E/σ(K)), and this in turn will clearly equal Gal(E/K) whenσ(K) = K
for all σ. So this is the kind of intermediate field that picks out normal subgroups: one that is sent to itself
by any automorphism14.

If every automorphism sendsK to itself then any automorphism ofE restricts to an automorphism of
K as well. This is all summarised in the second part of the Galois correspondence:

The Galois Correspondence (part 2). Under the assumptions of the first part of the Galois correspon-
dence, letK be an intermediate field. Then,σ(K) = K for all σ ∈ Gal(E/F ) if and only if Gal(E/K)
is a normal subgroup of Gal(E/F ), and in this case,

Gal(E/F )/Gal(E/K) ∼= Gal(K/F ).

14Note that this is different from saying that the field is fixed pointwise, which is a far stronger property
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Proof: If σ(K) = K for all σ then by Proposition 5,σ−1Gal(E/K)σ = Gal(E/σ(K)) = Gal(E/K)
for all σ and so Gal(E/K) is normal. On the otherhand, if Gal(E/K) is normal then Proposition 5 gives
that Gal(E/σ(K)) = Gal(E/K) for all σ, whereX 7→ Gal(E/X) is a 1-1 map by the first part of the
Galois correspondence, hence we haveσ(K) = K for all σ.

Now define a map Gal(E/F ) → Gal(K/F ) by taking an automorphismσ of E fixing F pointwise
and restricting it toK ⊆ E. We get an automorphism ofK asσ(K) = K for anyσ. The map is a
homomorphism between these two groups rather trivially, asthe same operation, namely composition of
automorphisms, is being used in both. An elementσ is in the kernel of the homomorphism if and only
if it restricts to the identity map onK (ie: fixesK pointwise when restricted) which happens if and only
if σ is in Gal(E/K). If σ is an automorphism ofK fixing F pointwise then by Theorem??, it can be
extended to an automorphism ofE fixing F pointwise, ie: any element of the Galois group Gal(K/F )
can be obtained by restricting an element of Gal(E/F ). Thus the map is onto and the isomorphism
follows by the first isomorphism theorem. 2

We used Theorem?? in the proof to show that any element of Gal(K/F ) was the restriction of an
element of Gal(E/F ). Moreover, Theorem??says that an element of Gal(K/F ) will be the restriction
of [E : K] elements of Gal(E/F ) and this gels perfectly with the isomorphism given above: the identity
of Gal(K/F ) will be the restriction of[E : K] = |Gal(E/K)| elements of Gal(E/F ), in otherwords,
the kernel of the mapping given in the proof will have|Gal(E/K)| elements.

Exercise 126 A subgroupH of a groupG is said to bemalnormalwheng ∈ G \H gives thatg−1Hg ∩H = {id}. Thus, the
malnormal subgroups are in some sense the antithesis of the normal ones. Show that the malnormal subgroups can be spottedby
the Galois correspondence by describing the intermediate fields they correspond to.

(14.7) Here is a simple application. According to Exercise 110, anysubgroup of index two in a groupG
is a normal subgroup. By the first part of the Galois correspondence, subgroups of index two correspond
to intermediate fieldsF ⊆ K ⊆ E with the degree of the extensionF ⊆ F equal to two. By the second
part of the Galois correspondence, any automorphism ofE fixing F pointwise must send such aK to
itself.

Further Exercises for§14.

Exercise 127 Complete the example above:

G

{id, τ}

{id, σ, σ2}

{id, στ} {id, σ2τ}

{id}

Q(α, ω)

Q(α)

Q(ω)

Q(α + αω) Q(α2 + α2ω)

Q

Exercise 128

1. Letα = 4
√

2 ∈ R andi ∈ C, and consider the fieldQ(α, i) ⊂ C. Suppose thatσ, τ are automorphisms ofQ(α, i) such
that

σ(i) = i, σ(α) = α i, τ(i) = −i, andτ(α) = α.

Show that
G = {1, σ, σ2, σ3, τ, στ, σ2τ, σ3τ},

are thendistinctautomorphisms ofQ(α, i), and thatτσ = σ3τ .

2. Suppose now that theG above is the Galois group ofQ(α, i) overQ, and thatG has the lattice of subgroups as shown on
the left:
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G

{1, σ2, τ, σ2τ} {1, σ, σ2, σ3} H1

H2 {1, τ} {1, σ2} {1, σ3τ} H3

{1}

Q(α, i)

Q(α i) Q(α) F1 Q((1 − i)α) Q((1 + i)α)

F2 Q(i) Q(iα2)

Q
Find the subgroupsH1,H2 andH3 ofG. If the corresponding lattice of subfields is as shown on the right, then express the
fieldsF1 andF2 in the formQ(β1, . . . , βn) for someβ1, . . . , βn ∈ C.

Exercise 129

1. Letω = cos
2π

7
+ i sin

2π

7
. Show thatQ(ω) is the splitting field of the polynomial

1 + x+ x2 + x3 + x4 + x5 + x6.

Deduce that|Gal(Q(ω)/Q)| = 6.

2. Supposeσ ∈ Gal(Q(ω)/Q) is such thatσ(ω) = ω3. Show that,

Gal(Q(ω)/Q) = {1, σ, σ2, σ3, σ4, σ5}.

3. Using the Galois correspondence, show that the lattice ofintermediate fields is:

Q

F2

Q(ω)

F1

whereF1 is a degree 2 extension ofQ andF2 a degree 3 extension. Find complex numbersβ1, . . . , βn such thatF2 =
Q(β1, . . . , βn).

Exercise 130 Letα = 6
√

2 andω =
1

2
+

√
3

2
i and consider the field extensionQ ⊂ Q(α,ω).

1. Show that|Gal(Q(α, ω)/Q)| = 24.

2. Find a basis forQ(α, ω) overQ.

3. Suppose thatσ, τ ∈ Gal(Q(α, ω)/Q) are such thatτ : α 7→ α, ω 7→ ω5 andσ : α 7→ αω, ω 7→ ω. Show that

H = {1, σ, σ2, σ3, σ4, σ5, τ, τσ, τσ2, τσ3, τσ4, τσ5},
are then distinct elements in Gal(Q(α, ω)/Q) too (do this by observing their effect on the basis).

4. Part of the subgroup latticeLG is shown below. Find the corresponding part of the lattice ofintermediate fields.

H

{id, τ, σ3, σ3τ}
{id, σ2, σ4}

{id, τ} {id, σ3}

{id}
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Exercise 131 Letω = cos
2π

5
+ i sin

2π

5
and considerQ(ω).

1. Show thatQ(ω) is the splitting field of the polynomial1 + x+ x2 + x3 + x4.

2. Deduce that|Gal(Q(ω)/Q)| = 4.

3. Supposeσ ∈ Gal(Q(ω)/Q) is such thatσ(ω) = ω2. by combining parts (a) and (b), show that,

Gal(Q(ω)/Q) = {1, σ, σ2, σ3}.

(hence the Galois group is cyclic).

4. Find the subgroup latticeLG for G = Gal(Q(ω)/Q).

5. Using the Galois correspondence, deduce that the latticeof intermediate fields is

Q(ω)

F

Q

Find a complex numberβ such thatF = Q(β).

Exercise 132 Consider the polynomialf(x) = (x2 − 2)(x2 − 5) ∈ Q[x].

1. Show thatQ(
√

2,
√

5) is the splitting field off overQ.

2. Show that the Galois group Gal(Q(
√

2,
√

5)/Q) has order four.

You may assume that ifa, b, c ∈ Q satisfya
√

2 + b
√

5 + c = 0 thena = b = c = 0.

3. Assume thatσ andτ are automorphisms ofQ(
√

2,
√

5) defined by,

√
2

√
5

−
√

2

√
5

7→

7→
σ

√
2

√
5

√
2

−
√

5

7→

7→
τ

List the elements of the Galois group Gal(Q(
√

2,
√

5)/Q), justifying your answer.

4. Complete the subgroup lattice on the left by listing the elements ofH,

Gal(Q(
√

2,
√

5)/Q)

{id, σ} {id, τ} H

{id}

Q(
√

2,
√

5)

Q(
√

2) Q(
√

5) F

Q

and use your answer to write the fieldF in the formQ(θ) for someθ ∈ C.
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§15. Applications of the Galois Correspondence

Constructing polygons

If p is a prime number, then a regularp-gon can be constructedonly if p is a Fermat prime of the form

22t

+ 1.

We proved this back in§10., and all it required was the idea of the degree of an extension. In otherwords,
we really didn’t require any Galois Theory in the proof, if you take Galois Theory to mean the interplay
between fields and their Galois groups.

What about results in the positive direction? Canp-gons with a Fermat prime number of sides be con-
structed? The first few such primes are3, 5 and17, and we saw in§7. that these three were constructible,
albeit if we believe Gauss’s identity forcos(π/17). Thus,explicit constructions of these polygons is a
complicated business. Nevertheless, the full power of Galois Theory proper gives,

Theorem 10 If p is a Fermat prime then a regularp-gon can be constructed.

Proof: By Theorem E we are done if we can find a tower of fields,

Q ⊆ K1 ⊆ · · · ⊆ Kn = Q(ζ),

for ζ = cos(2π/p) + i sin(2π/p) and with[Ki : Ki−1] = 2. As Q(ζ) is the splitting field of thep-th
cyclotomic polynomial

Φp(x) = xp−1 + xp−2 + · · · + x + 1,

we have by Theorem G that the Galois group has order,

|Gal(Q(ζ)/Q)| = [Q(ζ) : Q] = deg Φp = p − 1 = 2n,

(asp, being a Fermat prime is of the formp = 2n + 1). In §12. we showed that Gal(Q(ζ)/Q) was a
cyclic group, and so by Exercise 100, we can find a chain of subgroups15

{id} = H0 ⊆ H1 ⊆ · · · ⊆ Hn = Gal(Q(ζ)/Q),

whereHi has order2i. Making it explicit, if Gal(Q(ζ)/Q) = {id, σ, σ2, . . . , σ2n−1} then the subgroups
are,

{id} ⊆ {id, σ2n−1} ⊆ {id, σ2n−2

, σ2.2n−2

, σ3.2n−2} ⊆ · · ·
· · · ⊆ {id, σ2n−i

, σ2.2n−i

, σ3.2n−i

, . . .} ⊆ · · · ⊆ {id, σ2, σ4, . . .}.
The Galois correspondence thus gives a chain of fields,

Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn = Q(ζ),

whereKn−i is the fixed fieldEHi of the subgroupHi. Letting j = n − i, we have the extension
Kj ⊆ Q(ζ) of degree the order2i of Hi. In particular, by the tower law,

[Q(ζ) : Kj−1] = [Q(ζ) : Kj][Kj : Kj−1],

wherej − 1 = n − (i + 1), so that[Q(ζ) : Kj−1] = 2i+1. Thus2i+1 = 2i[Kj : Kj−1], so that
[Kj : Kj−1] = 2 as required. 2

Corollary. If n = 2kp1p2 . . . pm with thepi Fermat primes, then a regularn-gon can be constructed.

Proof: Certainly2k-gons can be constructed just by repeatedly bisecting angles. Thus, ann-gon can be
constructed, wheren has the form given, by Exercise??. 2

Remarkably, with a little more Galois Theory, the converse to this statement can also be proved, thus
completeley determiningthosen-gons that can be constructed.

15Alternatively, these subgroups can be found using Sylow’s Theorem from§11..
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(15.1) The angleπ/n can be constructed precisely when the angle2π/n can be constructed which in
turns happens precisely when the regularn-gon can be constructed. Thus, the list of submultiples ofπ
that are constructable runs as,

π

2
,
π

3
,
π

4
,
π

5
,
π

6
,
π

8
,

π

10
,

π

12
,

π

15
, . . .

Exercise 133 Give direct proofs of the non-constructability of the angles,

π

7
,
π

9
,
π

11
and

π

13
.

The Fundamental Theorem of Algebra

The so-called fundamental theorem of algebra can be proved from the Galois correspondence, and we
have already observed how curious it is that a theorem fundamental to all of algebra can be deduced from
a theorem fundamental to just part of it.

The proof requires two straight-forward observations. First, there are no extensions of the reals of odd
degree> 1. This is because any polynomial inR[x] has roots that are either real or occur in complex
conjugate pairs, hence in particular, a real polynomial with odd degree> 1 has a real root and so is
reducible overR. Thus, the minimum polynomial overR of anyα 6∈ R must have even degree. IfR ⊆ L
is an extension, then choosingα ∈ L \ R, we have

[L : R] = [L : R(α)][R(α) : R],

with the last term even by the comments above, hence[L : R] even.
The other observation is that the complexes have no extensions of degree two. IfC ⊆ L with [L :

C] = 2 then chooseα ∈ L \ C so that we have the intermediateC ⊆ C(α) ⊆ L. We must certainly have
[C(α) : C] = 1 or 2, and if the degree was1 then we would haveα ∈ C, so [C(α) : C] = 2, and thus
L = C(α). If f is the minimum polynomial ofα overC thenf = x2 + bx + c for someb, c ∈ R andα
will be one of the two roots

−b ±
√

b2 − 4c

2
,

which are inC, contradicting the choice ofα.

Fundamental Theorem of Algebra. Any non-constantf ∈ C[x] has a root inC.

Proof: The proof toggles back and forth between intermediate fieldsand subgroups of Galois groups
using the Galois correspondence. If the polynomialf is reducible overR, with f = pq, then replacef
by p and continue. Thus we may assume thatf is irreducible overR and letE be the splitting field over
R not off , but of(x2 + 1)f . Thus in particular we have thatR and±i are inE, henceC is too, and thus
R ⊆ C ⊆ E.

The conditions of the first part of the Galois correspondencehold for E, so we may apply this to the
Galois groupG = Gal(E/R). SinceG is a finite group, we may factor from its order all the powers of
2, writing |G| = 2km, wherem ≥ 1 is odd. In particular, Sylow’s Theorem gives us a subgroupH of G
of order2k, and so by the Galois correspondence we have the picture:

G

H

{id}
2k

E

F = EH

R

2k

Galois
Correspondence

with the intermediate fieldF corresponding toH giving an extensionF ⊆ E of degree2k. As [E : R] =
[E : F ][F : R] with [E : R] = |G| = 2km, we must have thatF is a degreem extension ofR. As m is
odd and no such extensions exist ifm > 1, we must havem = 1 and so|G| = 2k.
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We now use the Galois correspondence in the reverse direction:

E

C

R

G

Gal(E/C)

{id}

Galois
Correspondence

As G has order2k, the subgroup Gal(E/C) has order dividing this, hence order2s. If s ≥ 1 then Sylow’s
Theorem again gives us a subgroupH of Gal(E/C) of order2s−1, and we have the picture:

G

Gal(E/C)

H

{id}
2s−1

E

C

EH

R

2s−1

Galois
Correspondence

with 2s−1[EH : C] = [E : C] = |Gal(E/C)| = 2s, henceEH is a degree2 extension ofC. We
commented above that there are no such extensions, thus we must haves = 0, and so|Gal(E/C)| = 0,
giving that Gal(E/C) is the trivial group. We have then two fields, namelyE andC, that map via the
1-1 mapX 7→ Gal(E/X) to the trivial group, soE = C. As E was the splitting field of the polynomial
(x2 + 1)f , we get thatf has a root, indeedall its roots inC. 2
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§16. (Not) Solving Equations

At the beginning of these notes we said that Galois Theory wasinitially motivated by the desire to un-
derstand better the roots of polynomial equations. In particular, to provide a context for the growing
conviction in Galois’ time that there is no formula for the roots of an arbitrary polynomial equation, and
that the classical formulae that exist for quadratics, cubics and quartics are some kind of “low degree
fluke”.

(16.1) The formulae for the roots of quadratics, cubics and quartics express the roots in terms of the
coefficients, the four field equations+,−,×,÷ and√, 3

√
, 4
√. When we say we want a formula for the

roots of polynomials inQ[x] then, it seems reasonable that it should express the roots interms of rational
numbers,+,−,×,÷ and m

√ for somem. In particular the roots of the polynomial will be containedin
an extension ofQ obtained by adjoining certainm-th roots.

With this in mind, an extensionQ ⊆ E is calledradical if and only if there is a sequence of simple
extensions,

Q ⊆ Q(α1) ⊆ Q(α1, α2) ⊆ · · · ⊆ Q(α1, α2, . . . , αk) = E,

such thatαmi

i ∈ Q(α1, α2, . . . , αi−1) for everyi. Thus, each extension in the sequence is obtained by
adjoining to the previous one anmi-th root of an element.

(16.2) A simple example of a radical extension is,

Q ⊆ Q(
√

2) ⊆ Q(
√

2,
3
√

5) ⊆ Q

(√
2,

3
√

5,

√√
2 − 7

3
√

5

)
.

By repeatedly applying Theorem D, we see that the elements ofa radical extension have expressions in
terms of rational numbers,+,−,×,÷ and mi

√.

(16.3) If we are looking to find a formula for the roots of a polynomial, then these roots will have precisely
these kind of expressions. Thus we say that a polynomialf ∈ Q[x] is solvable by radicalsif and only if
its splitting field overQ is contained in some radical extension.

Notice that we are dealing with a fixed specific polynomial, and not an arbitrary one. The radical
extension containing the splitting field will depend on the polynomial.

(16.4) Any quadratic polynomialax2 + bx + c is solvable by radicals, with its splitting field contained
in the radical extension

Q ⊆ Q(
√

b2 − 4ac).

Similarly, the formulae for the roots of cubics and quarticsgive for any specific such polynomial, radical
extensions containing their splitting fields.

(16.5) Now we have a precise idea of what we mean by “finding a formula for the roots of a polynomial”,
we are ready to wheel in the Galois theory. In§11.we called a groupG solubleif and only if there is a
sequence,

{1} = H0 � H1 � · · · � Hn−1 � Hn = G,

such that the successive quotientsH1/H0, H2/H1, . . . , Hn/Hn−1 are allAbelian groups.

Theorem H (Galois). A polynomialf ∈ Q[x] is solvable by radicals if and only if its Galois group
Gal(f) is soluble.

The proof, which we omit, uses the full power of the Galois correspondence, with the sequence of
extensions in a radical extension corresponding to the sequence of subgroups in a soluble group.
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(16.6) Somewhat out of chronological order, we have,

Theorem 11 (Abels-Fubini) The polynomialx5 − 4x + 2 is not solvable by radicals.

Proof: We need to show that the Galois group Gal(f) is insoluble. Indeed, we show that it is the
symmetric groupS5, which contains the non-Abelian, finite simple groupA5. ThusS5 contains an
insoluble subgroup, hence must be insoluble as well, as any subgroup of a soluble group is soluble by
Exercises 102 and 103. IfE is the splitting field overQ of f , then

E = Q(α1, α2, α3, α4, α5),

where theαi are the roots off and the Galois group of the polynomial is Gal(E/Q). The elements of
this groups are, as usual, completely determined by where they send theαi, and by one of the Corollaries
to the Extension Theorem, they must be sent to roots off . The conclusion is that the elements of the
Galois group of the polynomial must permute the roots amongst themselves, so that Gal(f) is a subgroup
of the symmetric groupS5.

-infinity

infinity

-infinity infinity

x

∞

−∞

−∞ ∞

As α1 has minimum polynomialf overQ, the extensionQ ⊆ Q(α1)
has degree five, and then the tower law gives that

[E : Q] = [E : Q(α1)][Q(α1) : Q].

Thus, the degree of the extensionQ ⊆ E is divisible by the degree of the
extensionQ ⊆ Q(α1), ie: divisible by five. Moreover, by Theorem G,
the group Gal(E/Q) has order the degree[E : Q], thus the group has
order divisible by five. By Sylow’s Theorem, this means that the Galois

group contains a subgroup of order five. The only groups of order five are the cyclic ones, and as every
element of the Galois group is already a permutation of the five roots, this subgroup must have the form,

{id, σ, σ2, σ3, σ4},

for a permutationσ that is a5-cycleσ = (αi1 , αi2 , αi3 , αi4 , αi5). By drawing the graph off as shown,
we see that three of theαi are real, and so the other two must be complex conjugates. We saw in §12.
complex conjugation is an automorphism ofE, and this must fix the three real roots, and interchange the
two complex ones. This gives us another automorphismτ of E that as a permutation has the form,

τ = (αi, αj),

whereαi, αj are the two complex roots. 2

It is worth meditating briefly on the philosophical implications of this result, which are profound. The
Theorem says that there is no possible expression for the roots of the polynomial in terms of rational
numbers, the four field operations+,−×,÷ and roots m

√ for anym. At first this may seem no great
problem; we know plenty of real numbers with this property, eg: π. But the roots of the polynomial
arealgebraicnumbers, so there is something more, something very subtle,to the notion of an algebraic
number than it just being expressible in “algebraic terms”.

(16.7) It is sometimes possible to establish the existence of numbers with special properties by counting.
For example, to explicitly show that a given real number is transcendental is complicated. If we count the
non-transcendental (ie: the algebraic) numbers we see though that they arecountable: they can be put in
1-1 correspondence with the integersZ, whereas the real numbers are not. Thus, there are many more
real numbers than algebraic ones, so transcendentals must exist, indeed greatly outnumber the algebraics.

Such a naive approach will not work to establish the existence of the roots of equations not solvable by
radicals, as all the sets involved now are countable.

91



(16.8) So how bad is it then? We have one polynomial,x5 − 4x + 2 for which no algebraic expression
exists for its roots, but is this an isolated incident, or at least one that is rare? In fact, polynomials not
solvable by radicals aregeneric, in the sense that polynomials thatare solvable by radicals are the ones
that are relatively rare.

We can illustrate this phenomenon at least with some examples. Consider the quintic polynomials

x5 + ax + b,

for a, b ∈ Z and in the range−40 ≤ a, b ≤ 40.

S5

A5

D5

F20

factors





insoluble





soluble

0

−40

40

0−40 40

The picture16 illustrates the(a, b) plane for this range ofa andb. The vertical line through(0, 0) corre-
sponds tof with Gal(f) the soluble dihedral groupD10 of order10. The horizontal line through(0, 0)
and the two sets of crossing diagonal lines correspond to reduciblef , as do a few other isolated points.
The (insoluble) alternating groupA5 arises in a few sporadic places, as does another subgroup ofS5.
However, the vast majority off , forming the light background, have Galois group the symmetric group
S5, and so have roots that arealgebraic, but cannot be expressedalgebraically.

16which is based on an image from the Mathematica poster, “Solving the Quintic”.
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§17. Selected Solutions
(4) If u = ω + ω−1 = ω + ω4 thenu2 = ω2 + ω3 + 2 so the quadratic we want isu2 + u− 1 = 0. This has roots

−1 ±
√

5

2
.

We getω2 − uω + 1 = 0 by multiplying through byω−1, hence

ω =
u±

√
u2 − 4

2
.

and substituteu into this to get,

ω =

−1±
√

5

2
+

q
(−1±

√
5

2
)2 − 4

2
,

−1±
√

5

2
−

q
(−1±

√
5

2
)2 − 4

2
.

(I don’t expect you to actually do this!)

(6) Note thatω is a sixth root of1 (in fact it has argument2π/6 and modulus1) so satifiesω6 = 1 (but ωk 6= 1 for any k
between1 and5). Clearlyαω2 andω5 are∈ Q(α, ω), so thatQ(αω2, ω5) ⊆ Q(α, ω). Conversly,αω2, ω5 ∈ Q(αω2, ω5) ⇒
αω2ω5ω5 ∈ Q(αω2, ω5), butαω2ω5ω5 = αω12 = α sinceω6 = 1. Thusα ∈ Q(αω2, ω5) and henceα−1αω2 = ω2 is too,
and so finallyω2ω5 = ω7 = w (sinceω6 = 1). ThusQ(α, ω) ⊆ Q(αω2, ω5).

To show thatQ(α, ω) = Q(αω4, ω5) is entirely similar.

(7) Consider the extension fieldQ(α, ω) of Q. Note first that the solutions tox5 − 2 all lie in this field, as it containsα, ω and is
closed under multiplication.

The following paragraph is optional:Q(α,ω) is in fact the smallest field that contains the solutions. For, suppose thatF is some
field containingα, αω, . . . , αω4. Since we are in the complex numbers,

1 + 1 + · · · + 1| {z }
n times

6= 0,

for anyn. Thus,F contains the rationalsQ. Also,α, αω ∈ F gives thatα andα−1αω = ω ∈ F too, ie:F containsQ, α andω.
But it must then contain the smallest field that does these things, ie:Q(α, ω) ⊂ F , and soQ(α, ω) really is the smallest.

So, symmetries of the soltions tox5 − 2 are the rearrangements referred to in the first lecture, but of this new fieldQ(α, ω).
Looking at the picture of the pentagon, the symmetry needs tosendα to itself andαω to αω3. This last one suggests that it

must sendω toω3 (if the symmetry is not to disturb the+ and× of the field).
To see if such a symmetry exists, we need to show that the fieldsQ(α, ω) andQ(α, ω3) are the same. Certianly,α, ω3 ∈

Q(α, ω), so thatQ(α, ω3) ⊂ Q(α, ω). Conversly,ω3 ∈ Q(α, ω3) givesω3ω3 = ω6 = ω ∈ Q(α, ω3). We already have thatα
is there too, soQ(α, ω) ⊂ Q(α, ω3).

Finally, we need to check that the symmetryα 7→ α andω 7→ ω3, does the right thing to the vertices of the pentagon. Well,
let’s tryαω3 7→ α(ω3)3 = αω27 = αω2. The others are entirely analogous.

(19)

1. For multiplication, letn 6= 0 be in Fp. Then thegcd of n andp must be1, so that for some integersa, b we have
1 = an+ bp. But thenan = (−b)p + 1 = 1 modp. Thus, ifa = k modp then the inverse ofn is k.

2. Letab = 0 for a, b ∈ F . Then eithera = 0, or if a 6= 0 thena−1ab = a−10 ⇒ b = 0. Thus, at least one ofa or b must
be zero. ThusF is an integral domain.

Let n = rs with 1 < r, s < n integers, and considerZn, the ring of integers with addition and mutliplication modulo n.
Thenr, s 6= 0 in Zn, butrs = n = 0 modn. ThusZn is not an integral domain.

(22)

1. Usez1z2 = z1 z2 andz1 + z2 = z1 + z2 (you can easily convince yourself of these by drawing vectors in the plane).

First note thatf(z) = f(z): use the two rules above withanxn + · · · a0, remembering that theai ∈ R meansai = ai.

Thus,z is a root off ⇔ f(z) = 0 ⇔ f(z) = 0 = 0 ⇔ f(z) = 0.

2. There are many examples. The simplest is probablyx2 − i, since the square roots ofi, by De Moivre’s theorem, lie on the
circle |z| = 1; one has argumentπ/4, the other5π/4.

(23)

1. We have1 = am+ bn for some integersa andb, hencek = amk+ bnk. If m dividesnk then, as it already dividesamk,
it must also dividek as required.
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2. If m/n is such a root, then
a0 + a1(m/n) + a2(m/n)2 + · · · + ar(m/n)r = 0 .

Clearing denominators gives

a0n
r + a1n

r−1m + a2n
r−2m2 + · · · + ar−1nm

r−1 + arm
r = 0 .

Considern. The numbern divides 0 and clearly divides every term on the left, with thepossible exception ofarmr . But
since it divides everything else in sight,n must also dividearmr . Our assumption thatm andn be coprime implies thatn
does not dividemr , and hence we conclude thatn|ar. Similarly,m|a0. Finally, if ar = 1, then we must haven ∈ {±1},
so thatm/n is indeed an integer.

(26)

1. 1 + x8 has no real roots as1 + x8 > 1 6= 0. But, inC we get

1 + x8 = (x− ζ1)(x− ζ1) · · · (x− ζ4)(x − ζ4),

by the fundamental theorem of algebra. Thus,

1 + x8 = (x2 + (ζ1 + ζ1)x+ ζ1ζ1) · · · (x2 + (ζ4 + ζ4)x+ ζ4ζ4),

and these are real polynomials since the sum and product of a complex number with its conjugate is real. Thus1 + x8 is
reducible as a product of four quadratics.

2. Following the hint,1 is clearly a root ofyn − 1, and we get

yn − 1 = (y − 1)(1 + y + y2 + · · · + yn−1),

so lettingy = x2 andn = 6 gives

(1 + x2 + x4 + x6 + x8 + x10)(x2 − 1) = x12 − 1.

Thus the roots of the right hand side are the12th roots of 1. Hence the roots of the left hand side are also the12th roots of1.
Now±1 are certainly the roots ofx2 −1, and these are two of the12th roots, so the other ten are the roots of the polynomial
that we are interested in. Notice that they are all∈ C, but two of them are±i, hence

(x− i)(x+ i),

are factors of1 + x2 + x4 + x6 + x8 + x10, ie: x2 + 1 is a factor of1 + x2 + x4 + x6 + x8 + x10 (notice that this
argument, while more complicated than others maybe, works for 1 + x2 + · · · + x2n). Having got that far, its then pretty
easy to spot that

1 + x2 + x4 + x6 + x8 + x10 = (x2 + 1)(1 + x4 + x8),

so that the poynomial is reducible overQ. Can you generalise the argument to handle1 + x2 + · · · + x2n?

3. The polynomial has value7 whenx = 0 and value−7 whenx = −1, hence by the intermediate value theorem, there must
be a real root somewhere between−1 and1 (polynomials are continuous, so the graph must cross thex-axis!) Hence we
have a linear factor and thus the polynomial is reducible.

4. The polynomial has integer coefficients, 2 divides all of them except that of the leading term and22 = 4 does not divide the
constant term. Thus, by Eisenstein, the polynomial is irreducible overQ.

5. We are dealing with a quadratic, so irreducibility becomes a matter of merely checking for roots. InZ7, no element squared
plus one is equal to zero, so the polynomial is irreducible.

6. It looks complicated, but we have a cubic, and that means again that all we need do is check for roots, this time in the field
F of order eight of§4.. In fact, we’ve gone to all the trouble of writing the+ and× tables out, so we may as well use them!

Somewhat dissapointingly, 1 turns out to be a root, so the polynomial is reducible straight away. We can say a little more
(although this is not necessary) since no other element ofF is a root, and therefore the cubic must factorise into a product of
a linear and a quadratic factor. If you were sufficiently interested, you could find the irreducible quadratic by long division
(which works in exactly the same way as long division in the reals, since we are still in a field!)

(27) We have that „
p
i

«
=

p!

i!(p − i)!
= m,

for m an integer, as there are clearly an integral number of ways ofchoosingi objects fromp. Thus,

p! = mi!(p− i)!,

so that asp divides the left hand side, it also dividesmi!(p − i)!. As i < p, we can’t havep dividing i or any integer less than it,
hence not dividingi!. Similarly p doesn’t divide(p − i)!, and so it must dividem (all of which uses the fact thatp is prime).

(29)

1. Clearlyω is a root ofxn − 1 and

xn − 1 = (x− 1)(xn−1 + xn−2 + · · · + x+ 1),

andω is not a root ofx− 1 (sinceω being primitive, is not1), so must be of the desired polynomial.
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2. If n even then−1 is a root ofxn − 1 and thus ofxn−1 + xn−2 + · · ·+ x+ 1 too. Thusxn−1 + xn−2 + · · ·+ x+ 1 is
irreducible only ifn is odd.

3. If f(x) = g(x)h(x), then obvioulsyf(x + 1) = g(x + 1)h(x + 1), contradicting the irreducibility off(x + 1). Thus
f(x) is irreducible too.

4. We know that „
p
i

«
=

p!

i!(p− i)!
,

is an integerm, sop(p−1)! = mi!(p−i)!, hencep divides one ofm, i! or (p−i)! If p|i! then it divides aj with 1 < j < p
which cannot be. Similarly,p cannot divide(p − i)!, and thusp dividesm.

5. By the above,

xp − 1 = (x− 1)Φp(x) ⇒ Φp(x) =
xp − 1

x− 1
⇒ Φp(x+ 1) =

(x+ 1)p − 1

x
,

and using the binomial theorem and cancelling we get

Φp(x+ 1) = xp−1 + pxp−2 + · · · +
„

p
i

«
xp−i−1 + · · · + p.

Using Eisenstein, withp as the prime, givesΦp(x+ 1) irreducible by part (d), and henceΦp(x) too by part (c).

(40)

1. (1 + x + x2) + (1 + x) = x2 (since1 + 1 = 0 = x + x in Z2 arithmetic). Similarly,(1 + x + x2)(1 + x) =
1 + x+ x2 + x+ x2 + x3 = 1 + x3 = 1 + 1 + x = x (using the rulex3 = x+ 1).

2. F = {0, 1, x, x+ 1, x2, x2 + 1, x2 + x, x2 + x+ 1}, soF has eight elements.

3. The tables are (somewhat tediously!)

+ 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
1 1 0 x+ 1 x x2 + 1 x2 x2 + x+ 1 x2 + x
x x x+ 1 0 1 x+x x2 + x+ 1 x2 x2 + 1

x+ 1 x+ 1 x 1 0 x2 + x+ 1 x2 + x x2 + 1 x”

x2 x2 x2 + 1 x2 + x x2 + x+ 1 0 1 x x+ 1
x2 + 1 x2 + 1 x2 x2 + x+ 1 x2 + x 1 0 x+ 1 x
x2 + x x2 + x x2 + x+ 1 x2 x2 + 1 x x+ 1 0 1

x2 + x+ 1 x2 + x+ 1 x2 + x x2 + 1 x2 x+ 1 x 1 0

Now, (F,+) is an Abelian group for the following reasons: the table closes up (we don’t get anything new and unexpected),
so the field is closed under+; the first row is identical to the indexing along the top, so0 is the identity under+; each row
contains0 somewhere in it, so inverses exist for all elements. Unfortunately, associativity isn’t quite so easily established!

Similarly,

× 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
0 0 0 0 0 0 0 0 0
1 0 1 x x+ 1 x2 x2 + 1 x2 + x x2 + x+ 1
x 0 x x2 x2 + x x+ 1 1 x2 + x+ 1 x2 + 1

x+ 1 0 x+ 1 x2 + x x2 + 1 x2 + x+ 1 x2 1 x
x2 0 x2 x+ 1 x2 + x+ 1 x2 + x x x2 + 1 1

x2 + 1 0 x2 + 1 1 x2 x x2 + x+ 1 x+ 1 x2 + x
x2 + x 0 x2 + x x2 + x+ 1 1 x2 + 1 x+ 1 x x2

x2 + x+ 1 0 x2 + x+ 1 x2 + 1 x 1 x2 + x x2 x+ 1

shows that(F \ {0},×) is an Abelian group. The distributive law is also a bit tedious!

Finally,
1

1 + x
= x2 + x and

1

1 + x+ x2
= x2 in F,

from the tables.

(47)

1. We certainly have that〈0〉 is an ideal. Suppose that〈λ〉 is another one withλ 6= 0. For anyµ ∈ F we have thatµ = µλ−1λ
(the inverse ofλ existing asF is a field) so thatµ is a multiple ofλ and hence in the ideal〈λ〉. Thus〈λ〉 = F . The conclusion
is thatF contains only the two ideals〈0〉 andF .

2. We need only show that every non-zero element ofR has an inverse under multiplication. Letr 6= 0 be such an element and
consider the ideal〈r〉. By the restriction on the possible ideals we have either〈r〉 = 〈0〉 = {0} or 〈r〉 = R. As r ∈ 〈r〉
the first one cannot happen so that it is〈r〉 = R that we have. In particular1 ∈ 〈r〉, ie: there is ans ∈ R such thatsr = 1
and by commutativity we also have thatrs = 1. Thuss is the inverse ofr as required.
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(61)

1. The polynomial has no roots inF3, so is irreducible as it is a cubic. The quotient ring given isthen a field.

2. We use the division algorithm:

g(x) + 〈1 − x+ x3〉 = (q(x)(1 − x+ x3) + (a + bx+ cx2)) + 〈1 − x+ x3〉 = (a+ bx+ cx2) + 〈1 − x+ x3〉,
for any cosetg(x) + 〈1 − x + x3〉. The uniqueness follows from the fact that the quotient and remainder are uniquely
determined by the division algorithm (See the first handout on rings).

3. There are three choices for each ofa, b andc in (a + bx+ cx2) + 〈1 − x+ x3〉, so that the field has atmost27 elements.
On the other hand, suppose

(a1 + b1x+ c1x
2) + 〈1 − x+ x3〉 = (a2 + b2x+ c2x

2) + 〈1 − x+ x3〉,
for someai, bi, ci with i = 1, 2. Then, using some of the basic properties of cosets described in the lectures, we get that,

((a1−a2)+(b1−b2)x+(c1−c2)x2)+〈1−x+x3〉 = 〈1−x+x3〉 ⇒ (a1−a2)+(b1−b2)x+(c1−c2)x2 ∈ 〈1−x+x3〉 ⇒ .

(the last since two cosets the same means the difference of the representative polynomials is a multiple off(x)). But the
degree of(a1 − a2) + (b1 − b2)x+ (c1 − c2)x2 is two, while every muliple of1 − x+ x3 has degree 3 or more, except
for one: the zero polynomial. Thus(a1 − a2) + (b1 − b2)x + (c1 − c2)x2 must be the zero polynomial, iea1 = a2,
b1 = b2 andc1 = c2. Thus all the 27 cosets listed are different (there really are27 of them!)

(69) Notice that one of the 5-th roots of1 found in the first question is (after a little massaging) equal to

ω =

√
5 − 1

4
+

√
2

p
5 +

√
5

4
i.

In fact, this is the first vertex anticlockwise around the circle from1. Now, this number is constructible precisely when its real and
imaginary parts, √

5 − 1

4
,

√
2

p
5 +

√
5

4
,

are constructible. But these last two numbers can be obtained from integers using the four field operations and by taking√’s, all of
which we can do with ruler and compass. Thusω is constructible, hence so is the desired pentagon, just by stepping off the length
of the line segment joining1 to ω using your compass.

(70) If the length of the line segment isx, then the task is to constructx
3

and 2x
3

. We can certainly construct1
3

and 2

3
using our

ruler and compass, and we can multiply lengths using these two tools as well. So, multiply the two fractions by the line segment,
and we’re done (notice that we can use this argument ton-sect a line for anyn, ie: divide it inton equal parts).

(72) The best way to do this part is to use a picture proof that can berun in both directions. Alternatively, one can write out a
solution in terms of words, and since this easier to LATEX, I’ll do it that way.

If θ is constructible, then assuming without loss of generalitythat one side of the angle is thex-axis, the intersection of the
other side with the unit circle is the point(cos θ, sin θ). Dropping a vertical line to thex-axis gives uscos θ. Conversly, ifcos θ is
constructible, then so is

√
1 − cos2 θ, as the field of (complex) constructible numbers is closed under taking of square roots. Hence

sin θ can be constructed up they-axis, and horizontal and vertical lines determine(cos θ, sin θ), and a line through this point and
the origin constructs the angleθ.

(76) We begin by computing(1 + a)−1 . According to the lemma on the structure of simple algebraicextensions, this element
must have the formba2 + ca+ d for some uniquely definedb, c, andd in Q. So we simply need to solve the equation

(a + 1)(ba2 + ca+ d) = 1

for these rational coefficients. Expanding, we find that

ba3 + (b+ c)a2 + (c+ d)a + d = 1 ,

so that we have three equations forb, c, andd, namely:

b+ c = 0
c+ d = 0

2b+ d = 1

(where in the last equation we’ve used the fact thata3 = 2).
Now, the first two equations imply thatb = −c = d, and hence from the third equation we see that3b = 1. Hence,b = 1/3,

c = −1/3, andd = 1/3, so that the required inverse for(a+ 1) is

(a + 1)−1 =
1

3
(a2 − a+ 1) .

(If you like, you can check your answer by multiplying by(a + 1).)
In a similar manner, we can compute that

(a2 + 1)−1 =
1

5
(−a2 + 2a+ 1) ,

so that, sincea4 + 1 = 2a + 1, we have that

(a4 + 1)(a2 + 1)−1 = (2a + 1) 1

5
(−a2 + 2a + 1)

= · · · = 1

5

`
3a2 + 4a − 3

´
.
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(77) The minimum polynomial forα = 3
√

5 overQ isx3 −5, so every element ofQ(α) has the forma+ bα+ cα2 for a unique
choice ofa, b andc in Q. In each case we explicitly use the fact thatα3 = 5.

1.

2. This is really easy:α5 − α6 = 5α2 − 25.

3. Setα/(α2 + 1) = a+ bα+ cα2, and solve fora, b andc in Q. We multiply through by(α2 + 1) and see that

α = (α2 + 1)(a + bα+ cα2) = (a + 5b) + (b + 5c)α+ (a + c)α2 ,

so that equating coefficients reveals the equations

a+ 5b = 0 b+ 5c = 1 a+ c = 0 .

The last equation forcesa = −c, and substituting in, we’re left with the two equationsa + 5b = 0 andb − 5a = 1. So
a = −5b andc = 5b and the middle equation becomes26b = 1. Hence

α/(α2 + 1) = (−5/26) + (1/26)α + (5/26)α2 .

(78)

Letα =
√

2 +
√
−2 =

√
2 + i

√
2. Thenα2 = 4i, so thatα4 = −16. Consider the polynomialf(x) = x4 + 16. This is

monic and hasα as a root. Moreover, we claim that this is irreducible and hence is the correct minimum polynomial. First
note thatf(x) has no roots inQ, becausef(a) ≥ 16 for all a in Q. We still need to show thatf(x) does not factor as a
product of quadratics, and this is best done by drawing the roots in the complex plane, being

± 2√
2
± 2√

2
i

Any factorisation into quadratics of this polynomial wouldcome from multiplying two terms of the form,

(x− ζ1)(x− ζ2),

but these never give polynomials with rational coefficients. For the rest, we use the fact thatα4 = −16. Note that it’s not
at all obvious that the first three numbers actually lie inQ(α).For the first part, we begin by showing that

√
2 ∈ Q(α). [We

could just solve as we did in part (c) of problem 3, but hopefully the method we’re using will produce the answer almost
immediately.] We compute that, in addition to the above information,

α3 = (
√

2 + i
√

2)(4i)

= −4
√

2 + 4i
√

2 .

Hence it’s easy to see that
√

2 = (1/8)(4α − α3). For exactly the same reason,
√
−2 = i

√
2 = (1/8)(4α + α3). This is

the easiest of the lot:i = (1/4)α2 . Sinceα4 = −16, we have

α5 + 4α + 3 = −16α + 4α+ 3 = 3 − 12α .

We need to find a polynomialg(α) in α which satisfiesαg(α) = 1. Sinceα4 = −16, we have(−1/16)α4 = 1, which
means that1/α = (−1/16)α3 . This last is the most complicated. We set(2α+3)/(α2 +2α+2) = a+bα+cα2 +dα3 ,
and solve fora, b andc in Q. We multiply through by(α2 + 2α+ 2) and see that

2α+ 3 = (α2 + 2α+ 2)(a + bα+ cα2 + dα3)
= (2a − 16c− 32d) + (2a + 2b− 16d)α + (a+ 2b+ 2c)α2 + (b+ 2c+ 2d)α3 .

so that equating coefficients reveals the equations

2a− 16c− 32d = 3
2a + 2b− 16d = 2
a+ 2b+ 2c = 0
b+ 2c+ 2d = 0

Hence we have 4 equations in 4 unknowns and can solve to finda = −1/2, b = 1/6, c = 1/12 andd = −1/6, and so

(2α + 3)/(α2 + 2α+ 2) = −1/2 + 1/6α + 1/12α2 − 1/6α3 .

1.2.3.4.5.6. (79)

1. Letα = 1 + i. Thenα2 = 2i, so thatα2 − 2α = −2. In particular,α is a root of the polynomialf(x) = x2 − 2x+ 2
overQ. This is also monic, so we just need to decide whether or notf(x) is irreducible overQ. However, the only way that
f(x) could be reducible is if it factored asf(x) = (x − a)(x − b) with botha andb in Q. But we Fnow that one of these
roots would necessarily beα, sof(x) is indeed irreducible. Hencef(x) is the required minimum polynomial.

2. The obvious polynomial to try this time isg(x) = x3 − 7, since it’s monic and clearly has3
√

7 as a root. Moreover,
Eisenstein’s criterion immediately applies withq = 7 and we see thatg(x) is irreducible overQ. Henceg(x) is the required
minimum polynomial.

3. Just as in the previous part, the minimum polynomial for4
√

5 overQ is x4 − 5.
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4. This time there’s really no obvious choice, so we need to consider relations between powers ofα =
√

2 + i:

α =
√

2 + i

α2 = 1 + 2i
√

2

α3 =
√

2 + i+ 4i− 2
√

2

= −
√

2 + 5i

α4 = (1 + 2i
√

2)2 = 1 − 8 + 4i
√

2

= −7 + 4i
√

2

So we notice without too much trouble thatα4−2α2 = −9, so thatα is a root of the monic polynomialh(x) = x4−2x2+9.
We need to check irreducibility ofh(x) overQ. Equivalently, we can work overZ, and begin by checking for linear factors.
For any roota of h(x) in Z, we must havea|9. It’s easy to see that none of±1,±3,±9 is a root. Soh(x) has no linear
factors. If we try to factoriseh(x) as

x4 − 2x+ 9 = (x2 + ax+ b)(x2 + cx+ d)
= x4 + (a+ c)x3 + (ac + b+ d)x2 + (ad + bc)x+ bd .

Equating coefficients, we conclude thata = −c, and hence that0 = ad + bc = a(d − b). So eithera = 0 or d = b.
First assume thata = 0, and hencec = 0. The remaining equations then imply thatbd = 9 andb + d = −2, and these
equations have no solution inZ.
So we must therefore havea 6= 0, and henced = b. In that case the constant coefficient isb2 = 9. This forcesb to be3 or
−3. Consider now the remaining equation, which can be written as b + d = a2 − 2, or 2b = a2 − 2. Hence this implies
thata2 = 2b+ 2. But with our choices forb, we then havea2 = 8 or a2 = −2, neither of which has a solution inZ.
Therefore,h(x) is irreducible overQ and hence is the required minimum polynomial.

5. One way to do this part is to argue exactly as we did in part (d). We setα =
√

2 + 3
√

3 and compute powers ofα, looking
for a relationship. If we try this, we compute powers up toα6 and compare coefficients of1, α, . . . ,α6 to get 6 equations in
7 unknowns,

1 = 1

α =
√

2 +
3
√

3

α2 = 2 + 2
√

2
3
√

3 + (
3
√

3)2

α3 = 3 + 2
√

2 + 6
3
√

3 + 3
√

2(
3
√

3)2

α4 = 4 + 12
√

2 + 3
3
√

3 + 8
√

2
3
√

3 + 12(
3
√

3)2

α5 = 60 + 4
√

2 + 20
3
√

3 + 15
√

2
3
√

3 + 3(
3
√

3)2 + 20
√

2(
3
√

3)2

α6 = 17 + 120
√

2 + 90
3
√

3 + 24
√

2
3
√

3 + 60(
3
√

3)2 + 18
√

2(
3
√

3)2

and hence the matrix

A :=

2
666664

1 0 2 3 4 60 17
0 1 0 2 12 4 120
0 1 0 6 3 20 90
0 0 2 0 8 15 24
0 0 1 0 12 3 60
0 0 0 3 0 20 18

3
777775

Row-reduction yields: 2
6666666664

1 0 2 3 4 60 17
0 1 0 2 12 4 120
0 0 2 0 8 15 24
0 0 0 4 −9 16 −30

0 0 0 0 8
−9

2
48

0 0 0 0 0
755

64
0

3
7777777775

Back-substitution finally yields the polynomial

f(x) = x6 − 6x4 − 6x3 + 12x2 − 36x+ 1 ,

which is monic and hasα as a root.
Another approach which leads to the same polynomial is to begin with the equationα =

√
2 + 3

√
3 and eliminate radicals.

So write
α−

√
2 =

3
√

3 .

Cubing gives

(α−
√

2)3 = 3

α3 − 3
√

2α2 + 6α− 2
√

2 = 3

(α3 + 6α) −
√

2(3α2 + 2) = 3
√

2(3α2 + 2) = α3 + 6α− 3 ,
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so that squaring gives

2(3α2 + 2)2 = (α3 + 6α − 3)2

2(9α4 + 12α2 + 4) = α6 + 36α2 + 9 + 12α4 − 6α3 − 36α .

Rearranging gives
α6 − 6α4 − 6α3 + 12α2 − 36α+ 1 = 0

which yields the same polynomial.

It remains to check that
f(x) = x6 − 6x4 − 6x3 + 12x2 − 36x+ 1

is irreducible overQ. Reducing mod 3 gives
f(x) = x6 + 1

which clearly has no roots inF3. Hence if theis reduces, then it must have a monic, irreducible quadratic or cubic factor.
Of the 9 possible quadratic polynomials overF3, a quick check shows that onlyx2 + 1, x2 + x+ 2 andx2 + 2x+ 2 are
irreducible, and a little work shows none of these dividesf(x).
A similar argument with cubics shows thatf(x) has no cubic factors either, and hencef(x) is irreducible.

To see that it is, note that since
√

11 is irrational, so isα. [If you don’t believe this, you can see this as follows: ifα = m/n ∈ Q,
then we would have

√
11 = (2m + 3n)/n, contradicting the irrationality of

√
11.] (That

√
11 is irrational follows from the fact

that the polynomialx2 − 11, has roots that are either integers or irrational, by a question from the first assignment. Clearly no
integer can square to give11, so

√
11 must be irrational.) In particular then,α /∈ Q, which means thatq(x) cannot be factored over

Q, as such a factorisation would be of the formq(x) = (x − α)(x − β) for someβ ∈ Q. Hencem(x) = q(x) is the minimum
polynomial forα overQ.As in (b) we setβ = (i

√
3 − 1)/2 and work with2β. We compute that(2β)2 = −2 − 2i

√
3, so that

(2β)3 = (i
√

3 − 1)(−2 − 2i
√

3) = −2i
√

3 + 2 − 2(−1)(3) + 2i
√

3 = 8 .

But that means that8β3 = 8, i.e.β3 = 1. Henceβ is a root of the polynomialp(x) = x3 − 1. However, this isn’t the minimum
polynomial, becausep(x) isn’t irreducible. Using cyclotomic polynomials (or just by observation), we see thatp(x) factors as

p(x) = φ1φ3 = (x− 1)(x2 + x+ 1) .

The quadratic factor is irreducible, since it’s a cyclotomic polynomial. And clearlyβ is a root of this. Therefore the minimum
polynomial forβ overQ ism(x) = x2 + x+ 1.

(81)

1. LetL = Q(
√

2, 3
√

2), E = Q(
√

2) andF = Q. Then since the minimum polynomial for
√

2 overQ is x2 − 2, we see
that [E : Q] = 2. Moreover a basis forE over Q is{ 1,

√
2 }.

Now consider the extensionE ⊂ L. The polynomialg = x3 − 2 is monic and irreducible overE, since its roots are
3
√

2, 3
√

2ω, and 3
√

2ω2, none of which lies inE (hereω is a primitive 3rd root of unity). Sog is the minimum polynomial
for 3

√
2 overE and henceL = E( 3

√
2) satisfies[L : E] = deg(g(x)) = 3. Moreover a basis forL overE is given by

{ 1, 3
√

2, ( 3
√

2)2 }.
Therefore by the Tower Law,[L : Q] = 6 and a basis forL over Q is given by

{ 1,
√

2,
3
√

2,
√

2
3
√

2, (
3
√

2)2,
√

2(
3
√

2)2 } .

2. Setα = 4
√

2 ∈ R and letF = Q(i) andL = Q(α, i), so thatL = F (α). We need to find the minimum polynomial ofα
overF .

Now α clearly satisfies the polynomialg(x) = x4 − 2 overF . Moreover, the roots ofg(x) in C are±α and±αi, and
none of these lies inF becauseα /∈ Q.
Henceg(x) is irreducible overF and so is the minimum polynomial forα overF .

Therefore[L : F ] = 4 and a basis forL overF is given by

{ 1, α, α2 =
√

2, α3 } .

3. LetL = Q(ξ) and consider the extensionL/Q.
Sinceξ is a primitive complex 7th root of unity, its minimum polynomial over Q isΦ7(x) = x6+x5+x4+x3+x2+x+1.

Therefore[L : Q] = 6 and a basis forL overQ is given by

{ 1, ξ, ξ2, ξ3, ξ4, ξ5 } .

4. Letω be a primitive complex 3rd root of unity and consider the tower of fields

Q ⊆ Q(
√

3) ⊆ Q(
√

3, i) ⊆ Q(
√

3, i, ω).

The minimum polynomial of
√

3 overQ is clearlyx2 − 2, as this is monic, irreducible (Eisenstein) and has
√

3 as a root.
Thus{1,

√
3} is a basis forQ(

√
3) over Q. Similarly, {1, i} is a basis forQ(

√
3, i) over Q(

√
3) using the minimum

polynomialx2 + 1.

This gives a basis{1,
√

3, i,
√

3i} for Q(
√

3, i) overQ.
An argument similar to part (i) shows that[E : Q] = 4 and that a basis forE overQ is given by{ 1, i,

√
3, i

√
3 }.

The primitive complex 3rd roots of unity are given byα = (−1 + i
√

3)/2 andβ = (−1− i
√

3)/2, so thatω must be one
of these. Butα andβ both lie inQ(

√
3, i)! HenceQ(

√
3, i) = Q(

√
3, i, ω).
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(82) Notice thata4 = −1, so thata is a root of the polynomialg(x) = x4 + 1. We use the result of problem 13 on sheet
1. We saw there thatg(x) is irreducible overQ, so thatg(x) is the minimum polynomial fora over Q. Hence by Lemma 3.4,
[Q(a) : Q] = deg(g(x)) = 4.

On the other hand, ifF = R, the polynomialg(x) splits into a product of two monic, irreducible quadratics.One of these hasa
as a root, and hence is the minimum polynomial fora overR. Again by Lemma 3.4,[R(a) : R] = 2.

(89)

1. If we could construct400 we could then bisect it to construct200. But 200 = π/9 is not constructible asπ/3 cannot be
trisected.

2. If 720 and80 are constructible, then so is800, which can be bisected twice to give200 again. Thus80 is not constructible if
720 is. On the otherhand,1200 is definitely constructible (just construct an regular triangle), hence so is1200−720 = 480 .
This can then be bisected to give240. Thus240 is constructible from720.

(91) If we could perform the required task then we could constructanx satisfying

x3(15 + 7
√

5)

4
= 5.

Rearranging,
x3(15 + 7

√
5)

4
= 5 ⇒ x3 =

20

(15 + 7
√

5)
= 7

√
5 − 15

(multiplying top and bottom line by15 − 7
√

5). Thus

(x3 + 15)2 = 72 × 5 ⇒ x6 + 30x3 − 20 = 0.

This last is irreducible by Eisenstein (usingp = 5) and so is the minimum polynomial overQ of the side lengthx of the5-fold
volume dodecahedron. But this is a contradiction, since this number cannot be constructed, as the degree[Q(x),Q] = 6.

(119)

1. We know (Theorem 17) that ifL is the splitting field of some polynomial then|Gal(L/Q)| = [L,Q], the degree of the
extensionQ ⊂ L. Now, Q(

√
2) is the splitting field of the polynomialx2 − 2, so we have,

|Gal(Q(
√

2)/Q)| = [Q(
√

2),Q].

Since the right hand side is a simple extension, Theorem 15 gives that[Q(
√

2),Q] is equal to the degree of the minimum
ploynomial overQ of

√
2. This is obviouslyx2 − 2 (its monic, irreducible,∈ Q[x] and has

√
2 as a root), so

|Gal(Q(
√

2)/Q)| = [Q(
√

2),Q] = deg(x2 − 2) = 2,

as required.

Parts (c) and (d) are exactly the same: in (c) we have the splitting field of1 + x+ x2 (since the element adjoined toQ is a
3-rd root of unity) while in (d) we have the splitting field ofx3 − 2 of the first lecture. In this last case though we also need
to use the tower law (Theorem 16),

|Gal(Q(
3
√

2,−1

2
+

√
3

2
i)/Q)| = [Q(

3
√

2,−1

2
+

√
3

2
i),Q] = [Q(

3
√

2,−1

2
+

√
3

2
i),Q(−1

2
+

√
3

2
i)][Q(−1

2
+

√
3

2
i),Q].

Work out each of these in turn using Theorem 15.

2. Here Theorem 17 is of no use asQ( 3
√

2) is not the splitting field of anything! (Can you see why?) But,it is easy to do
anyway. Any automorphism in Gal(Q( 3

√
2)/Q) must permute the roots of any polynomial that3

√
2 is a root of, hence must

permute the roots ofx3 − 2. But the automorphism must also sendQ( 3
√

2) ⊂ R into itself, and since the other two roots of
x3 − 2 are complex, must in fact send3

√
2 to itself. It must then send( 3

√
2)2 to itself as well, and these two, with1 form a

basis forQ( 3
√

2), so our automorphism must be the identity.

(120)

1. Trick question: the root ofx − 2 is 2 ∈ Q, so the splitting field is justQ. Since every element of Gal(L,Q) must fix all
the elements ofQ pointwise, we get|Gal(L,Q)| = 1.

2. Another trick question: this is just question 3(d) asL = Q( 3
√

2,− 1

2
+

√
3

2
i).

3. The polynomial has splitting fieldQ(α,ω) whereα = 5
√

2 and

ω = cos
2π

5
+ i sin

2π

5
.

By Theorem 17 and the tower law we get,

|Gal(L,Q)| = [Q(α,ω),Q] = [Q(α,ω), Q(ω)][Q(ω),Q].

Each of the terms on the right hand side is the degree of a simple extension, so we use Theorem 15:[Q(ω),Q] = 4 since
ω has minimum polynomial1 + x+ x2 + x3 + x4 (notx5 − 1!). Slightly trickier is the fact that[Q(α,ω), Q(ω)] = 5.
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In fact the minimum polynomial overQ(ω) of α is indeedx5 − 2 for which it is sufficient to show that this polynomial is
irreducible overQ(ω).

To do this, we first need that no root ofx5 − 2 is in Q(ω). These roots areα, αω, . . . , αω4 . If αωi ∈ Q(ω), then
αωiω−i is too, ie:α is. We can probably beleive that this is not the case (see me for a more rigorous statement!). Since
the polynomial has degree 5, checking the roots is not enough, it could factorsise into non-linear factors, but these must be
a quadratic and a cubic. In fact, the quadratic must be of the form

(x− αωi)(x− αωj) = x2 − (αωi + αωj)x+ α2ωi+j .

Thus must be a polynomial overQ(ω), so in particular,α2ωi+j ∈ Q(ω). But then similarly,α2 ∈ Q(ω) ⇒ α6 = α ∈
Q(ω). We have already “convinced ourselves” that this isn’t so.

4. By Theorem 17 again,
Gal(L/Q) = [L,Q],

whereL = Q(ω) with ω a primitive 5-th root of unity. The polynomial given is the minimum polynomial ofω overQ, so
we have

|Gal(L/Q)| = deg(1 + x+ x2 + x3 + x4) = 4.

See also question 9.

5. By the hint, the roots of1+x2 +x4 are the roots ofx6−1 that are not±1, hence areω, ω2, ω4 andω5, withω a primitive
6-th root of unity. ConsiderF = Q(ω). Then clearly these roots are inF, so thatF contains the splitting field. On the
otherhand, the splitting field containsQ (since any subfield ofC does) and must contain the rootω. ThusF is contained in
the splitting field, ie: itis the splitting field.

Thus the order of the Galois group is equal to the degree[F,Q] = [Q(ω),Q] which in turn is equal to the degree of the
minimum polynomial (overQ) of ω. One may be tempted to guess1 + x2 + x4 for this, but,

1 + x2 + x4 = (x2 + x+ 1)(x2 − x+ 1),

so is not irreducible. Your next guess,x2 + x+ 1 would be correct as its roots,ω andω4, are 6∈ Q.

Thus the order of the Galois group is2.

(121)

1. Q(cos 2π
p

+ i sin 2π
p

) is the splitting field of thep-th cyclotomic polynomialΦp(x) = 1 + x+ x2 + · · · + xp−1, since

(x− 1)Φp(x) = xp − 1.

Thus the order of the group is equal to the degree of the extension which, being simple, can be deduced from Theorem 15
and the fact thatΦp is the minimum polynomial overQ of the element being adjoined (where we have used assignment3,
number 1 again to get thatΦp is irreducible). We thus get that the Galois group has orderp− 1 as claimed.

2. This is entirely analagous to question 4(c), exceptα = p
√

2 andω is a primitivep-th root of1.

(128)

1. The Galois group ofL overk is the group of all automorphisms of the fieldL that leave the subfieldk fixed pointwise.

2. Observe first that a basis forQ(α, i) overQ is given by

{1, α, α2, α3, i, αi, α2i, α3i}

and the effect of the eight automorphisms onα andi is given by

1 σ σ2 σ3 σ σ2 σ3

α α αi −α −αi α αi −α −αi
i i i i i −i −i −i −i

Hence the automorphism are distinct and by their effect onα andi, we see thatσ = σ3.

3. H1 = {1, σ2, σ, σ3}, H2 = {1, σ2} andH3 = {1, σ}. By the Galois correspondence, we have[Q(α, i),Q] is equal
to the index of{1} in G, ie the order ofG, which is8. The tower law gives[F1,Q] = [F1,Q(i

√
2)][Q(i

√
2),Q] with

[F1,Q] = 4 and[Q(i
√

2),Q] = 2 since the corresponding Galois groups have these indices inG. Hence[F1,Q(i
√

2)] =
2.

To describe the fields we use the fact that any elementx of Q(α, i) can be written uniquely in the form

x = a0 + a1α+ a2α
2 + a3α

3 + a4i+ a5αi+ a6α
2i+ a7α

3i,

for someai ∈ Q. The Galois group ofQ(α, i) overF1 is {1, σ2} from the lattice diagram and the Galois correspondence.
Hence every element ofF1 is fixed byσ2, where

σ2(x) = a0 − a1α+ a2α
2 − a3α

3 + a4i− a5αi + a6α
2i− a7α

3i,

and equating this with the previous expression we see that such anxmust satisfya2i = a2i anda2i+1 = −a2i+1, so that
a1 = a3 = a5 = a7 = 0 while a0, a2, a4 anda6 are arbitrary. Hence we have

x = a0 + a2α
2 + a4i+ a6α

2i,
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and clearlyF1 ⊂ Q(α2, i). On the otherhand,α2, i ∈ F1 and soQ(α2, i) ⊂ F1. ThusF1 = Q(α2, i).
To get the other one, notice that does not fixi

√
2, hence the Galois group ofQ(α, i) overQ(i

√
2) must beH1 so that the

Galois group ofQ(α, i) overF2 is {1, σ2, , σ2}. Running through the calculation above gives

σ2(x) = a0 − a1α+ a2α
2 − a3α

3 + a4i− a5αi + a6α
2i− a7α

3i,

and
(x) = a0 + a1α+ a2α

2 + a3α
3 − a4i− a5αi− a6α

2
i− a7α

3
i,

giving, a1 = a3 = a5 = a7 = a4 = a6 = 0, hence anx ∈ F2 is of the form

x = a0 + a2α
2,

andF2 = Q(
√

2) for the same reasons as before.

(129)

1. The Galois group ofL overF is the group of all automorphisms of the fieldL that leave the subfieldF fixed pointwise.

2. The polynomial in question has rootsω, ω2, ω3, ω4, ω5 andω6, and these are clearly all inQ(ω). On the otherhand, ifF
is anyfield containing the roots of the polynomial, thenF certainly containsω (as this is one of them) and it also contains
Q (assignment question done in the problems class). Butω ∈ F andQ ⊂ F meansQ(ω) ⊂ F , so that it is indeed the
smallest field containing the roots. The order of the Galois group now follows immediately since,

|Gal(Q(ω)/Q)| = [Q(ω),Q] = deg(1 + x+ x2 + x3 + x4 + x5 + x6) = 6,

since the polynomial is the minimum polynomial forω overQ.

3. A basis forQ(ω) is given by
{1, ω, ω2, ω3, ω4, ω5},

and so any automorphism is determined by is effect on these basis vectors. In fact, any automorphism is determined by its
effect onω alone. On the otherhand, any automorphism must permute the roots of any polynomial thatω is a root of, eg:
1 + x + x2 + x3 + x4 + x5 + x6 with rootsω, ω2, ω3, ω4, ω5 andω6. Combining all this with the fact that there are
exactly 6 automorphisms means that they are precisely the maps that sendω to one of these 6 roots. Ifσ sendsω to ω3 as
stated, thenσ2(ω) = (ω3)3 = ω9 = ω2, andσ3(ω) = ω27 = ω6. Thus by Lagrange,σ has order6 in the Galois group,
which must then be cyclic as claimed.

4. Clearly any subgroup containingσ contains everything. Similarly, since the powers ofσ5 yield all the elements of the
group, any subgroup containingσ5 is the whole group. Thus, for a proper subgroup we must not includeσ or σ5. If we
don’t includeσ2 we get the subgroup{1} or {1, σ3}, whereas if we do, we get the subgroup{1, σ2, σ4}.
By the Galois correspondence, we get the lattice of intermediate subfields as claimed, withF1 the fixed field of a subgroup
of index2, hence of{1, σ2, σ4}, andF2 the fixed field of{1, σ3}.
Now any element ofQ(ω) can be written as

x = a0 + a1ω + a2ω
2 + a3ω

3 + a4ω
4 + a5ω

5

with theai ∈ Q. We requirex such thatσ3(x) = x, where

σ3(a0 + a1ω + a2ω
2 + a3ω

3 + a4ω
4 + a5ω

5) = a0 + a1(−1 − ω − · · · − ω5)+

a2ω
5 + a3ω

4 + a4ω
3 + a5ω

2

and we have by equating coefficients thata0 − a1 = a0, a1 = −a1, a5 − a1 = a2, a4 − a1 = a3, a3 − a1 = a4 and
a2 − a1 = a5. Thusx must have the form

x = a0 + a2(ω2 + ω5) + a3(ω3 + ω4).

Hence the fixed field is⊂ Q(ω2 + ω5, ω3 + ω4). On the otherhand,σ3 fixes both these elements and thusQ(ω2 +
ω5, ω3 + ω4) ⊂ the fixed field, givingF2 = Q(ω2 + ω5, ω3 + ω4).

(131)

1. The polynomial in question has rootsω, ω2, ω3 andω4, and these are clearly all inQ(ω). On the otherhand, ifF is any
field containing the roots of the polynomial, thenF certainly containsω (as this is one of them) and it also containsQ (see
question 3, assignment1). Butω ∈ F andQ ⊂ F meansQ(ω) ⊂ F , so that it is indeed the smallest field containing the
roots.

2. This follows immediately since,

|Gal(Q(ω)/Q)| = [Q(ω),Q] = deg(1 + x+ x2 + x3 + x4) = 4,

since the polynomial is the minimum polynomial forω overQ.

3. A basis forQ(ω) is given by
{1, ω, ω2, ω3},

and so any automorphism is determined by is effect on these basis vectors. In fact, any automorphism is determined by its
effect onω alone. On the otherhand, any automorphism must permute the roots of any polynomial thatω is a root of, eg:
1+x+x2+x3 +x4 with rootsω, ω2, ω3 andω4. Combining all this with the fact that there are exactly 4 automorphisms
means that they are precisely the maps that sendω to ω or ω2 or ω3 or ω4. If σ sendsω to ω2 as stated, thenσ2 sendsω
to ω4, σ3 sendsω toω3, andσ4 sendω to 1.
Thus, the Galois group has the elements as stated.
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4. Clearly any subgroup containingσ contains everything. Similarly, since the powers ofσ3 yield all the elements of the
group, any subgroup containingσ3 is the whole group. Thus, for a proper subgroup we must not includeσ or σ3. If we
don’t includeσ2 we get the subgroup{1}, whereas if we do, we get the subgroup{1, σ2}. Thus the lattice has only one
subgroup apart from the two obvious ones.

5. This follows imediately by the Galois correspondence andsince the subgroup lattice has only one subgroup apart from{1}
andG. Now any element ofQ(ω) can be written as

x = a0 + a1ω + a2ω
2 + a3ω

3,

with the ai ∈ Q, and the intermediate field we are after is the fixed field of thesubgroup{1, σ2}. That is, we have
σ2(x) = x for all x ∈ Q(ω). On the otherhand,

σ2(a0 + a1ω + a2ω
2 + a3ω

3) = a0 + a1ω
4 + a2ω

3 + a3ω
2 = a0 + a1(−1 − ω − ω2 − ω3) + a2ω

3 + a3ω
2

so that,
σ2(x) = (a0 − a1) − a1ω + (a3 − a1)ω2 + (a2 − a1)ω3,

and we have by equating coefficients thata0 = a0 − a1, a1 = a1, a2 = a3 − a1 anda3 = a2 − a1. Thusx must have
the form

x = a+ bω2 + bω3 = a+ b(ω2 + ω3) ∈ Q(ω2 + ω3).

Hence the fixed field is⊂ Q(ω2 + ω3). On the otherhand,σ2(ω2 + ω3) = ω2 + ω3, and soσ2 must fixQ(ω2 + ω3)
pointwise. ThusQ(ω2 + ω3) ⊂ the fixed field, andQ(ω2 + ω3) is the field we seek.
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