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1 Clockwork Topology

(1.1) A combinatorial2-complexK is made up of three (countable) s&éfs, Fx andF (vertices, edges
and faces), together with various incidence maps that ieslkiow the pieces fit together. We have

s,t: Bg — Vi /U/QZ t(e)
(&

' Ex — Exk v = 5(e)
so that~! assigns each edge to another, called its inverse,sanhdssigns vertices te, the start and
terminal vertex. There are no restrictions on these mapspgxc! # e, (e7 1)~ = ¢, s(e™1) = t(e)
andt(e~!) = s(e). Thus, we may draw pictures like the one on the right abovi, wyi = s(e) = t(e™!)
andv, = t(e) = s(e1), but it is important to keep in mind that such pictures aresfyuor illustrative
purposes. One thinks of the inverse edgé as juste, but traversed in the reverse direction (or with the
reverse orientation). The vertex and edge sets, togethletiidse maps form a directed graph called the
1-skeletonk ! of K (the vertices alone form theskeletonk ).

It is tempting to define faces of Zzcomplex in terms of boundary paths, but we may want to have
several faces with the same boundary, so we need to be arittle careful. A path irk is a sequence
of edges}' ...€;", &; = +1, consecutively incident in the sense that') = s(e;}'}'), and closed if
t(ez*) = s(ef'). The maps, t,~! can be extended to paths in the obvious way, With ... e;*)~! =
e, " ...e;“'. We also allow a single vertex to be a path.

Two pathsw; andw, arecyclic permutationsf each otherifv; = ej' ... e;* thenw, = ejf coeptelt

. .ejf_‘f for somek. A cyclein the 1-skeleton is a set consisting of a path and all of its cyclicpea-
tions.

The final ingredient then in the definition of a combinatoZialomplex is the incidence maps that say
how the faces are glued onto theskeleton,
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0 : Fx — cycles

which must satisfyf = # f, (f~1)~! = f, andw € 9(f) iff w=! € d(f~1). One thinks of the inverse
face f~! as justf, but with the boundary traversed in the reverse directioheithere is no need to be
more precise, we will often just writ@f to designate some boundary labelfofAll our complexes will
belocally finite in that the image of any object under the incidence mapandd is finite.

(1.2) Our first example is shown below left, where we have adoptedctinvention (which we will
generally maintain) that parts of the complex with the saabell give the same element of the set (so are
to be thought of as being identified). Tlissomplex has two vertices, two edges and two faces, drawn in
a “face-centric” manner. Carrying out the identificatiomseg a2-sphere as shown on the right.

€2 €1

combinatorial modelv1 vy U1 V2 topological:

€1 €2

Neither the identifications nor the topological interptietaare an intrinsic part of the complex: they are
purely to guide the intuition and to provide motivation. T¢wmplex is completely determined by the



data:Vx = {v1,v2}, Ex = {e1,e2} andFx = {f1, fo} with incidence maps(e;) = v1,t(e1) = vo,
and so on, which would suffice if necessary for a purely Iddiiea algebraic) development. We shall
take advantage however of the nice topological analogy ahtesitate to draw topological pictures.

Similarly we call this complex the (real) projective plaRE?, a combinatorial model
for the disc with antipodal points on the boundary identifig¢tie justification for the
v name projective is the followingRP? is the space of-dimensional linear subspaces
of R3, the points of which are in one to one correspondence witts i antipodal
points on the2-sphere inR3. “Throwing away” the northern hemisphere gives a disc
with antipodal points on the equator identified. We haverageawn the complex face-centrically at the
expense of repeating the single vertex and edge twice inithare. An alternative picture would have a
single vertex and an edge loop with a face “sewn in” so thdidtendary travels twice around the loop.
Similarly,
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illustrate the torus and two infinite complexes: the plang the infinite4-valent tree.

(1.3) Because of their very simple combinatorial nature, we ofteed to be able to make the structure
of a2-complex “finer” by chopping edges and faces into piecesrd hee two fundamental moves:

V2 V2
U1 01 €1

namely subdividing an edge into two new ones (by adding a rextex) or subdividing a face into two
new ones (by adding a new edge). We leave it to the reader ify Wlee (obvious) fact that the new
objects ar@-complexes. Asubdivisionof a complex is then the complex obtained by applying thege tw
moves a finite number of times (in any order).

(1.4) A subcomplexs’ of K is a collection of three subsets.: C Vi, Ex C Fx, Fx C Fx such

that the restriction to these subsets of the various incidemaps make&’ into a2-complex. Thus the
equator of the-sphere complex is a subcomplex (as is indeeditskeleton of any®-complex) while

the torus complex above is not a subcomplex of the plane ampl

(1.5) We can glue complexes together (or even glue a complex t6) itsebtain new complexes. Sup-
pose~ is an equivalence relation on the s&is, E'x andFx (using the same symbol for the three differ-



ent relations). The relation needs to be compatible with the incidence maps so that ifssdge e, are
equivalent then so are the start and terminal verti¢es) ~ s(ez), t(e1) ~ t(ez) as well ase; ! ~ ey ';

if faces f1 ~ f2, then for anyw; € df; there is a uniquevz € df, such thatifw; = eg}! ...e5" then
Wy = egll ...eg" ande,, ~ eg,; similarly f; ~ f, precisely whenf; * ~ f, . The final condition is

that an object is never equivalent to its inversex e~ ! and f « f~!. This is so that when we glue
equivalent things together, objects and their inversesnenlistinct from each other, which is one of the

fundamental properties ofacomplex.

R A trivial example is the “Euclidean plane” complex wheremakes all ver-

tices and faces equivalent and two edges are equivaleteiff are both hori-
A A A zontal or both vertical. Given such-a thequotient compleX</~ has vertices,

edges and faces the sétg /~, Ex/~ and Fx /~; if [] is some equivalence
class, then the new incidence maps (for which we’ll use tineesietters as the
A A A old ones) ares([e]) = [s(e)], t([e]) = [t(e)], [e] " = [}, D([f]) = [O(S)]

and[f]~! = [f~!]. One can extend these maps to paths in an obvious way.
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Exercise 1 Check that these maps make sense and indeed @veoanplex K /~. Show that the

mapgq associating to each vertex, edge and face, its equivaldassg-) = [-], is a mapping o-complexesy : K — K/~ (see
§2).
Thus the quotient in the example above is the torus complex.
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If the relation is weakened a little so that two vertices,exigr faces are equivalent precisely when one
can be shifted horizontally onto the other thEt~ is an infinite cylinder.

2 From 2-Complexes to Groups

(2.1) We now formulate a discrete version of homotopy-the deftionaf paths in &-complex. Given
a path in &-complex, we allow ourselves two fundamental moves; the firs

€1 gi Ei+1l €l
€1 ...€; 6Z-+1 ...ek

inserts or deletes spur. an edge/inverse edge pair of the fogaT! or e~ 'e. The second
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inserts or deletes the boundary of a face: & 9(f) for f some face ofC with s(w) = t(w) = t(ef") =
s(eii)-
Two pathswy, we arehomotopigwrittenw; ~p wy) iff there is a finite sequence of these two moves

taking one path to the other. For example, two paths runriffeyent ways around a face are homotopic:

To get from the first picture to the second, insert the boundéthe face, using the € 9(f) with start
vertexw; to get from the second to the third, remove the obvious spurs

Exercise 2 Show that homotopic paths must have the same start and tdveirices and that homotopy is an equivalence relation
on the set of paths ik.

Denote the homotopy equivalence class of a patly [w]},.

(2.2) If wy, w9 are paths in -complexXK with the terminal vertex ofv; the start vertex ofvy, then let
wiws be the path obtained by juxtaposing these two, ie: by travgthe edges ofi; and then the edges
of wa:

wy

We can think of this as a kind of “product” of paths, which ictfés defined upto homotopy in the sense
that if,
wy ~p wi andwy ~p, wh thenwywsy ~p, wiwh.

(Exercise!) We can thus extend to a product on the homot@ssek of paths iK: if [w1], and[ws]y,
are two such, whergw;) = s(ws), then

fwilnfwsln & [wiws]s.

This multiplication fails to give us a group as we can only tiply paths if the first finishes where the
second starts.

Aside 1 Assuming the reader knows the definition of a category, we bavious “large” categories like the category of all grqups
where the collection of objects (the groups) does not forneta ©n the other hand there are the “small” categories where t
objectsdo form a set. Indeed a single group can be turned into a categdhe following way: there is just one objeat,say,
and morphisms — x* in 1-1 correspondence with the elements of the group. Theposition of morphisms is just the group
operation, ie: iff : x — xandg : * — = are morphisms theh : x — x is their composition iff, = fg in the group.

Generalising just a little, we can replace the single elé¢mbject set by an arbitrary s@b. A groupoidis a small category
such that every morphism is invertible: for eachy € Ob there are distinguished morphisms idz — « and id, : y — y such
that for anyf :  — y there is af ~1 : y — z with the compositiong’ f—1 and f—1 f equal to the respective identities.

There are various interesting examples that arise in natlitee tiling of the plane by squares has a group of symmetries
(isomorphic toZ @ Z) whereas a Penrose tiling of the plane hag@upoid of “local symmetries”. For another example I&t
be a topological space so that a choice of basepoint givegdhelogical) fundamental group of. Instead we could construct a
groupoid by taking as object set the spacand for any two points in the space, the morphisms between the homotopy classes
of paths joining the points. One composes morphisms in th@ab way by considering the homotopy class of the juxtagqeseh
whenever the first finishes at the same point that the secartd.sthis is thdundamental groupoidf the spaceX .

Exercise 3 Show that the collection of homotopy classes of pathKirtogether with the multiplication above, forms a groupoid,
the fundamental groupoid df .



(2.3) To get a group from homotopy classes of paths we need to ensucan always multiply paths.
Let K be a2-complex and fix a vertex. Let (K, v) be the set of all homotopy classes of closed paths
with start (and hence terminal) vertex

Theorem 2.1 71 (K, v) together with the produdtv |, [wa]n, = [wiws], forms a group with identitjv],
and[wl], ! = [w™ 1.

If you are familiar with the corresponding result from topgy (whereK is replaced by a topological
space and homotopies are continuous) then you will knowttieproof, while not difficult, is fiddly.
For instance, associativity requires the construction lndmotopy from the patlw, ws)ws to the path
wy (waws). In contrast, the proof of Theorem 2.1 is completely strdgivard and left as an exercise
(for example, associativity is immediate!). That the psoafe simpler, in the early stages at least, is one
of the main advantages of working combinatorially rathamnttopologically.

€2 €1 To computer; (S2,vy), it is clear that any loop in the-

skeleton based a{ must be of the formw = (e1e2)% ... (e1e2)%*
with thee; = +1. Equally clearly, the loopge;ez)*! are ho-
motopically trivial, bounding as they do the facésand fs.
Thus any loop is homotopically trivial and the group is the-tr
e1 €2 ial group.

To compute the fundamental group of the projective planés tiat the edge is
a loop based at, homotopically non-trivial as it is neither the boundarysoface or
v a spur. On the other hande is a homotopically trivial loop, and in fact these are
homotopically the only two possibilities. Indeed, any |dmsed ab has the form:*
for somek € Z, and is homotopically trivial if and only i& = 0 mod2, otherwise it is
homotopic tce. Thus, the fundamental group is isomorphic to the cycliagi®,/2.

The single loop complex shown has a somewhat larger fund@afrgmoup. It is intuitively clear that
any path has the form* for somek € Z, where no twae* ande! are homotopic (unless = ) making
m1(K) in this case look likeZ itself. Generalising, the “bouquet of circles” complex
consists of a single vertex with a number of loops based Httias fundamental group v Q e
consisting of all (homotopy classes of) paths. .. e;* with thee;; edges and where
two such are distinct if neither contains a spur and they atedentical (these intuitive statements will
be justified later).

(2.4) A 2-complex isconnectedf there is a path between any two of its vertices. In this ¢hsee is an
essentially unique fundamental groupfof for if u, v are vertices and is a path inK from v to v, then
defineamap : m1 (K,u) — m1 (K, v) by

v
[wi]p = [w™ wiw]p,. wa
w1 U

w

Exercise 4
1. Show that ifwy ~, w) thenwwiw ™! ~; ww|w™1, thusy is well defined.
2. Show thatp is a homomorphism.

3. Definey : m1(K,v) — 71 (K,u) by [wa], — [wwaw™1];,. Show that) is a well defined homomorphism and that
1 andyp are the respective identity maps (this means hat ' wiww ! ~j w1 andw ™ wwow 1w ~p, ws).

We will only ever deal with connected complexes, in whichecti®e exercise means we get the same
group (upto isomorphism) no matter which vertex we choodsate our closed paths at. We will often
write justr; (K) for the fundamental group from now on.



(2.5) There are classes of complexes defined by their fundamewigbg. For example, a compléx is
called atreeiff the face set ofK is empty andr; (K) is the trivial group. As there are no face boundaries
to insert or delete from paths, this means that any loaf§ ican be reduced to the empty loop by a finite
sequence of insertions or deletions spurs. Alternativefyween any two vertices there is a unique path
without spurs (as two paths differ by a loop, which must tfameebe a collection of spurs).

(2.6) A mapK; 2K, betweer2-complexes assigns to each vertextof a vertex of K5, each edge
of K; an edge or vertex ak’,, and each face dk’; a face, path or verteks. All of this must be done in
an incidence preserving manner:

V2 v2 p8
./e/‘ /
U1 1)1

andp(e™!) = ple)~ 1, p(f~1) = p(f)~'. If e is mapped to a vertex then it must be onep6f;) or
p(ve); if f is mapped to a path then |t must be homotopically trivial. Fuédence preserving condition
is meant to be a combinatorial version of continuity.

As it preserves the incidence of edges at a vertex, a map aaxtdreded to paths in an obvious manner,
and so in particular can be extended to closed paths. Thuss # vertex of{; we can define a map

71 (K1, )—>7T1(K27 (v)
by takingp*[w], = [p(w)] for any closed pathv in K.

Exercise 5
1. Show thap* is well-defined (ie: sends homotopic paths to homotopicg)athd is a group homomorphism.

2. Let2-Comp be the category with objects ttlecomplexes and morphisms the maps betw2eomplexes defined above.
Show thatr; is a (covariant) functor fror2-Comp to the categoryzroups (with morphisms the group homomorphisms).

(2.7) A map isdimension preserving Vi, —— Vk,, Ex, — Eg, andFx, —— Fx, (abusing
notation by using the same letter for all three maps). Oneabaays ensure that a map is dimension
preserving by adjusting, if necessary, the image complex.

Proposition 2.1 If K1 —— K, is a map of2-complexes then there is2acomplexk» and a dimension
preserving magk; —— K, such thatr; (K», p(v)) = 7 (K2, 5(v)), and

’/Tl(Kl, ’U) L’WI(K%Z’((U))

P =

T (Fg,ﬁ(’l)»
commutes.

Proof: If the map is not dimension preserving, the two things thaledbappen is that

A B




an edge is mapped to a vertex, or a face to a homotopicaligltgath. In the second case, add a new face
f to K5 with boundary the image path. In the first, add a new edge-aaphe vertex and a new fage
with boundary this loop. We leave it to the reader to showehmedifications have the desired effett.

(2.8) A map is anisomorphisnif it preserves dimension and is a bijection on the vertegeeahd face
sets. Itis then easy to see that the inverse prapon each set preserves incidence and is alse@mplex
mapKy, — Ki.

An automorphisnof K is an isomorphisnk’ — K, and as usual they form a group under composition
Aut(K). If K is a finite complex then A¢K) is clearly a finite group.

Exercise 6 What, if any, is the relationship between Akt) and Au(ry (K))?

AmapK -2 K of a complex to itself is aimversioniff p(e) = e~! for some edge or p(f) = f~!
for some facef. Let Aut (K) be the subset of AGK) consisting of those automorhisms that at
inversions.

Exercise 7 Is Autt (K) a subgroup of AutK)?

(2.9) A groupG actson a complex¥’ if there is a homomorphism of groups — Aut(K). The action
is orientation-preservingvhen the image of the ma@ — Aut(K) is contained in Aut (K). One also
says thatz actswithout inversions

Whenever we have an orientation-preserving action of agua complex we obtain a quotient
complex. The orbits of the action form the equivalence @ass an equivalence relation df, where
two objects are equivalent iff the action takes one to themthet two vertices, ~ vy precisely when
they lie in the same orbit of th@-action onVy; define~ in the same way o and F'. It isn't hard,
using the properties of maps, to see that this equivaleatae is compatible with the incidence maps
for K. As the action is orientation-preserving, we never havelgead+ ~ =1, that is, equivalent to its
inverse. From now orall group actions on complexes will be assumed to be orierigireserving

The quotientk'/~, written K /G, is called the quotient oK by the action ofG. As an example, let
G = Z & Z act on the Euclidean plane complex by

(1,0) (0,1)
*n,m > Kn4+1,m and*n,m > *n,m+1,

wherex is some vertex, edge or face, and a gengrall) € Z @ Z acts as the composition af times
the first map followed bys times the second. The quotient complEXG is the toru2-complex.

As with any quotient of complexes we have a quotient mpapK — K /G sending an object o
to its orbit. As this is a map a2-complexes (see the exercise at the en@lds)) we have an induced
(surjective) mapy, : 71 (K) — m(K/G). Hencethe fundamental group of a quotient is a quotient of
the fundamental group

(2.10) We saw in§1 that an equivalence relation could be used to form the gubtif a2-complex. We
can also use a map between complexes to glue the two tog8tygpose that : Ky — K5 is a map of
2-complexes wheré& is a subcomplex of a largéft,

) - — )

If x is any vertex, edge or face &, let ~ be the equivalence relation on the disjoint unigh U K,
generateddy the relations: ~ p(x). The quotient complexi; U K»)/~ is what is obtained bgluing
K, and K, together alongk, via theattaching mapp.



Aside 2 We saygeneratedbecause: ~ p(x) by itself does not give an equivalence relation. By gendrate mean the following:
any equivalence relation on a s&t corresponds to a substC X x X with (z,y) € S iff z ~ y. Given relations~; and
~9 on X we can therefore say that; is weakerthan~s iff the correspondingS; C Sz. Given any subseti’ C X x X, the
equivalence relatiogeneratedby W is then the weakest equivalence relation contairiiriweakest in the sense that no weaker
relation containd¥V’).

3 From 2-Complexes to Groups: more advanced features

(3.1) A groupG actsfreelyon a2-complexk if no non-trivial element ot~ fixes a vertex. When we have
a free action, we can relate the fundamental group of theeptatomplex ta& in the following way: we
have a map o2-complexe® : K — K /G which induces a homomorphigpti : m (K) — 71 (K/Q).

Theorem 3.1 Let G act freely on the (connecte®)complexk’. Then,
m(K/G)/p"(m(K)) = G.

Proof: Givenv € Vg, ande € Eg /¢ With start vertex, let o be a vertex ofk” such thap(v) = v
(ie: v is really an equivalence class of vertices @rairepresentative vertex of it). Now, there is certainly
an edge: of K with start vertexp that represents the equivalence class of eddés p(é) = €). There
cannot however be distinét, é; € K starting atv and representing, for if so, there would be a non-
trivial element ofG sendinge; to é; and thus fixingp.

Thus for any representative vertéxfor v, there is auniquerepresentative edgefor e starting at
9. This can be extended (by induction) to pathsy ifs a path inK/G starting atv there is a unique
representative pathfor + in K and starting at the representative veriex

Fix a basepoint in K/G and a representative vertéxfor it in K. If v is a closed path if/G at
v then let¥y be as above, hence a path/h (now not necessarily closed) frofnto some other repre-
sentative vertex fop, sayd;. In particular, there is
a unique elemery € G that takesy to v; (unique, ~'\/é_\. L Q’Y
as if there are two such elements go, thenglg;1 U1 5
fixes ¥ hence is the identity, s¢; = g2). Define a v
mapy : m1 (K/G) — G by sending~y], to g. Itis not hard to show that if; is homotopic toy then the
unigue representativig starting atv also finishes ab;. Thusy is a well-defined map.

5 U2 For ~1,~2 loops atv let 4; be the unique representative pathsiin
91(92(?)) A 7S I L

_ - starting atv andg; the elements ofy taking o to o;. Thend;¢1(52) is

91(32) 2R 92 a path representing; v», starting ato and finishing at; (g2(9)), so by

. 71 uniquenessy[yiyeln = 9192 = ©Mlnp[y2]n. Forg € G, letdy be a

U1 o s path in K from ¢ to g(v), a representative for a loop i /G (asv and
L g(0) represent the same vertex 8F/G). Thusy[y], = g and sop in

onto. Finally[y], is in the kernel precisely when the representativis a loop (by the freeness of the
action). It is easy to see that sughcorrespond precisely tp* (7 (K)). The result then follows by
applying the first isomorphism theorem. O

Exercise 8 Show that the theorem is not true if we drop our standing este that group actions preserve orientation.

(3.2) Another algebraic invariant for topological spaces thatiseful in the combinatorial setting is
(integral) homology. For @-complex K, let Cy(K) be the free Abelian group with generators the
verticesVx . Thus the elements @f, (K) are formal expressions of the form,

a1v1 + agvy + - - - + agvg,

with the a; € Z. Two such0-chainsare added component-wise by adding the coefficients of each
vertex. Similarly we have the free Abelian groGh(K) of 1-chains on the generatofs, and the2-
chainsC,(K) on the faces. If the complex is finite, then these groups atleimgother tharCy (K') =
ZlVel 0y (K) = Z1Pxl andCy (K) = ZIFx,



1-chain_ a;e;, let 1 (> aie;) = > a;01(e;). It is straight forward to verify that
01 : C1(K) — Cy(K) is agroup homomorphism. Similarly for a fagevith boundary
labelel™ ... er* we have the boundadh(f) = > ase; € C1(K), and extending this
to 2-chains in exactly the same way as the above gives a homoisorph : C2(K) — C1(K).
If we now consider the image of a fagaunder the composition map d», we get e e
for the section of boundary shown, thiat( /) is a sum whose terms includet ¢’ ’.//%
in C1(K). In the image of this segment undgr the contribution of vertex is v w f v
(from 94 (e) = v — u) and—v (from 9 (e’) = w’ — v). Thusd; J> maps this face t6 € Cy(K).
The sequence of Abelian groups and boundary maps,

U2 The boundary of an edgeis defined byo; (e) = vo — v1 € Co(K). Given any
e
Ull/

Co(K) 25 1 (K) 25 Co(K)

thus satisfie$); 3, = 0. Call an element of’;(K) that is in the kernel of the appropriate ani-cyclée!
(intuitively cycles have no boundary), while an elementhia image is an-boundary By the previous
paragraph, ifv is al-boundary them = 92 (3" a; f;) for some2-chain, hencé; (w) = 9:02(>_ ai f;) =
0 as010s is the zero map. In other wordsyeryl-boundary is also d-cycle

Being the kernels and images of the groapK’) under thed homomorphism, thécycles and bound-
aries are subgroups 6f;(K), and as these groups are abelian, we may form quotients. drmelbgy
groups ofK are then,

_ Gy(K)
a O-boundarieéH1 (K)

The middle group is the typical one; the outer two differ earé¢hare no elements 6f,(K) in an image
and none irCy (K) in a kernel. The coset containing a particular object in dmethsion is itthomology
class denoted-] 4.

Lcydles (K) = 2-cycles

Hy(K) ~ 1-boundaries >

Proposition 3.1 1. If K is connected thefl(K) = Z.
2. If K is a graph thenH(K) is trivial.

3. Ifwis aloop at the basepointof K with labelel" ... e*, then the map given by

leSt .. etk ]n — {Z siez}
H
is @ homomorphism (K, v) — H;(K).
The proofis left as an exercise. The homomorphism from thid grart is called thédurewicz map

Exercise 9 Show that the Hurewicz map is surjective with kernel the cartator subgroup ofr (K, v), ie: the subgroup whose
elements consist of all products of commutatiorsh] = aba~1b~! and their inverses.

Exercise 10 Call an abelian groufinitely generatedf it is isomorphic t0Z/n1 x Z/na X -+ X Z/ny X Z X -- - X Z, afinite
product of finite cyclic groufZ/n’s andZ’s. Find examples of graph&” where H1 (K) is not finitely generated.

(3.3) If the homologies of a complek are finitely generated, then call the numbe#Z&f in H;(K) its
(torsion freeyank and denote it rankf; (K'). TheEuler characteristiof K is then defined as

X(K) = (~1)'rank. H;(K).
Proposition 3.2 If K is a finite complex, show that the Euler characteristic issgiby
X(K) = V| — |Ek| + |Fk|.

Proof: Is left as an exercise.

1Don't confuse these with the cycles &f!

10



4 Presentations

(4.1) Let X = {z.|a € A} be acountableset, andX ! = {z,'|a € A} another of the same
cardinality disjoint fromX. A wordin the symbolsX U X ~! is an expression of the form

& & Elk
11‘2 xk

T Loy -+ Ty s

wheres; = +1. We also have the empty word, which is denoted by a completeraie of symbols! For
wordsws , we, letw;ws be their juxtaposition (so that if either is empty thepws is just the other) and
if w=a5 ...25 thenthe inverse word i®~' = z,*...2,'. A cyclic permutation ofy is a word
of the formai ... agk 25 ... 2.

Let R = {wg | 3 € B} be afixed set of words ifX U X ~!. We can use the dats andR to construct
a group. Let be the set of all words ik U X !, and define an equivalence relatiery on W by

wy ~p wa iff wy can be obtained fromw; by a finite sequence consisting of the following two moves:
1. insert or delete at any place an expression of the foray, ! or 2 'z,;
2. insert or delete at any placeg, wgl or any cyclic permutation of these.

It is easy to show that this gives an equivalence relation[«E, be the equivalence class of the wasd
Define a product on these equivalence classes by

[wi]plwa]p € [wiws],.

Itis not hard to show that the definition is independent ofdheice of representatives for the equivalence
class, and that in fact,

Theorem 4.1 The sefV /~,, of equivalence classes forms a group under this multigbcatvith identity
[empty word,, and[w],,* = [w™'],. Denote this group byX; R).

If G is a group, then we say th@X; R) is apresentatiorior G iff G = (X; R). Intuitively one thinks
of a presentation as a means of expressing the eleme@tinaerms of ther,, (thegeneratory, with the
wg (therelationg giving rules for the manipulation of these expressiongractice thgw], notation is
too unwieldy, and so we write just, bearing in mind that there may be (many) other ways of exsjmgs
the same element of the groupf is another (iew’ ~, w) then writew =¢ w’, or evenw = w’, and
say these twoepresent the same elemaritthe groupG. Such ambiguity is part and parcel of dealing
with group presentations. Writke; or just1 for the identity.

(4.2) Some examples of presentations for common garden varietypgrare given (without justification)
below. Not all of them are obvious. A sample isomorphism iegj but note that this is not in general
unique.

1. Z = (z; —) where — indicates an empty set of relators. An isomorphisomiguely defined by
x — 1 (z — —1 also works, and these are the only two).

2. Z/n = (x; 2™) with x — 1 modn (in generalz — k& modn works for anyk relatively prime to
n);

3.Z"=7Z& - ®Z (ntimes) (x1,...,z,; zixjlele for all ¢ # j) with
z; — (0,...,0,1,0,...,0),
the 1 in thei-th coordinate.
4. The symmetric group
Spi1 = (w1, .., xp; xF foralli; (zizip)® for 1 <i <n—1; (vx;)? forj #i £ 1).

where an isomorphism is given by — the transpositioffi, < + 1). For those in the know, this
means thab,, ., is a Coxeter group.

11



5. PSL(Z) £'SL,Z/{+L} = (z,y; 22,4°) where

Cfo =y (1
T o0 Y7o 1 |

Here we are using the (standard) abuse of denoting the etewidPSL; (Z) as matrices: the matrix
A is written when we really mean the codet, — A}.

6. Any countable group has a presentation
(9 € G; gigjg;, " whenevew = g;g;).

7. Lie groups likeR, GLy(R), SU;(C) and so on, do not have presentations in the sense that we
have defined them, for the simple reason that these groupmaceintable, while the set of words
on X U X! is countable. To at least generate such groups, one appimaites the use of,
necessarily uncountably many, “infinitesimal” generatédthough this point of view is important
to the Lie theory, it is not one that benefits from the use dfitégues in geometric group theory,
and so will not be discussed further in these lectures.

(4.3) How does one find a presentation for the fundamental grgQf’) of a 2-complexi ? Intuitively,

the generators will be certain homotopy classes of loopseabasepoint and the relations should arise
from the faces. In other words, the generators arise frestimensional information and the relations

from 2-dimensional. If we take a spanning tree for thskeleton, then loops contained entirely in the
tree play no role, as the fundamental group of a tree is triiaus, the generators should come from
edges notin the tree.

Let K be a connectefl-complex andy a vertex of K. LetT" be a connected tree that contains all the
vertices of K (it is an elementary result from graph theory that such tedsays exist). Choose an edge
e, from each edge/inverse-edge pairfiit \ 7. Then there are unique paths,, w,
without spurs iril”, such thatv, connects to the start vertex of, andw,, connects ,,
v to the terminal vertex. Let, = w,e,w,, ', aloop based at, andX = {z, |a €
K\ T}, the set of loops arising in this way. Chogsgefrom each face/inverse-face
pairin K andd fs a boundary label fof ;. Letdfs = €5} ei? ... eZk be the boundary v
labelafter the edges that are contained in the tfebave been removed. Take; = i} 22 ... x5k, @
word in X U X1, andR = {wg | f5 aface ofK }.

Ca

(03

Exercise 11
1. Show that ifec! ec? . .. eZ’;_ is the boundary label of a face (with the edges in the spaning®gremoved) then the loop

wg = 25 26l ... xak is homotopically trivial.

2. Ifwis aloop inK at the basepoint, ande,, , . .. ea, are the edges (in the order thatis traversed) not contained in the
treeT, then show thatv is homotopic to the loop correspondinga, . .. za,, -

Theorem 4.2 (X; R) is a presentation for the fundamental groupfof

Proof: Any wordw in the generatorX corresponds in the obvious way to a loopAhbased av (as
each generator itself does), so define a pagX; R) — 1 (K, v) by lettingp[w], = [w]. To see that
¢ is well-defined suppose that, v’ are words in the:, andw ~,, w’ by the insertion or deletion of an
rox;t orz;tz,. Thenthe path idd corresponding ta’ traverses the loop.e,w, ! and then the loop
w;, te,W,. ReEMoving the obvious collection of spurs, gives a homotogie path corresponding to,
ie: w ~p, w'. If w ~, w via the insertion or deletion of a words in the z,,,, then the corresponding
paths are homotopic by part (1) of the exercise above. Thuany case, ifw ~, w’ thenw ~j v/,
giving thaty is well-defined.

It is trivial that ¢ is a homomorphism which is onto by part (2) of the exercisevab&uppose now
thatw andw are words in ther, with ¢[w], = ¢[w],, hencew andw are homotopic ink. Each of
these is a loop ikl composed of sub-loops of the form shown in the figure abovas;Tihthe homotopy
between them is achieved by the insertion/deletion of spghese must be composed of paths of the
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form wae,w,, ' w; te; 'w,, or their inverses. This corresponds to an insertion/deedf az,,z, ' or its

inverse. If the homotopy involves the insertion/deletiéthe boundary labed,,, . . ., es, Of a face, the
edges not contained in the trég then this corresponds to the insertion/deletion:gf . . . z, . In any
casew ~p, W givesw ~, w, ie: plw], = ¢[w], = [w], = [W], and the map is injective. O

The elements ok are calledSchreier generatorr the fundamental group.

(4.4) Suppose thak is a graph, ie: its face sétx is empty. Then rather trivially there are no relations
obtained as there are no faces, so we have a presentatiomfofth(x, ..., zx;—). In fact, since a tree
has one fewer edges than it does vertices, we get thathhs|Vx | vertices and Ex | edges (counting
edgelinverse-edge pairs as one) then we can find such a @seform (K) with |Ex| — |[Vk|+1 =

1 — x(K) generators.

(4.5) The construction gives the expected answers when we lodieatdmbinatorial versions of well
known topological-manifolds:

(% > v

1 el N f MNeq = <l‘,y, [mayD gZ@Z

v i v

(4.6) Similarly,

m g<$17y1a'";zgvyg;1_[1'[1.1';:%]>'

a so-calledsurface grouf genusg.

(4.7) The complexes below amply-connectedwvhich is to say, their fundamental groups are trivial.
You can either take this to be obvious, or for the infinite tr@gustification is given in the section on
coverings.

#
b8

Y
4

B

N N N l

%

-
T

4
A\

(4.8) Subdividing a&2-complex gives one with the same fundamental group:
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Proposition 4.1 If K is a2-complex resulting from a subdivision &f thenr; (K, v) = m (K, v).

Proof: We need only verify the two cases whéteresults from the single subdivision of an edger a
facef. In the first, letT’ be a spanning tree for tHeskeleton ofK. If T" includese then the applications
of Theorem 4.2 are identical for bo#d and K, yielding the same presentations.el# T then adding
edgee, (see the figures ifl.3)) to 7' gives a spanning tre®’ for the 1-skeleton of K. As e is not in

T it contributes a Schreier generatorg and similarlye, does toX. The resulting presentations are
identical except in one is replaced by, in the other.

If K arises by subdividing the facg into f1, f» by a new edge:, then a spanning tre€ for the
1-skeleton ofK suffices for thel-skeleton of K. We have a new Schreier generatr corresponding
to this edge. The only differences in the applications ofdrken 4.2 is the relations arising from the
subdivided face for which we get in the two cases,

= L))

the presentationéX; R, w) and (X, z,; R, w17, x, ws). There are no occurrences of in the w;

or any of the relation®R. As x, = w, in the second presentation it is clearly superfluous, so we ma
remove it, the relatior, = ws and replace all other occurrencesiQf by w,. This gives us the first
presentation. O

(4.9) Now that we can obtain a group presentation fro@x@mplex, the question arises as to whether
we can obtain &-complex from a group presentation? We would like the camsion to be “natural”, in
the sense that the resulting complex should have fundahggntgp with presentation the one we started
with. In general there may be many ways to do this, but thefalg is the most standard.

Let (X; R) be a presentation for a grodp, and define @-complex’X = K(X;R) with a single
vertexv. For eachr € X take aegg'El € Ex and for eachw € R afjfl € Fx. The incidence maps are
given by

s,t(ex!) = v,d(f,) = the cyclic permutations off! ...t |

“Cxay

if w = zg ...2Z . Intuitively, K has edges that are loops based at the vertex that are in ene-on
correspondence with the generators; the faces are “sewn’tbe loops so that their boundaries are the

relators.

Theorem 4.3 (X; R) is a presentation forr; (K (X; R),v).

The proof is a straight forward application of Theorem 4.Ihaugh notice that initially we get a
presentatio X ; R ) where theR are theR, but possibly cyclically permuted. The Theorem then foow
from the fact tha{ X; R) and(X; R ) are obviously isomorphic.

Call K(X; R) apresentatior2-complexfor G.

(4.10) We have already seen that maps between complexes inducertwrpiism between the funda-
mental groups. In certain situations the converse is (anage. What we want is that if

@ (Kq,v1) — mi (K2, v2)

is @ homomorphism then there is a map K; — K> with p, being the homomorphism. To be
so, the following in particular must happen: if the homotagss of a loopv; € K; is sent byy to
the homotopy class of a loop, € K, thenp would need to send thgath w; to the pathw,. The
problem is that at a combinatorial level, the pathsandws may be quite different. For example, take
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the homomorphisnp : Z = (t) — Z & Z = (a,b) given byt — ab interpreted as a map between
fundamental groups as follows,

€2
v > v
~ (}9 ~Y
7= mlv e — TN Aey| HZZ
G
v é9 v

where loope corresponds to the generatoe; andes to a andb. There is no map from the first complex
to the second sending the generating loop on the left to thyedpes on the right a®-complex maps
must send edges to edges (rather than to paths). The sdlitmaubdivide the complex on the left.

Proposition 4.2 Let K, Ko be 2-complexes, each with a single vertex andp : m(Ky,v1) —
m1(K2,v2) @ homomorphism of groups. Then there is a subdivigianof K; and a2-complex map
p: K1 — K5 such that

¥

7T1(K171)1) I—— ﬂ-l(K2702>
=~ %
7T1(F1,U1)

commutes.

Thus we may replac&’; by a2-complex with isomorphic fundamental group so that the mais the
same, upto this isomorphism, as the original rpap

Proof: Lete be an edge of<; and suppose thaf'* ...e;*,a; = +1 is a representative for the ho-
motopy class of the image @é],. Subdividee into new edges’, ..., e} oriented so that running
around them following the direction ef gives the label
e).)**. Perform this procedure for all
C)C;) the edges of(l and call the resultlng subdivision
K. Definep : (K;)' — K3 by p(e’ %) = e;, send-
\ / ck ing the new vertices tos. it is easy to see that this is
p a map of thel-skeletons (although beware: it uses the fact that
K> has a single vertex) and that the induced map m(K,v1) —
71 (K2, v2) makes the diagram commute. To definen the faces of;,
it remains to show that for every fagé in K, thatpd(f’) is a homotopi-
cally trivial path inK,. Sincedf’ is just the subdivided version of the boundary
of of afacef of K1, andy is a homomorphism we have thatf],, hencep[df], is the trivial element
(homomorphisms sending the trivial element to the trivieh®ent). Butp[0f], is by definition the
homotopy class agb(df"), which is thus homotopically trivial as required. O

e

The problem that this proposition gets us out of does nogavith topological(ie: CW-) complexes
as maps between them can legitimately send edges to paths.

5 Fundamental groups of graphs
(5.1) A group isfreeif and only if it is the fundamental group of a graph. We willeetually give four

definitions for free groups, with this the only one that doesimmediately explain the use of the word
“free”. Nevertheless, the topological definition has a riex.
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(5.2) There are many examples of free groups occurring in natfifé.is the graph consisting of one ver-
tex and a sinlge loop, then we saw that the group is nothingrdlian the integer. For non-Abelian ex-
amples, consider the picture at left, which is topologictile same
as a well known picture by the graphic artist M C Eséher oK
Let the disc represent the Poincaré model for the hyper-
bolic planeH? (see Section 10). The arcs are hyper- 4
bolic lines (orgeodesics and the regions bounded by
them are hyperbolic triangles. It is one of the in- £
triguing properties of hyperbolic geometry that ong
can find regular triangles, squares, and so on, with
sides of infinite length, but bounding areas that are’
finite in size. In fact all the triangles in the pic- }
ture are congruent and have areay the Gauss- §
Bonnet theorem. Arautomorphisnof this picture
is an isometryH? — H? taking the tessellation to
itself. The group of automorphisms is generated by
the three reflections, b, ¢ in the sides of the large tri-
angle in the middle (where reflection can be interprete o‘
suitably). Reflections are obviously maps that reversaerie S
tation, while the product of two reflections preserves itfdet .
it turns out that the orientation preserving automorphims a free group

Now place a vertex at the center of each triangle, and joinvertices by an edge iff they are in the
interior of adjacent triangles (ie: triangles sharing agedd The graph obtained is an infintevalent
tree. Moreover, the free group consisitng of the orienteiceserving automorphisms acts on this tree,
with no non-trivial element fixing a vertex, so is a free aatidt will turn out to be acharacterising
property of free groups that they act freely on trees.

(5.3) If a group is the fundamental group of a graph, there will beyndifferent graphs that can play
this role. Indeed, i< is any2-complex then the following

Cx) (&

have the same fundamental group by Theorem 4.2. Thus thh gltays no intrinsic role in the definition
of free group.

Nevertheless, theonnectedgraphs that realise a given free group do have one thing inmemm
namely, they all have the same homology. #gtbe the collection of connected grapkiswith 7 (K) =
G. We haveH(K) = Z andH,(K) trivial by Proposition 3.1. NowH; (K) is the image ofry (K) = G
under the Hurewicz map, thus by Exercise®,(K) = G/[G,G] where[G, G] is the commutator
subgroup of=.

Exercise 12 Show that for a grapli’, having finitely generated homology groups reduces to thditon thatK has finitely many
distinct1-cycles.

For a givenG the graphs ir6; may or may not have finitely generated homology. If they dathe
the Euler characteristic is defined and constant act@sand so the quantity — y(K), K € %¢ is an
invariant ofG. Call it therank of the free groug=. If the homologies are not finitely generated, say that
G has (countablyinfinite rank

2Actually, this is no coincidence. Escher’s pictures wespired by a meeting with Coxeter at the ICM in Vancouver in4.95
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(5.4) We saw in(4.4)that if K is a graph theiir = 71 (K) has a presentation of the forfny, . . ., 2,,; ),
wheren = |Ey| — |[Vk| + 1 = 1 — x(K) is the rank just defined. Call thisfeee presentatiorior G

(it is free of relations). On the other hand (fis the group with free presentatidn,, . .., x,;-), then
the presentatiod-complexK (X ; R) has fundamental grou@, and is a graph, because of the complete
absence of relators. Moreover, it has Euler characteristicn. Thus, a group is free of rank if and
only if it has a free presentation engenerators.

(5.5) The importance of free groups to group theory stems from the,
Substitution Theorem. LetG have the presentatiofX; R ) via the isomorphisny : (X;R) — G.

Let H be any other group and — H a map withx,, — h,. Then there is a unique homomorphigm
such that

¢
oy o

|
X—H

commutes if and only if for eaehs = 27! ... x5k € Rwe havehy! ... hgk =1in H.

Once decoded, the usefulness of this result becomes appétreays that to find a homomorphism
from G to H, choose images for the generatorgbfthis is the mapX — H) in such a way that for each
relation inG, the corresponding relation obtained by substitutingithéor thez,,, also holds inH.

Proof: We give the proof folG = (X; R), identifyingz, € X with [z,], € G, and leave the straight-
forward extension t@7 = (X;R) to the reader. The only if part is trivial. For the if part, agy
making the diagram commute must sdnd|, — h,, and to be a homomorphism, must extend linearly
to [zgl ... 28], = hgl ... hgh. Thusg is uniquely defined. lfws = 27 ...23 € R (or a cyclic

permutation), thefazg!, ... wg ... x5k |, = A3 ... hg .. hy .. hgk = hgl ...k by the condition
given in the theorem. Triviallyzs} ... zox ' ... 2k |, — hel ... ke, thuse is well defined. O

- Lag,

Aside 3 In many categories there is the notion offee object If C is a category and is a set, construct a new categdfyas
follows: the objects oK are pair{ A, f) whereA is an object ofC and f is a mappingf : X — A. Given two such, &-morphism
h: (A, f)— (B,g)isaC-morphismh : A — B such that the diagram,

X——8B

commutes. Aree C-object on the seX is an object( F, ) of K such that there is precisebnemorphism inK from (F, ¢) to any
other object. By abuse we cdil freein C when this happens for son€é.

Once the formal nonsense has been decoded the reader majehie abe that free objects exist in a number of familiar
categories: in the category &-modules forR some (commutative) ring, they are the free modules (ie: nesdwith a basis), so
in particular vector spaces are examples of free objecth, Xia basis.

Corollary5.1 1. G is afree group iffG is a free object in the category of groups.

2. If G is free on the seK and H is a group with presentatiofX; R ), then H is a homomorphic
image ofG.

Proof: The first part is a special case of the substitution theorean.the second, apply the theorem
with G = (X;-), H = (X; R) andh, = z,.
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(5.6) Here is an example of the Corollary. A group is said tesbapleiff it has no non-trivial normal
subgroups except for the trivial subgroup and the wholegrdduch like integers and primes, any group
can be decomposed, in an essentially unique way, into sipiptes. Examples of finite simple groups
are easy to find; for instance a cyclic grafipp for p a prime (use Lagrange’s theorem). Infinite simple
groups are a little harder, but nevertheless can be founideirfiack garden”, for example PSC, or
indeed, PSLk for any infinite fieldk. Infinite simple groups that are finitely generated are clusted to
construct and generally don’t seem to occur in nature (lehalexamples are quite artificial).

There is a periodic table for the finite simple groups. It eamt the cyclic groups of prime order; the
alternating groupsl,, for n # 1,2 or 4; sixteen infinite families of matrix groups over finite fielftee
groups ofLie type so-called as they arise as groups of automorphisms of siriplalgebras over finite
fields); and twenty six exceptional examples that don't seefit into any of the previous categories.

One consequence of the classification is that every finitplsigroup can be generated by just two of
its elements (i2-generatefl. | am not aware of a general conceptual proof; one can aadhesituation
case by case, as was done by Steinberg for the groups of laatygppAschbacher for the sporadic groups
(it is trivial for the cyclics and an easy exercise for theaiating groups).

Thus, every finite simple group is an image of the free grouangenerators.

Exercise 13 Show that ifp is a prime, then the product of cyclic groupgp x Z/p? x - - - x Z/p® cannot be generated by fewer
thank elements (hint: use the fundamental theorem for Abeliangsh

(5.7) Tying together the different definitions of free group, we aot yet in a position to prove all of the
following, but this seems an appropriate place to statedbelt:

Theorem 5.1 The following are equivalent for a groug:
1. is the fundamental group of a graph;
2. has a free presentatiofi; -);
3. is a free object in the category of groups;

4. acts freely on a tree.

Proof: The equivalence of the first three has already been estatllisb we prove thdt ) and(4) are
equivalent. To provél) = (4) requires the covering space theory of the next section, dbpestpone
the proof until later. To seét) = (1), letT be a tree and+ a group acting freely on it. Since trees
are simply connected we hawe(T) is trivial, hence Theorem 3.1 becomegT/G) = G. ButT/G is
clearly a graph (the face set@fis empty, hence so must be the face sef (). |

If we have a group’ acting on a tree but now the stabilisers of the vertices ateriwal, then
something can still be said about the See§8 for the general story.

v2 As an illustrative example of an easy trap to fall into, Zet2 act on the complex
€ shown, with the non trivial element of the group swappingtthe vertices. Then this
is a free action ofZ/2 on a tree. What has gone wrong is that while we ha%'a
action here, it is not orientation preserving.
Another point to recall is that when we say a gr@upcts freely on some complex, we mean acts freely
on the vertices only, not the whole complex. In the Theorenhaee the free groufr acting freely on
some tree: the action cannot fix the vertices incident withesedge:, nor can it interchange them, as all
our actions preserve orientation. Thus it acts freely orettges as well.

U1

(5.8) The last part of the Theorem immediately gives,

Nielsen-Schreier Theorem (version 1).A subgroup of a free group is free.
For the free group acts freely on some ti&éehence so does any subgroup, which is thus free as well!

Exercise 14 Show that ifG is any finitely generated group then there is a graph on whielets freely (hint: se§7).
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(5.9) We finish with a somewhat more profound application of Theobel due to Serre [8].

Aside 4 The rationalsQ are an incomplete field which can be completed by considertpivalence classes of Cauchy sequences.
As usual a Cauchy sequence is one that eventually has its toitrarily close together. What though do we mean by close
together, ie: what is the metric?

The obvious metric gives the redisas our completion, but a more sensible metric from the pdintesv of number theory is
the p-adic. Fix a primep and for anyz € Q let || = p— (=) wherev(z) is the largest power gf dividing = in the sense that
x can be written ap?(*)a/b with a, b relatively prime top. Then the distance from to y in the p-adic metric is|z — y|. The
qualitative effect of the-adic distance is to make integers highly divisiblezbyery close td). This has important ramifications to
the solution of Diophantine equations.

Call the completion of) with respect to this metric the-adic number€),,. Thep-adics have a distinguished subring, playing
the same role thak does inQ, called thep-adic integersZ, and defined as those € Q, with v(z) > 0. Like Z, the p-adic
integers are a principal ideal domain, and have distingaistiements, calledniformizersand traditionally denoteé, such that
any ideal has the fornir™) for somem € Z.

Aside 5 Letk =R, C or Q, for somep. A k-Lie groupG is ak-analytic manifold together with ak-analytic mapG x G — G
making it into a group. Thus, the multiplication and inversaps are analytic. A subgrodpis called aattice iff it is discrete (in
the manifold topology) and the set of cos€tgI’ can be endowed with @-invariant Borel measurg such thau(G/T") < oo.
Lattices can be thought of as discrete approximations taigagroup, withy(G/I") a measure of the accuracy of the approxi-
mation. So they are as good an approximation as we could lodpltgiven that we are approximating something continugus b
something discrete.
A typical example of a lattice is SIZ in the real Lie group SR, and a typical example of a non-lattice is &4.in GL2R (it
is discrete, but the coset space {B/GL>Z is non-compact of infinite volume.)

Lattices in the real Lie group SIR, calledFuchsian group% have a classical importance in mathe-
matics. In particular, one has

Theorem 5.2 (Fricke, Klein) A torsion free lattice in S4R is either a surface group or a free group.

What about torsion free lattices in 8Q,? We construct a complex on which 8, acts in a natural
way. LetV be a2-dimensional vector space ov@y, andA a freeZ,-submodule of the forrd,u ¢ Z,v
(it turns out that they all have this form for linearly indeylentu. andwv). Given two suchA andA’,
call them equivalent ifi\ = aA’ for somea € Q,. The vertices of our complex will be the equivalence
classes of thé (which we will denote using the same symbol).

To construct the edges, considar+ A’)/A’, which is a finitely generated,-module, hence by the
general theory of modules over a PID, a direct sum of cygJianodules,

A+N | Z, o Zy
A - <ﬂ-m> <ﬂ-n>’

for m,n € Z. Join the vertices correspondingAgA’ by an edge iffm — n| = 1.
Here is the deep bit: this graph turns out to be the infifite- 1)-valent treé. The result forQs is
shown below:

tree for SlyQ-

3Many authors use the word “Fuchsian” for discrete subgramii®i >R, without imposing the lattice condition.
4t is an example of 8ruhat-Tits building These play the same role for Lie groups over local fields @kgthat symmetric
spaces play for real and complex (semi-simple) Lie groups.
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GL.Q, acts on the vector spaééby the usuaks — Awu, hence on the equivalence clasdesf lattices,
and so on the vertices of the tree. Indeed, the action cantbeded to tha-skeleton, although it does not
preserve orientation. Passing to8l, gives an orientation preserving action. The “Arborealiditary”
of 8 will then give us some information about the structure 0t@}. For now, suppose thdt is a
torsion free lattice in SLQ, and restrict the SL(Q,-action on the tree to B-action. It turns out that the
torsion free property means that no non-trivial elemerit éikes a vertex, ie: th&-action is free. Thus,

Theorem 5.3 (lhara, Serre) A torsion free lattice in S§Q,, is a free group.

6 Coverings and subgroups

We have seen how to think of groups as topological objectbpgodoes one model the subgroups of a
group using this topological picture?

(6.1) AmapK - K of 2-complexes is @overingiff
1. p preserves dimension;

2. if o -2 v thenp is a bijection from the set of edgesﬁi with initial vertex? to the set of edges in
K with initial vertexwv;

3. if fis aface and a vertex ofK, letm(f, v) be the number of times thatappears in the boundary
of f. Then for anys -2 v,

> m(f,0) =m(f,v),
f—r
the sum being over all facgscoveringy.

As is the case with any definition, there is the worry that ftrist the right one”. As much as one
may want to preserve the intuition of a topological coveringm a formal point of view the definition is
not important as long as the resulting coverings have thpgsties of path-lifting §6.5) and homotopy
lifting (§6.6).

(6.2) We'll only coverconnectedk’. The terminology cover/lift is used for images/pre-imagéshe
covering maypp: if p(¥) = %, then one says thatcoversx, or that« lifts to *. The set of all lifts of« is its
fiber.

The last two parts in the definition express local propexiesoverings: ifo coversy, thenK looks
the same nearasK does neav. Specifically, the configuration of edges around a vertekddbe same
both upstairs and downstairs. Given a verteand incident face’ downstairs, this face looks the same
nearv as its lifts do near any vertexcoveringv: if f containsv in its boundaryk times, so there ark
wedge-shaped pieces ffitting together around, then there aré wedge-shaped pieces fitting together
arounds, where these belong to the facBghat coverf and contairv in their boundary:

Note that there is nothing to say that the fageare distinct, and in general, they won'’t be.

20



(6.3) The following two illustrate, in a combinatorial fashiohgtcoverings of the projective plane by the
2-sphere and the torus by the Euclidean plane.

Y

Rt
vo

Y
y

ean f A€

Y

(6.4) As with any map oR-complexes there is an induced homomorphism of groups

(K, 7) 2 1 (K, v).

If wis a loop atd thenp : [w], — [p(w)]s so thatp, (r1 (K, 7)) may be identified with the homotopy
classes of loops atthat lift to loops atb.

(6.5) There are two really crucial properties coverings need. fireis path lifting: given a pathv =
eies. .. e, Starting atvy and anyd, coveringuvg, there is auniquepathw = é; ...é, starting atdy
coveringw in the sense that; coverse;. This is easily seen, as in the picture,

since there is a unique edge corresponding t@; under the bijection between the edges starting at
7y and those starting afy. This edgeé; must end at a vertex that covers the end vertex of edge
as coverings (being maps of complexes) preserve verteg-iadglences. The process can be repeated
starting at this new vertex.

Call w thelift of w at?.

Exercise 15 Let K -2+ K be a covering. Show that all the fibers have the same carginafiether they be fibers of vertices,
edges, faces, paths. This is called thesheet numbeof the covering.

Wi W1ij

Hint: one can show in fact that there aneidence preservingijections between these fibers,
in the following sense. ¢ is an edge, show that there is a bijection between the fibeaofl the
fiber of the initial vertex ok. Let f be a face ofK containing the vertex in its boundaryk times,
ie: f has a boundary labeb, ws . . . w; where eachw; is a closed loop at that otherwise does
not containv. Then show that for any fixed, there is a bijection between the fiber pfand the
fiber of w; = {@wj1,...,w;;, ...}, with fl corresponding under this bijection to;; Wherefi
has boundary labeb ;w2; . . . wi; as shown in the figure to the left.
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(6.6) The other crucial property coverings havehismotopy lifting let K -»s Kbea covering and
w1, we homotopic paths i. If v is the vertex at the start af; andws, andv coversv, then the liftsi;
andw, atv are homotopic. Thus, homotopies can be lifted upstairs.

Since a homotopy is a finite sequence of insertion/deletispars or boundaries of faces, we need
show that spurs lift to spurs and boundaries of faces liftaortwaries of faces. Homotopy lifting then
follows by induction.

That spurs lift to spurs follows straight from path-liftin§uppose is a face downstairs with boundary
as in the exercise above. L} ... w, w; ... w;j— be a boundary path ¢f and? a vertex in the fiber of
v. We lift this boundary path to: lifting w; to © we get one of the paths;; in the fiber ofw;, and this
lies, by the exercise, in the boundary of a f:fc;daj the fiber of f. As we lift each successive piece of the
boundary off, we move around the boundary fif

(6.7) The key result on coverings is the,
Subgroup Theorem.
1. LetK % K be a covering. Then the induced mag K, 0) m (K,v) is injective.

2. LetK be a2-complex and{ a subgroup ofr; (K, v). Then there is a connectdd and a covering
of 2-complexesds - K with H = 7, (K, 7), wheret - v.

The first bit says that coverings give subgroups; the seduaitdstibgroups give coverings. Questions
about subgroups can thus be turned into questions aboutiegseand vice-versa.

Proof: The first part follows immediately from homotopy liftingnsie ifw, andw, are non-homotopic
paths upstairs, then they must map unelér non-homotopic paths downstairs, [@;;] # [we] € K =
plwi] # p*lwe] € K.

We will only need the result from the second part in the spezage where’ = K (X; R), the
presentatior2-complex for some (finite) presentatid ; R). The interested reader can fill in the details
for the case of an arbitrary compléx.

Let {Hg;} be the right cosets off in m; (K, v). DefineK by taking as vertex
T Hg; setthese cosets. Define an edge/inverse edge pair as shih@pioture precisely
whenHg;z, = Hg; wherez, € X. It's standard practice to abuse notation and

label such an edge by,. For each- € R a relator word, and each vertékg; of K, consider the path
starting atH g; with labelr. It must be a closed path, &8¢, = Hg; sincer = 1in (X; R) = m (K, v).
Attach a face taK with boundary label this path. Repeat this procedure fohgeir consisting of a
relator word/vertex of{, obtaining adistinctface each time. Note that you may get the same closed path
from different vertices of via this process (this will happen when the relator word is@pr power
r = w™"). Attach distinct faces with these same boundary labelgvagy

Define a maps -2 K by sending every vertex df to the single vertex of{ (X; R); edges labelled
zo 10 the edge labelled,, in K (X; R), and faces with boundary labelto the face of (X; R) with
boundary labet. Then this is a covering &f-complexes (Exercise!)

Hg;

Let & be the vertex ofx corresponding to the subgrodp itself. As the induced mapl(f?,f;) »,

m (K, v) is injective,m(f?,f)) is isomorphic to its image im, (K, v). But this image is obtained by
taking the images of closed pathsiinbased at; such a path has label and is closed= Hw = H <
w € H. Thusm (K,7) 2 H. O

The coverings so constructed are calBsdhreier coset diagranfer reasons that the proof makes clear!

(6.8) Whenever we have a coveridg — K we get actions of two groups on the covering compiéx
both related tor; (K),: the path-liftinganddeck transformatiomctions.
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- Path-lifting gives an action of the fundamental greyg X, v) on the fiber ofv: let

2 ™ . v be the basepoint fok and~ a loop in K atv. For any vertexy; in the fiber ofv,
A7 let (o1)y = U2 be the terminal vertex of the lifted pathato,. If 4’ is another loop at
U1 v homotopic toy then the lifts of each loop at; are homotopic as well by homotopy

; lifting, so in particular must finish at the same vertex. Thua well defined way, we
P J can define the image of the vertéx under the action of theomotopy classf + to
Q be 7. If 71,72 are loops av, with 4, the lift of 4, at o; and4, the lift of 7» at the
terminal vertex ofy;, then the path; 7, coversy; v, and starts at;. Hence it ighelift
of v1v2 atv;. Thusdy (v172) = ((91)71)72, giving us @ homomorphisay (K) — Sym(K"). Notice in
particular that ifK has just one vertex then (K ) acts onall the vertices ofs .

In general this action cannot be extended beyond the vertit&’, not even to the edges. As an
example, suppose thate 1 (K) andd;, U2 are vertices in the cover connected by an eddéthe action
extends to a the edges A&f, then the images of the vertices undemust be joined U2 5
by the image of the edgeundery (remember that an action is a homomorphism
m1(K) — Aut(K) meaning thaty must act in a way that preserves incidence).
the particular case thdt is the Cayley complex of; (K) (see§7), this amounts’t
to saying that the generator of (K') corresponding to the edgecommutes withy. This clearly is not
always going to happen.

(6.9) A deck transformatioof a coveringf{ L, Kisan automorphisrf( -, K such that the diagram

~ o ~
K K
N %
K
commutes, ie: it is a permutation of the fibers (this is the marting diagram) that rearranges the complex
with a result that appears the same to the naked eye (this autiomorphism.

Proposition 6.1 If K is connected then the effect of a deck transformation onéftices is completely
determined its effect on a single vertex. In particular, a+idvial deck transformation acts freely ds.

Proof: Suppose we know (v, ) for some vertexy in K and for any otheb, take a path in thé-skeleton
of K from vy to v:

Vo

project

Vo

The path projects to a path i, which can then be lifted to a unique pathogt,). The commutativity
of the diagram means this lifted path is the image of the palgpne under the deck transformation, so in
particular,« () is the vertex at the end of it. Thus the transformation is uelgdetermined by its effect
on a single vertex, and in particular, only the identity map @ix a vertex. O

5'm not sure about the origins of the phrase “deck”, but onagimes a fiber to be like a deck of cards stacked over the vertex
edge or face being covered, and the deck transformatiofieshttie deck.
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The deck transformations form a group under compositiorckvhie’ll denote by@(f( — K) or just
2(K). We will see a little later on tha® is closely related to aubgroupof the fundamental group
m1(K) of the complex being covered.

(6.10) In summary then, we have two actions Ah both deficient in some way. The Path-lifting action
is of thewholegroup; (K), but only onpart of the complexi(, namely the vertices. The deck transfor-
mation action is the other way around: it has the virtue ohf&in the whole complex, vertices, edges
and faces, but one has to sacrifice some¢f).

(6.11) LetK -2 K bea covering and € 7 (K, v). Any loop representing lifts to a pathg atv which
finishes at the vertey say. We say thaj normalises the coveriniff for a loop w atv, either

1. w lifts to a loop atv and a loop at, or

2. w lifts to a non-loop ab and a non-loop at; .
Lemma 6.1 g normalises the covering iffnormaliseg* (71 (K, 7)) in w1 (K, v), ie: if w € p*(m1 (K, 7))
thengwg™! € p*(m (K, 7)).
Proof: Is an easy exercise. O
Aside 6 If G is a group and? a subgroup, theormaliser Ng (H) of H in G isthe setNg(H) = {g € G : gHg™! = H}.

One can show quite easily that the normaliser is a subgroudp, @nd indeed that it is the largest subgrouptbfn which H is
normal in the following sense: iif < N < G, thenN < Nqg(H).

(6.12) For a coverings —— K, letG = (K, v) andH = p*(m1(K,7)). If K is connected and € G
define a mapy, : Ko — K on the vertices of" as follows:

Here we have taken a representative loopjfaand lifted to a patfy atv that finishes at the vertex. If
u is a vertex ofK, take a pathw from v to w. This covers a path in K (ie: p(w) = w) which can then
be lifted to a pathw, atv;. Defineay(w) to be the terminal vertex of this lifted path.

The following is an easy exercise:

Lemma 6.2 The mapy, is well defined ifiy normalises the covering, ie: iff € No(H).

Indeed,, acts not only on the vertices, but on the whole of the complex

Theorem 6.1 «, extends to a deck transformatien? (K — K).

Proof: We sketch the proof and leave the details to the reader. Bmeéxt, to a deck transformation

we need to extend it to the edges and face&of If ¢ is an edge offs with verticesvy andwy, then
it is not hard to show that their images,(vo), a4 (71) form the endpoints of an edge ii§. Define
ay(€) to be this edge. Similarly, if is a face, one can show thay (0f) is a closed path forming the

boundary of a face, and defing (f) to be this face. It follows pretty much by definition thaf is an

automorphismy, : K — K, and it can be checked that it permutes the fibers of the auyegiving a
deck transformation. O
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Theorem 6.2 The mapy — a, induces an isomorphisiNg (H)/H = 2(K — K).

Proof: Itis not hard to check that — «, is a homomorphisiVg (H) — @(f{ — K) with kernelH
and imageZ(K — K). O

Corollary 6.1 If K -2~ K is a covering withK simply connected the@(K — K) = (K, v). In
particular, 1 (K, v) acts freely onk.

Proof: By the Subgroup Theorenf{ is the trivial subgroup of7, henceNg(H)/H = G = m (K, v),
and the result follows immediately from Theorem 6.2. Theoselcpart then follows from Proposition
6.1.

Exercise 16 Let K -2 K(X; R) be a covering of the presentati@rcomplex for some groupX'; R). The proof of the subgroup
theorem showed that the verticesfcan be identified with the right cosetfg of H = 71 (K, ) in G = 71 (K, v).

1. If g € m1(K,v), show that the action af by path lifting is given byHw — H(wg).

2. Show that the action af by deck transformations (if € Ng (H)) is given byHw — H (g~ 'w).

(6.13) A coveringK 2 K is regularif it looks the same at every vertex in the following sensev i
a loop at the basepointof K, then the lifts ofw at each vertex in the fiber ofare eithemll loopsor all
non-loops

(6.14) As regular coverings are particularly nice they should egpond to particularly nice subgroups.
This gives a normal subgroup version of the Subgroup Theorem

Theorem6.3 1. LetK -~ K be a regular covering. Then the image of the magk, )
71 (K, v) is a normal subgroup.

2. LetK be a2- complex andd a normal subgroup ofrl(K v). Then there is a connectdd and a
regular coveringk 2~ K with & -2 v and H = m; (K, 9).

Proof: If w is a loop atd thenp : [w], — [p(w)]s SO thatp, (1 (K,7)) may be identified with the
homotopy classes of loopsathat lift to loops at.

Letw; be another loop at and consider the loop; ww; *, which we Want to lift to a loop ai. Lifting
firstw, to ©® may or may not give a loop. If it does then lifting all of ww; ! clearly gives a loop too. If
it doesn’t (as in the plcture) then the lift oflwwl is obtained by liftingwy, lifting o,
w atv; and lifting w_ at the terminal vertex of this. But by regularity, the lift af :
ato; is a loop too, Sauywwy ! does indeed lift to a loop at. Thus if the homotopy o
class ofw is in p, (m (K, 7)) so is the homotopy class af,ww; . %

For the second part, construkt as in the proof of the Subgroup Theorem, so we y
need only show that the corresponding covering is regulae dlements off corre-
spond to the loops at lifting to loops atv. Letw be any loop ab andw, 2w a wq
path in K connecting’ to some other vertey in the fiber. We want thab lifts to a
loop atd, if and only if it lifts to a loop atv. But this second one happens if and onlyife H, and by
normality, this is the case if and onlyif;ww; ! is in H and thusw,ww; * lifts to a loop atd. Thus we
need thatw lifts to a loop at?; if and only if w; ww; ! lifts to a loop atw, and this is clearly the casel

In particular, we have the

Corollary 6.2 If K — K is a regular covering with = 71 (K, v) and H = p*(m, (K, 7)), then the
quotient group&/ H acts freely on the covek.

Proof: Apply Theorems 6.2 and 6.3 using the fact thBhormal inG givesNg(H) = G. O
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(6.15) Coverings that are the antithesis of regular should coomgpo subgroups that are the antithesis
of normal. With this in mind, a covering’ -2, K iscompletely irregular av € K iff there is a vertex

v € K in the fiber ofv such that any homotopically non-trivial loopathat lifts to a loop ab, lifts to a
non-loop at every other vertex of the fiber.

Aside 7 A subgroupH of a groupG is said to bamalnormalwheng € G \ H gives thatgHg—' N H = {1}. Thus, malnormal
subgroups are the antithesis of normal ones. Neverthedeamples will arise quite naturally §8.

Theorem 6.4 1. LetK -2 K be a covering, completely irregular atand supposé — v. Then
the image of the map, (K, o) *— m (K, v) is a malnormal subgroup.

2. LetK be a2-complex andd a malnormal subgroup af, (K, v). Thenthere is a connectéd and
a coveringk -~ K with & — v, completely irregular ab, and H = 7, (K, 7).

The proof is sufficiently analagous to that of the previousdriem for it to be safely left to the reader.

7 Applications of Coverings

(7.1) First we have a piece of unfinished business to clear up, yamelproof of Theorem 5.1 that if
a group is the fundamental group of a graph, then it actsyfreela tree. If the graph i, then the
coveringK corresponding to the trivial subgroup Gfis a simply connected graph, hence a ti@ehen
acts freely on this tree by Corollary 6.1.

(7.2) Here is another proof of the,

Nielsen-Schreier Theorem (version 2).A subgroup of a free group is free.

The following is a common incorrect “proof”: iff is a subgroup of free group, andr = 1is a
relation in H, then this must also be a relationif) and asF' is free this cannot be. The point is that the
relation in H is amongst a given set of generators fbrthere is no reason to suspect that we still can’t
find a set of generators fdr which have no relations amongst them. Instead we can debadbdorem
easily from coverings:

Proof: If Fis free thenF = (X;-), henceK (X;-) is a bouquet of circles. For a subgrofipof F
there is a coverindgd - K (X;-), where the compleX” must be a graph (ie: have empty set of faces)

andH = m;(K). But the fundamental group of a graph is also free, hdiide free. |

(7.3) The proof of the Nielsen-Schreier theorem requires onlystend part of the subgroup theorem.
The first part can be used to construct subgroups:

T2 x1 ... generators alternating.
N I K D C Xy =X
T2 I

Here we have a covering of the presentattetomplex for the free groufr, z2; —). The corresponding
subgroup has index (the covering complex hasvertices) and is free of rank+ 1 (use Theorem 4.2).
Thus,

Proposition 7.1 For anyn > 2 the free group of rank two contains a free subgroup of rank 1 and
indexn.

Exercise 17 Formulate a similar proposition for free subgroups of tteefgroup of rankn.

Exercise 18 Show (using coverings) that ' is the free group of rank two then the commutator subgfdy@’] has infinite index
in F. Show thafF', F'] is free of countably infinite rank.
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(7.4) The Reidemeister-Schreier algorithm Let G = (X; R) and H a subgroup. We can obtain a
presentation fof if we have the right cosets fdf in G:

~ 1

K H=({Y;5)

G~ (X;R) presentation 2-complexK

The algorithm works by following the diagram from left to hig form the presentatioz-complexk for
(X; R); let K be the covering corresponding b, constructed as in the proof of the subgroup theorem
using the cosets fail in G; find the presentation for; (K) = H using Theorem 4.2.

Exercise 19 If G = (X; R) with | X| = n,|R| = m and H a subgroup of7 of index k, then show that the presentation flir
obtained from the Reidemeister-Schreier algorithmaas- k£ + 1 generators anthk relations.

(7.5) The Cayley complexFor a complex<, a coveringf( -2, K isuniversaliff for any other covering
K' 2 K there is a coveringd — K’ with

i b K
I

commuting. Call such & thé® universal coveof K. Thus, not only is the universal cover a covering
of K, but also of any other covering &. In particular, givenz = (X; R), the universal cover of the
presentatior2-complexK (X; R) is called theCayley complexf G with respect to(X; R). It stores a
great deal of useful information about the group. B

In view of the subgroup theorerk; covers all the covers df precisely whenr, (K) is a subgroup of
all the subgroups of (K), ie: w1 (K) is the trivial subgroup so thdt is simply connected. This gives a
slightly simpler way of showing that a coverirfg is the Cayley complex.

From the construction given in the proof of the Subgroup Taep the vertices of the Cayley complex
are the cosets iy of the trivial subgroup, so of course can be identified withélements of; itself. The
edges depict the multiplicative action of the generafren the elements of: in particular, if a path
labelledw starts at (the vertex corresponding toaind finishes at (the vertex correspondingdpjhen
w = g in G. Thus, two wordsu,, wo in the generators represent the same eleme@t, &: w; =¢ wo,
exactly when paths labelled with these words and startifgfimish at the same vertex. In particular, a
wordw represents the identity i¥ exactly when a path labelled and starting at is a loop.

(7.6) The 1-skeleton of the Cayley complex is tligayley graphfor G with respect to the generators
X (the relations play no role as there are no faces). This bigeecery commonly found throughout
combinatorial group theory, but it suffers from the serideswvback that it has no convenigapological
description, whereas the Cayley complex has the virtue imigbeharacterised by its simply connected-
ness. Nevertheless it is convenient to have a simple déiscrigf it:

Proposition 7.2 A 1-complexX is the Cayley graph ofs with respect to(X) if and only if there is a
coveringK — K (X) and a bijectionf : Ky — G such thatife € C is an edge with initial vertex and
terminal vertexu, andp(e) = z; € X, thenf(u) = f(v)x; in G.

(Here,K (X) is the presentatiog-complex of the free groupX'; —), ie: a bouquet of loops).

Exercise 20 Prove Proposition 7.2.

6The uniqueness ok, upto a2-complex isomorphism, follows from the definition.
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(7.7) The symmetric grougy has a presentatiaw, y; 22, y*, (vy)3) wherer = (1,2) andy = (1,2, 3,4).
The Cayley complex with respect to this presentation is shioslow left, where a number of details have
been suppressed for clarity. The solid edges corresporeetgeneratoy with the orientations running
anti clockwise around each square face with respect to ttveand pointing normal (and the square faces
the lifts of the face corresponding to the relatign= 1). There should also k& gonal faces with bound-
ary labelz?, but these have been squashed out and replaced by a singie @dge, which thus represents
bothz andz~! edges. Similarly for the Cayley complex on the right for thteraating groupAs with
respect to the presentation, y; 22, y°, (zy)?) wherer = (1,2)(3,4) andy = (1,2, 3,4, 5).

Aside 8 Let G be a group§2 a set andZ — Sym(2) given byw — (w)g an action ofG on Q2. For anyw € Q write w9 for its
image under the action of the elemgnE G. The action idransitiveiff for any w1, w2 € Q thereis &g € G with w{ = wa. Itis
regular iff for every choice ofw; andws this elemeny is unique.

Exercise 21 Let G = (X) act regularly orf2 and define d-complexC' as follows: the vertice€’y are the sef2, and for every
w € Qandz; € X there is an edge from to w®i. Show that the resulting-complex is the Cayley graph & with respect taX.

(7.8) Cayley complexes give us a little bit more information abthetnormal subgroups of a group:

Theorem7.1Let K -2 K(X; R) be a regular covering of the presentati@rcomplex for(X; R),
G = (X;R)yandH = p.(m(K,?)). Then thel-skeleton ofX is the Cayley graph fof’/ H with respect
to the generator$ Hx) . x -

Proof: The groupG acts on the vertices dt by path-lifting, indeed transitively, but not regularlynd
regularity of the covering however gives that loopginiift to loops at every vertex irk if and only if
these loops represent an elementrbf Thus the stabiliser of every vertex &f under the path-lifting
action of G is H, and this induces a regular action @/ H on the vertices of{. Applying Exercise
21 withQ = K, gives, by Exercise 16 part 1, tHeskeleton ofK. Finally, the proof of the Subgroup

Theorem gives the following form
Hyg;
.g/;ca/Hg.ima

for the edges of<. InterpretingH ¢;z. as an element of the quotient groGy H, we can replace it by
Hg;Hz, and interpret the edge label &5, € (Hz),cx. O

Theorem 7.1 cannot be extended to Phekeletons as is easily seen: the mld:omplexf( (ie: faces
included) has fundamental growp(71 (K, 7)) by the Subgroup Theorem, but the full Cayley complex
has trivial fundamental group. While sharing the saivakeleton, the Cayley complex will have many
more faces thaik'.

Aside 9 Recall that a group- is solubleif and only if there is a sequence of subgroups

{1} =No<N1 Q-+ <N =G,
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with the successive quotienf$; /N;_1 Abelian. Thus a soluble group is the result of taking sudeessxtensions of the trivial
group by Abelian groups. By a celebrated theorem of Galaisl (adeed this is the source of the concept in group theory), a
polynomial withQ-coefficients has roots that can be expressed in terrils of, —, x, + and w/ if and only if its Galois group is
soluble.

(7.9) As an application of Theorem 7.1, we show that the free pro@ue Z /2« Z /2 (see§8) is soluble.
First, realiseZ/2 « Z/2 as the fundamental group of2acomplex. This can be done either using the
construction described i§8, or by using Theorem 8.1, from which we get a presentation; 2, y?),
and hence a presentatidrcomplex as shown below on the left:

e e — i
1 2 ,52 ,173
v v P __sewin
four copies
el es U1 Uy

Now consider the commutator subgrodp G] generated by all commutatofs b], a,b € G, which is
well known to be a normal subgroup. Moreover, the quoti@hi=, G| is the abelianisation &&/2+Z/2,
which is Klein’s4-group,Z/2 x Z /2.

By Theorem 7.1, the covering compléx corresponding tdG, G] has1-skeleton that of the Cayley
complex for thed-group with presentatiof, y; 22, y2, [x,y]). Thus thel-skeleton is as shown above
in the middle. As the covering has degree four, the fiber ohdace must contain four faces. On the
other hand, for each facg in the presentatiod-complex there must be a lift, with boundary any one
of the four pairs of edges shown K. Thus the faces oK are obtained by sewing in four copies of the
2-sphere complex, one into each of the edge pairs.

Now that we have th& corresponding t¢, G] we can apply Theorem 4.2 and obtain the presentation

m(K) =[G, G] = (a,b;ab=1) = (b;-) ~ Z,
and so we have the sequer{dé <1 Z <1 Z/2 * Z/2 with successive quotienBandZ/2 x Z/2.

Exercise 22 Show that the commutator subgroupZyfm = Z/n is free for allm,n > 2. Find the rank of this free group and
deduce that the only case in which the free group is Abeliavhisnm = n = 2.

Aside 10 Actually, for any non-trivial finite groupst and B, the free product = B is soluble if and only ifA >~ B >~ 7Z /2.

(7.10) Another important example is the Cayley complex for a figittnerated free groug, . . . , ,, ;—).
Take a familyC; of concentric circles with radii € Z*. At the center of the innermost circle place the
configuration of edges shown on the left,

Cit1 o8

with the outer vertices sitting o€f;. Construct the rest of the complex inductively: for eachteseon
the circleC;, place2n — 1 distinctnew vertices orC; ; as shown on the right above, labelling the
mutually incident edges in the same way as the first (it daesatter what order this is done in). That
ends the construction, so in particular there are no faces.

To see that the complex so constructed is the Cayley complefef, . . ., z,, ;—), we need to show
that it is a covering oK (x1, ..., x, ;—) and that it is simply-connected, ie; is trivial. That it covers
(by the obvious covering map) is trivial. 1f is a closed path starting at the central vertex, then there
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must be a maximatb such thatw contains a vertex lying of,,. This vertex is thus connected €,

by two edges from the path: one that arrives and one thatded¥et these two edges must be a spur,
for otherwise there would be distinct vertices©p_, connected to the vertex di,, contradicting the
construction of the complex. Remove this spur franto get a path with two fewer edges and repeat
the argument, untilv is seen to be (freely) homotopic to the central vertex. Thescomplex is simply
connected. Alternatively, you can just say that the com@égbviously” a tree!

< From the general comments about Cayley complexes two weids- in the
Y generators are equal iy, ..., x, ;—) precisely when paths starting at the central
w2 vertex and labelled; end at the same vertexof the Cayley complex. Since we've

already seen that this complex s a tree, therauigique pathy without spurs starting at the central vertex
and ending at. Thus removing spurs from the patlag must givey, and so we have the

Normal Form for Free Groups. Two words represent the same element of a free group prgcigein
the removal of all occurrences of,z,* or z, 'z, results inidenticalwords.

Words containing no occurrencesofz ! or z 'z, are callededuced so the theorem says that any
element of a free group is uniquely represented by a reduoed. w
In general, a normal form foF = (X; R) is a canonical choice of path to each vertex in the Cayley
complex from the base vertex. Equivalently, itis a list ofd®such that every element@fis represented
by a unique word in the list. In the example above this is paldirly easy as the complex is a tree, so
there is an obvious choice of path, namelyesndesiea path containing as few edges as possible.
Clearly any group will have a normal form with respect to anggentatio{ X ; R)—just choose a path
to each vertex in the Cayley graph—but the resulting list @fds may not be easy to describe

(7.11) A group@ is residually finiteiff for any g € G not equal to the identity, there is a finite groip
and a homomorphism : G — K such thatp(g) # 1. Itis alocal property of the grouid- in the sense
that standing at any # 1 we may pretend, by suitable squinting of the eyes (this)ithat we are in a
finite group.

We show that free groups are residually finite. [Febe free with free generators. By collecting
together consecutive occurrences of the same generagavoad can be written ag = x! ... z* with
To, # Ta,,- ONthe other hand, such a word is clearly reduced. Thus, anytnivial element of the
free group can be expressed in this form with#he# 0. Consider,

n1 ng
Tt Tk

0 <:>< """ >©
Tony T,

a2-complexl~( with a loop labelled byt; at every vertex that is not already incident with anyedges
as shown in the picture (for convenience the picture has ldeawn for the case that all the; are
positive; similar pictures apply whenever any are negatiltes easy to see that this is a covering of the
presentatiorz-complex forF'. The free groug” thus acts by path lifting o giving a homomorphism
F — Aut(K) to a finite group. The elementacts on the vertex as given in the picture, so in particular,
not fixing it. Hencew maps to a non trivial element of AUK).

Exercise 23 Show that the modular group PSZ is residually finite fint: use the presentation found §4).

(7.12) There is a celebrated conjecture due to Hanna Nuemann thatésor less (more rather than less)
open.

“When itis easy to describe the normal form can be used to solve the woldigm for the group (se$9). Be warned though,
there are groups for which no nicely described normal foristex
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8 Fundamental groups of graphs of groups

The two most important constructions in combinatorial gréheory arise from what happens when you
glue complexes together: we can glue two complexes togathag a common sub-complex, or glue a
complex to itself along two different copies of a complexdiesof it. In any case, taking the fundamental
groups of everything in sight (including the maps, ie: cdesing the homomorphisms induced by the
maps) we can interpret this set-up as “gluings” of two défergroups along common subgroups, or
of a group to itself along two isomorphic subgroups. Becafdbe symmetry of these ideas, the two
constructions are often thought of as dual to each other.

(8.1) Given a pair of complexes with the same fundamental groups;amstruct a “tube-like” complex
having these two at the ends. It is meant to midic< [0, 1].

Let K1, K5 be2-complexes and
@ mi (K, v1) — m (K2, v2)

j an isomorphism. A K, K5)-handleis constructed as follows: join the
base points by a new edge Let v, be a loop representing a genera-
tor for w1 (K1, v1) arising via Theorem 4.2 ang, a representative loop
€ for its image under. Sew in a new face with boundary label the path
y1ev2e~ L. Perform this process for each generatorof Ky, vy ).

(8.2) Let Gy, G2 and H be groups ancb,, oo homomorphisms,

G— g q

Let K, Ko and K be single-vertexe@-complexes withr; (K;) & G; andm(Ky) = H (for example
they could be presentatiaicomplexes with respect to some presentations for the gnaes). Apply
Proposition 4.2 to get subdivisios, K of K, and2-complex map®; such that the diagrams

71 (Ko, v) 21 mi(Kq,v1)  m(Ko,v) o2

> .

w1 (K, v) m (K, v)

1 (K2, v2)

12
R
i\i/

commute.
We now have2-complexes and-complex maps,

fundamental groups Y1 ©2

P1 Gy H G

K, K, K

D2

Ky

that completely models the group situation we started vitie: complexes and maps on the left induce
the groups and homomorphisms on the right. By Propositibme. can ensure, by modifying the; if
necessary, that the are dimension preserving.

Form the(K, K)-handle using the isomorphism (K) = m(Ky) = 71(K), so that we have the
following picture:

()2 : glueQ A

Glue the three complexes together usinghas attaching maps. K is the resulting2-complex, call
its fundamental group thigpe | amalgam o7, and G, along H (with respect tap; andys).
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(8.3) Mainly for historical reasons, a special place is resereedifose amalgams that arise via maps
that areinjections In this case we may think of the situation as having two gsatlp, G> each with a
subgroupH; which are isomorphidf; = H = H,. The resulting amalgam is called tfree product
of G; and G, amalgamated oveH, and normally written without reference to the injectivepaas
G1 *g GQ.

(8.4) Here is an example nevertheless where the homomorphisare not injective. Let?; = (a, b;-),

G- be the trivial group and? = (c¢;-), the integers. The map; sendsc to the commutatofa, b] =
aba=1b~1, andyp, must send to the identity inG>. We realise each of the groups as fundamental groups
of the complexes:

oo O (B

To realise the map; by a2-complex map we need to subdivide the compiéxas described in Propo-
sition 4.2. The mapp- sends the single generating loopiof to the single generating loop &f; so no
subdivision is needed there. Thus the compleXeend K are as on the left,

D@ ©Q

with the (K, K)-handle on the right a cylinder.
v

e1 es The effect of carrying out the gluings is on the one hand t@ ghe complex
K into the interior “hole” of the cylinder, while on the other identify the edges
around the outside according to the scheme given by the ceéatonu Applying
Y Theorem 4.2 to this complex gives (K ) = Z & Z. Notice that we have simplified
the drawing of the complex. Strictly speaking there sho@dtges running from
7 the single vertex on the inside circle to all four verticestba outside one as the
gluing has identified these four vertices into a single verte

€2

(8.5) Finding a presentation for a type | amalgam,
Theorem 8.1 If

G— g q

where thei; = (X;; R;) and H = (Y'), then the type | amalgam has presentation,
(X1, Xo; Ry, Ry, 01(y) = ¢2(y) forall y € Y)

Notice that a consequence of the Theorem is that the amalgpends only on thé/, G, and thep;,
and not on the choice of complexes used in the construction.

Proof: We may assume that the presentations given arise by applyiagrem 4.2 to the complexes
K,;. Thus we have spanning tre&$ for the K; with the X; Schreier generators corresponding to
the edges of; not in the tre€l; and theR; the boundaries of faces. L&t be the glued up com-
plex described in the construction, letting the basepoiof K, be the basepoint fofX. Let T be
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the spanning tree obtained by taking the unionigfand 7, together with the edge of the han-
dle. Schreier generators fan (K) are then theX; together with the homotopy classes of the loops
eXoe ™t = {ex et |z, represents a generatordy }. The relations are th&;, R, together with those
arising from the faces of the handle (h&ké are the relationd?, with the z, € X, replaced by the
exne~t). The handle relations are clearly of the foun(y) = 2 (y) forally € Y. O

(8.6) If H is the trivial group then the homomorphismsare automatically injective, sending the single
element ofH to the identities of th&7;. Theorem 8.1 gives the presentation

<X1) X27 Rl) R2>
for the type | amalgam, called ttiee produciof G; andG,.

Exercise 24 If the groupG is the type | amalgam af1, G2 along H, show that there are mags, 62 making the diagram on the
left commute,

H Go
©2
H G
2
¥1 02 52
®1 02
6
G1 ! G
6
G1 ! G 7 \

and moreover, if7 also makes this diagram commute (through the use of fiap®;) then there is a homomorphis@i — G
with the diagram above right commuting. Thus the type | amralgs apush-outin the category of groups.

(8.7) If the type | amalgam arose from gluing different complexagether along a “common” subcom-
plex then the type Il arises by gluing a complex to itself glomo “copies” of a sub-complex. L&t and
H be groups ang;, w2 homomorphisms,

P2

Let K and K, be single-vertexeg-complexes with fundamental grougsandH. Apply Proposition 4.2
to get subdivisiong<, K of K, and map$; so that as before, thg induce homomorphisms that are the
same as the; (upto an automorphism d@¥). Thus, we now have-complexes and-complex maps that
induce the original group theoretic picture:

K $1
‘}K fundamental groups _,.————
K G_H
P2 —K P2
Form the( K, K')-handle using the isomorphism (K) 2 m (K) = , so that we have the follow-

ing picture:

oy

and glue the two complexes together usinghas attaching maps. Call the fundamental group of the
resulting complex theype Il amalgam oy and H (with respect tap; and s).
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(8.8) History again singles out the special case where the mapse injective, calling the amalgam the
HNN-extension of G by HThe HNN are the initials of Graham Higman, Bernard Neumarthtdanna
Neumann who first concocted (an algebraic version of) thistraction. We will justify the use of the
word “extension” later on.

(8.9) As an example leZ and H both be the trivial groupsi = (a;a = 1) andH = (b;b = 1) with
p1 = @2 being the obvious maps. Realising all these groups usingahe complex as in the example
above we get as our final complex,

a cylinder with its ends identified. Applying Theorem 4.2, ged that the HNN-extension of the trivial
group by the trivial group i€.

Exercise 25 Show that the HNN-extension 6F by the trivial group is the free produ = Z.
(8.10) As with the type | amalgams we have,

Theorem 8.2 If

P2
whereG = (X; Ry and H = (Y'), then the type Il amalgam has presentation,

(X, t; R, 01(y) =t " pa(y)tforally € Y)

Proof: The proof is much as for Theorem 8.1. We have a spanninditries the 1-skeleton ofK; so
that the generator¥ correspond to the edges not in this tree. To get a spanniaddre< we takeT
together with the edgefrom the handle (which by the gluings has been turned int@p)loT he relators
are those fronti (the faces ofi(; are still there inK') together with those arising from the faces of the
handle. These are of the form given by definition. O

(8.11) In §7 we had the normal form for free groups, which was a list ofdgoin the generators for
the group such that any element was represented by preciselyord on the list. There is a similar
procedure for the two types of amalgams, the details of whietwon't go into here (see for instance
[6]). Nevertheless, a useful consequence is the,

Corollary 8.1 The vertex groups in a free product with amalgamation or H&{tension inject.

In particular,GG injects into the HNN-extension @ by H, so it is indeed an extension.

(8.12) The type | and Il amalgams (and in particular the free proauittt amalgamation and HNN-
extension) are special cases of a more general construction

H Gy, Suppose we have a graghwith each vertex incident with finitely many
Gu, - edges. We allow for the possibility thBthas multiple edges between vertices
and loops at a vertex. For each verterf I' we have avertex groupG,, and
for each edge anedge groupH.. If the edge connects the verticesandwv, there are homomorphisms
i+ H. — G,,; if the edge is a loop at the vertexwe thus have two homomorphisms 8t into G,,.
The graph, together with the groups and homomorphismslisdcagraph of groups
Form complexes(,, , K., K for all the vertices and edges realising the respectiveggobor each
edge, form the handle complex as we did above and carry othealjluings. The fundamental group

34



of the resulting complex is called trianalgam of the graph of groupdf all the homomorphisms are
injections we have fundamental group of graph of groups

The type | and Il amalgams are clearly amalgams in this sehgeenthe graph has either two vertices
joined by a single edge, or a single vertex incident with glothe examples above are,

amalgan{Z*Zoio 1)XZDZ ﬂl(lol)%z

(8.13) The mapy; : Z = (z) — Z given byy;(z) = z! is an injective homomorphism, so that the data
¥p

(7 Z)

Pq
gives the HNN-extension with presentationt : z¢ = t~12Pt), a so-calledaumslag-Solitar group
(8.14) In finding a presentation for an amalgam, the reader may lemsaes that we have already done all
the hard work. Indeed, an amalgam as defined above is jusuaseg of type | and Il amalgams (so in
particular a fundamental group of a graph of groups is justgence of free products with amalgamation
and HNN-extensions).

If the graphl” has the form shown below left, then to find the amalgam we rneedrstruct a complex
of the form on the right,

where the subcomplexds, , K are the complexes needed for the amalgams arising from #pdhgof
groupsl'y, I's. Thus the amalgam is a type | amalgam of groGhsand G, over H,, where theG; are

the amalgams coming from tfig.
/

Similarly if I has the form below left
P
@D (=)
NG
the amalgam is a type Il amalgam@f and H, with G; the amalgam coming from the graph.

Thus, to obtain a presentation for an amalgam, take a spautr@a’” for the graphl’, and perform
type | amalgams along the edges of the tree and type || amalg&ng the edges not in the tree.

(8.15) Recall that areeis a simply connected-dimensional complef’, and that a groug: acts onTl’
orientation preservingly, which is to say, without inverss.

We saw group actions on treesgis, where a group that does so without fixing a vertex is a freagr
In general, if the stabilisers of the vertices is non-tlivia have,

The Aboreal Dictionary (Serre) A group acts on a tree if and only if it is the fundamental grafia
graph of groups.
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If G acts onT then the graph i§'/G with the vertex/edge groups stabilizers in the actiorGif=
m1(graph of group§’) then the tred" is the universal cover df (as al-complex).

(8.16) We saw ing7 that the free product
1
w1 (Z/me——e7Z/n)

contained a free subgroup as a subgroup of index In general, a group igirtually freeif and only if
it contains a free subgroup bhite index. It turns out that examples such as the one above atfoyail
the virtually free groups.

Theorem 8.3 (Karrass-Pietrowski-Solitar) A group is virtually free if and only if it it the fundamental
group of a graph of groups with all the vertex groups finite.

(Notice that the edge groups, injecting as they do the ventenps, will also be finite).
(8.17) A consequence of the theorem above is the following
Corollary 8.2 (Stallings-Swan) A virtually free torsion free group is free.

Proof: The group is virtually free hence of the form given in the tlen. As the group is torsion free
and the vertex groups inject into it, these vertex groupg @ilbe trivial (and hence the edge groups are
too). Thus we have (graph of grouppwith a trivial group at each vertex and edge. Taking a spannin
tree for the graph, we perform free products with amalgaonatf trivial groups over trivial groups (the
result is the trivial group) followed by a series of HNN-ax$éons by the trivial group (each of which
gives a free factor af). Thus the group i& « - - - x Z, ie: free. |

9 Word Problems

In dealing with a presentation for a group there is a greal deambiguity in how one can express
individual elements. Sometimes it's obvious when two ddfe expressions in fact represent the same
element, as we saw with free groupssin. In general though, life can be made arbitrarily hard. The
analysis of this, thevord problem s the subject of this section, and indirectly, the reshefke lectures.
Itis single handedly responsible for most of the major depeients in the subject, in the sense that they
arose initially through attempts to understand bettergttigtion.

(9.1) Consider the grougX; R) with X finite. Theword problenfor (X; R) asks for the existence of
an algorithm which takes as input

input - output yes, ifw=xp)1
w ————— |algorithmA| ——— {no, it #(x.p) 1

any wordw in the generator&X” and in a finite number of steps produces the output “yes’ # x.r) 1
and “no” otherwise. We say th&k; R ) has solvable word problem in this case.

Aside 11 By algorithm we mean Turing machine. There is of course a &mefinition, but here is the guts of it: the machine
has a control unit which can be in any one of a finite numberatest The unit controls a tape head positioned above a square
on a tape of arbitrary length, which is divided into theseasgs. Each square has a symbol printed in it from a finite aigha
The machine works in discrete time, with each new step eithanging the state of the control unit, overwriting the sghib the
square currently being scanned by the tape head, or mowenple head one square to the left or right on the tape.

The Church-Turing thesiss that this definition captures the intuitive notion of agaithm. In practical situations the thesis is
used in the following way: a process that “feels” algorithrig described, and the existence of a Turing machine peitfigrthe
algorithm is deduced. It is all very convenient, as congitngcTuring machines to do even the most basic tasks is hdoresty
complicated.
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(9.2) For example{z; z™) could use an algorithm that countsiinthe exponent surma(w) of x, with
output “yes” iff e(w) = 0 modn.

(9.3) Given two presentationsX; R) and(Y’; .S) for the same groug (with | X|, |Y| < o0), then any
y; € Y can be expressed as awdrg, . .. z;, ;) inthe X's. If (X; R) has solvable word problem and
aword in the generatods, then replacing eact; in w with z;, ... x; ;) gives a word in the generators
X that can be fed through the Turing machine solving the wootllem for(X; R ). This gives a solution
for the word problem iY’; S).

Thus, having solvable word problem is a property of groups pnesentations, and in future we will
just say thatz has solvable word problem whenever some presentationdoeis.A priori the relations
in a presentation play no role in the formulation of the wordipem, so in determining if a group has
solvable word problem, we may do so with reference just ta afsgenerators.

Exercise 26 Show that if two groups have solvable word problem using #meesTuring machine then they are isomorphic.

(9.4) So now for the bad news:

Theorem 9.1 (Boone-Novikov, Higman)There exists a finitely presented group with unsolvable word
problem.

The theorem can be made quite concrete in that there is arcprésentation on 10 generators and 29
relations that can be shown to have unsolvable word problem.

(9.5) Perhaps the most striking result on algorithmic unsoltgtig the following theorem of S. Adian.
Let & be a collection of groups such that

1. If G andH are isomorphic thety € & ifand only if H € &7;
2. there is a finitely presented groGpe &7;

3. there is finitely presented grodpthat cannot be embedded in any grough

Call & aMarkov propertyof groups. Examples of Markov properties are: being thégiriyroup; being
a finite group; being Abelian; being simple and being free.

Theorem 9.2 (Adian) For any Markov property? there is no algorithm to determine if an arbitrarily
finitely presented group is ig?.

(9.6) So much for the bad news. The good news is that many classagoftant groups occurring in
nature ar&knownto have solvable word problem.

The first obvious examples are the finite groups7i& {go = 1, ..., gn—1} then create the multipli-
cation table forG, ie: then x n array with (4, j)-th entry the producy;g;. Using the elements of the
group itself as generators, any wayd . . . g;, can be evaluated using the table, representing the identity
if this evaluation yieldgj, = 1.

(9.7) A groupG is aone relatorgroup iff G = (X; R) with |[R| = 1.

Theorem 9.3 (Magnus) One relator groups have solvable word problem.

An important example is given at the end of this section.

(9.8) Many groups arising in geometry and topology have solvaloielyroblem: Coxeter groups, Braid
and Artin groups, the fundamental groups of closed 2-médgfadhe fundamental groups of closed ori-
entable 3-manifolds, the fundamental groups of any gedoi@imanifold satisfying Thurstons geometri-
sation conjecture (except those containing a Sol-mandofdponent), mapping class groups of surfaces,
and linear groups!

8Strictly speaking, the groups\; R) and(Y’; S') are isomorphic, withz;, ... x;, () the image under this isomorphismgf.
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(9.9) Returning to our topological viewpoint, the word problem o= (X ; R) can be phrased in terms
of the Cayley complex of the presentatiQk; R). In fact, only thel-dimensional information is needed,
so we consider th€ayley graphthel-skeleton of this complex. lf andv are vertices, led(u, v) be the
minimum number of edges in a path between them.

Proposition 9.1 G = (X; R) has solvable word problem precisely when there is an alorithat con-
structs the ballB(n) = {all verticesu with d(u,1) < n} U {incident edgepin the Cayley graph for
(X; R).

Proof: Given such an algorithm for constructing a ball in the Caydegph andw a word in(X; R),
construct a ball of sufficient size to accommodate the pathllledw starting at the vertex corresponding
to the identity. The word represents the identity elemeetigely when this path closes to form a loop.

fun] On the other hand, lefl be an algorithm for solving the word problem in
mz] (X; R) and £ the set of all words in the generataks involving at mostn of

the X’s. Define an equivalence relation on this set of wordsy~ ws iff w;
andw, represent the same elements of the gréupvhich you determine by feedinzglw;1 into the
algorithmA. Call an equivalence class i##f/~ a vertex, and join two verticdsv; | and[w.] by an edge
labelledz,, € X precisely whenw; z, = w,, determined once again by feedingz,w, * into algorithm
A. Theresult is clearly the ball of radiusin the Cayley graph. O

(9.10) Use the previous and the constructions of Cayley complexetdow that the word problem is
solvable for free groups; fundamental groups of graphsafigs if the vertex groups have solvable word
problem; eg: finite groups do $0/2 *x Z/3 = PSL,Z has solvable word problem.

(9.11) An important example is the solution to the word problem idace group.We have,
v € v

2g = <l‘1;y17---7xgayg§ Hz[xuyzp = T g

the presentatio@-complex having edgese;, €; each occurring twice in the boundary of a single face
f. The Cayley complex is then constructed inductively, musfioa free groups. We will do the case
g = 2. Take a family of concentric circleS; with radiii € Z>°, and place an octagonal face as shown
below left,

ay

bl 1

b ay

ag, bg
ai
b1 a2
ba

ag 9

with its vertices sitting on the first circl€;. Unlike the octagon in the presentatidrcomplex, every
vertex and edge on the octagordistinct We are therefore breaking our usual convention for drawing
complexes whereby similarly labelled objects are idemtifigt thei-th step in the construction we have
vertices onC;_1, each already incident with= 2 or 3 edges. For each such vertex, pl&ce i new
vertices onC;, joined by new edges to the vertex 6f_;. Each consecutive pair of new edges is meant
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to demarcate an octagonal region, so new vertices need tadedonC; as shown below:

8 — i vertices

// \ \ 4v3rtices

%

5 vertices- 5 vertices

Ci—1

1 vertices

Finally, the edges are labelled according to the schenstriited above right (the scheme shows how the
edges are arranged around the single vertex in the preiser@atomplex; just carry out the gluings of
the edges!)

Exercise 27
1. Show that the edges can be labelled in a consistent manner.

2. Show that the mapping sending all the vertices of the tiegutomplex to the single vertex, edges similarly labelled
those with the same labels and all faced tis a covering of the presentati@icomplex.

3. Show that the complex constructed has trivial fundamemtaup, hence is the Cayley complex for the surface gfaup

(9.12) Putting the Cayley complex to work, suppose thas a word in ther;, y; representing the identity
element ofX,, so in particular, a path labelled starting at the identity vertex closes. Removing all the
spurs fromw there is a maximah such that the path contains vertices@y. Moreover, the path must
traverse an edge fromi,, _; to C,, in order to reaclt’,,, and cannot return immediately €9, _, by going
back down this same edge (as this would be a spur). The patthtsino choice but to return €3,

via one of the other edges, but not before it has passed thiagmplete set of or 5 vertices onC),:

5 vertices

\

Ch

Cn -1 ‘

The conclusion is thaty must travel along at leastedges that are consecutive on the same face of the
Cayley complex (there areif the path turns right in the picture above, otherwise thees). Conse-
quently, the wordv contains as a subword at ledstonsecutive letters in some cyclic permutation of the
relator worde, yy 7 'yt wayery tys L

All of which leads to,

Dehn’s Algorithm Let ¥, be a surface group and a word in the generators;,y; with all spurs
removed. Replace all subwordswtonsisting of> 2¢-+1 consecutive letters in some cyclic permutation
of the relator word by the< 2g — 1 consecutive letters remaining in the relator. Themepresents the
identity element of, if and only if repeated applications of this process resulthie empty word.

w_— Clearly, if this process results in the empty word themmust represent the iden-
tity. On the other hand, ifv represents the identity then by the above there must be a
subword consisting af 2g + 1 consecutive letters in some cyclic permutation of the

f relator, ie: a subpath of the pathconsisting of more than half the boundary label of
P / . . :

w some face in the Cayley complex. Replacing this subword bysttorter part of the
boundary label gives a word’ involving fewer generators, but nevertheless, still repreing the iden-
tity. The process can then be repeated with this shorter veord must stop eventually with the empty
word.
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(9.13) There is no such algorithm for the presentation for fundaaiemoup C%La_tatus,\

Ti| eg N f e1 = ’ ]
v e>2 v I
> (z,y;[z,y] = 1) X Z D Z. szﬁ

where the Cayley complex is shown on the right. The problethas there are loops in the Cayley
complex that do not travel along more than half the boundaanyg face.

(9.14) Dehn'’s algorithm provides a very neat and efficient soluttine word problem in surface groups
of genusg > 2. In general, we say tha¥ = (X; R) has a Dehn’s algorithmvhenever there is some
finite set of word{W7, ..., W, }, each representing the identity@ and such that for any other word
w representing the identity, there i9%; = w;u;, with u; involving more generators than, andw =

w uw” .

The algorithm then runs as follows: for any wardremove all occurrences of,x ! andz 'z, and
replace any subword involving more than half of a cyclic petettion of al?/; with the remaining shorter
part. Thenw represents the identity ifX'; R) if repeated application of this results in the empty word.

We will see later that it doesn’t matter which presentat®unsed forG, they will all have a Dehn’s
algorithm if any one of them does. Thus we will be able to spefakgroup having a Dehn'’s algorithm.

Butthese are just details. The real question of course islwgrioups have a Dehn'’s algorithm? What is
it about the surface groups of genu2 that gives such a nice solution to the word problem? Remé#rkab
it will turn out not to be an algebraic, butggeometrigproperty of these groups that provides the key.

10 Hyperbolic Geometry

This section is quite sketchy as | imagine the reader is resdp familiar with hyperbolic space.

(10.1) Hyperbolic space of dimensionis dual to then-sphere, both in its construction and properties.
One obtainss™ by taking the standard positive definite symmetric fornR&ri ! and taking all the vectors
of squared norni. To construct”, consideR™*! equipped now with the standard Hermitian form of
signaturg(1, n). Thus with respect to the standard basis we have the profitvebwectors given by

(u,v)r, = —ugv1 + Zuwi.

i>2

The “L” stands for Lorentz. The (Lorentz) length of a vector is defiby the usuallul|, = (u,u)}/>.

Because of the negative sign in the first coordinate of thehizrproduct, we can obtain vectors of length
zero and vectors whose lengths are pure imaginary numbaikth@ vectors oR™*+! space-likgtime-
like andlight-like if their lengths are real, complex or zero respectively. élygolic space of dimension
n, like S™, is then a “sphere”, only now a sphere of radias shown below left:

geodesic

HTL
i 2 _ 2
light-conext = ;5,77

sphere radius ik
u space-like
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This “sphere” is disconnected, so we need to throw away otieeoheets. Alternatively, “projectivise”
the time-like vectors, so that the pointsléf are thel-dimensional linear subspacesR/f*! consisting
entirely of time-like vectors.

Aside 12 The terminology light-like, time-like, and so on, comes abasR™*! with the Lorentz norm is a model for the
Minkowski space-time of special relativity.

Geodesics on the-sphere are the intersection of linear hyperplanes Withand so forH"”, where
now the result can be parametrised as a curve of the foosh 0, sinh 6). In particular, given a space-
like vectoru, the orthogonal complement- (where orthogonal is interpreted with respect to the Larent
product) is a hyperplane intersectiftf in a geodesic, and all geodesics arise in this way.

(10.2) One can stereographically projétt into R™ and so obtain thBoincat ball modefor hyperbolic
space.

For the rest of this section we restrict for convenience &2tldimensional
case, although everything we say is true in arbitrary dinoess The space is
now in an open disc of radius(in C say, rather thaiR?), the geodesics being
diameters and those portions of circles centered on thedaosynThe element
of arc length in this model is given bys| = 2|dz|/(1 — |z|?), ie: a pathy has

length
= [ 22
S 1—2]2

In particular, near the center of the dige|(small) the metric in this model is “almost the same” as the
Euclidean metric.

(10.3) An application of this last observation that is significant @is is that we can tessellai by
regular octagons with eight meeting at every vertex (andswértex angles are dir/8). To see why,
we first note that a regular Euclidean octagon has vertexed@nglg, so as long as we are close enough
to 0, we can find a regular octagonlif? with vertex angleésw/8 — ¢ for anye > 0. Now pull the vertices
towards infinity at constant speed (so that the octagon reswagular at all times). In the limit we have
the one below right where now the vertex angles are all zero.

octagon with vertex

O

an Ie27T
9 8

Thus there must be an intermediary octagon with vertex argl¢8. The sides of our octagon are all
geodesics so we can reflect in these sides once we have gutdlried what we mean by a hyperbolic
reflection: as each geodesic side is the intersectioniAtof a hyperplanas, we take the linear map
of R3 to itself that sends to —u and fixes pointwises. When restricted té1? this gives a hyperbolic
reflection in the geodesic.

Now take the group generated by the eight reflections in thesf this regular octagon. The images
tessellate all ol without overlap in the manner desired.

(10.4) The other well known model fdf? is the upper half plang'm(=)>0,
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The geodesics are those portions of Euclidean lines peipdadto
the real axis and of circles centered on the real axis. Thaeasieof arc

/\ length is nowlds| = |dz|/Im(z) so a parametrised curvehas length
dz
il = [ A
N

Im(z)

The metric is thus compressed along the real axis so thapéaap infinitely far away.

(10.5) It will be useful to have some isometries of the upper halfplenodel at our disposal. In fact, the
isometries are generated by (in the sense that every ispimetifinite composition of) two fundamental
types:

ot

=

The first is Euclidean reflection in the geodesics of the finstl labove. The second isversionin the
circles, where for any, its image(’ under the inversion satisfies, and is uniquely definedcby/| = 2,
wherer is the radius of the circle.

Exercise 28 By suitably combining Euclidean reflections and inversjastow that the following are isometries of the upper half
plane: translation parallel to the real axis and scalingallycby a factor ofk from any point on the real axis.

(10.6) Juggling the models back and forth (this is a feature of amntmin this area) we can prove the
following remarkable property of the hyperbolic plane:agiany triangle, no matter how large, each side
is contained in an(1 + v/2)-neighborhood of the union of the other two. This is to be wasted strongly
with the Euclidean plane, where a triangle can be scaledavithside getting arbitrarily far away from
the other two. To see the claim, start with an arbitrary glarand pull its vertices off to infinity. We
show that this property holds for the resulting “ideal” trige, in which case it will clearly also hold for
the original one.

Now switch to the upper half plane model with our ideal trikeras below left, and move it into a position
where the result is more transparent using a sequence oéises

invert, translate

and scale
1 1
4 4
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Invert in the circle shown, which has the effect of sendingt tvertex of the triangle tec. Translate
parallel to the real axis so the triangle is centered ardumtbw scale radially by a suitable factor to get
the result above right.

A point on the vertical side has distange< In(1 + \/2) from the other vertical side, hence contained
in aln(1 + v/2)-neighborhood of the other two sides. This leaves the paintthe bottom side. By
scrutinizing the metric, one may see that the pdaing furthest from the vertical sides of any point on the
bottom side. Thus it remains to check the length of a geodesitc A to a vertical side, which we leave
as an exercise.

11 Geometric Properties of Groups

The geometry of groups is the study of groups as metric spddesmotivating example is the integers
Z, which is obviously a metric space as we know how to measuréigtance between integers. Unfor-
tunately, it is not a very interesting metric space. ThegRabn the other handre an interesting space,
but in passing fronZ to R too much of the group structure is lost.

Alternatively, we could study only those metric propertié& that are unchanged by a passag®&to
Such a theory would need to be insensitive to “compact peations” such as squashing out compact
sets (which is one way of getting froRito Z). This is sometimes called “coarse geometry”, as the very
fine detail of the reals has disappeared to be replaced by#rseness of the integers.

Another common term is “large scale geometry”. As one movethér away froniZ the apparent
distance between the points decreases. In the limit, they ¢t@alesced into a continuous whole. In other
words, we study those metric properties that are so obvimysdan still be seen from infinitely far away.

Gromov's original term was “asymptotic” group theory, ahid worth quoting from his seminal mono-
graph [3],

“This space may appear boring and uneventful to a geometersiece it is discrete and the
traditional local (eg: topological and infinitesimal) mauoery does not run. To regain the
geometric perspective one has to change one’s position awd the observation point far
away. Then the metric seen from the distardeecomes the original distance divided dy
and ford — oo the points coalesce into a connected continuous solid wiitgh occupies
the visual horizon without any gaps or holes and fills our getem's heart with joy.”

(11.1) We assume the reader is familiar with the notion of a meton a setX. A geodesibetween the
pointsz,y € X is a continuous mapping : [0,c¢ = d(z,y)] C R — X such thaty(0) = z,v(c) = y
andd(v(t),y(t')) = |[t—t'| foranyt,t’ € [0,c]. Ametric space is geodesic spadc# there is a geodesic
(not necessarily unique) between any two points.

(11.2) Our first example is the following metric on a groGpwith generating set. For anyg € G,
defineds (1, g) = n iff g can be expressed as a ward= s;, ... s;, of lengthn in the generators, but
not as a word involving fewer tham occurences of the generators. Defiidg, g2) = ds(1, g297 ),
theword metricon G with respect to the generating set The distance between two elemegtsg, of
the group is thus the smallest number of generators needeagtess an elementsuch thatig; = go.
Notice that by definition, thé&’-action by right multiplication oG, dg) is isometric.

(11.3) Here is another example, which when looked at from an infigigéance, will turn out to be the
same as the previous one. L&t = K be a grapl2-complex. Each edge can be given a metric by
replacing it with a copy of0, 1] C R equipped with the usual metric. Given a path (using finitegnsn
edges) between two points (now not necessarily verticds)aligs length to be the sum of the lengths of
the edges or partial edges in the path. The distance betweepdints is the infimum of the lengths of
all paths between the two. If the points are just verticen thés is obviously just the minimum number
of edges in a path connecting them.

Call this thegraph metricon K.
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(11.4) Let (X, dx) and (Y, dy) be metric spaces. A map (not necessarily continugusX — Y is a
(X, €)-quasi isometric embeddiriband only if we have,

dx(x,y) < My (f(2), f(y)) + e anddy (f(x), f(y)) < Mdx (z,y) + ¢,

for some) > 1 ande > 0. Moreover, the map is quasi isometryff there is aC' > 0 such that every
point of Y is in aC-neighborhood off (X).

Exercise 29 Show that if a mapf allows us to bound the metrics accordingdt® < A1dy + 1 anddy < Aadx + €2, then
this is a(\, €)-quasi isometry.

Exercise 30

1. Show that if there is &), ¢)-quasi isometryf : X — Y then there is &\’, ¢’)-quasi isometryf’ : ¥ — X and a constant
C > 0such thady (f f'(y),y) < C anddx (f'f(z),z) < C.

2. Show that ifX — Y is (A\1,e1)-quasi isometry and” — Z is (A2, e2)-quasi isometry then the composition is a
(A1 A2, A2e1 + €2)-quasi isometryX — Z.
Thus quasi isometry is an equivalence relation on the clball metric spaces.

(11.5) Our first example of a quasi-isometry is squashing out a coirge (or more generally, a set of
finite diameter). LeCC' be a compact subset of our spa¥eand define an equivalence relation &nby
letting «x ~ y if and only if eitherz andy both belong taC' or x = y. Using the same symbols for an
equivalence class i /~ as for the points o, we define a metrid’ on the quotient space by

! _ d(l‘,y),lﬂ, ¢C
d(@,y) = { dr. Oy & C

The quotient mapping (sending a pointihto its equivalence class modulo) is then a(1, K)-quasi
isometry fromX to X/~, whereK is the diameter of the compact s@t(ie: the maximum distance
between points iid).

(11.6) scaling by a factor oA\ is a (), 0)-quasi isometry;

(11.7) If (X,d) a space an@ C X is such thatX is contained in a’-neighborhood of” for some
C > 0, then the inclusion magy,d) — (X,d) is a(1,0)-quasi isometry, and s& andY are quasi
isometric. (note that of course the inclusion isismmetry but the spaces are not isometric)

A very typical example of quasi isometric spaces is thus idiex by “pixelisation”. LetX be a space
tessellated by copies of a closed compact(dte: the sets coveX, and two different copies aof’
intersect only in their boundaries). LEtbe a collection of points such that there is exactly one ifmeac
copy ofC'. ThenY with the restricted metric to it is quasi isometricxa

(11.8) Let G be a group with generating sétanddg the word metric orG. Let K be the Cayley graph
of G with respect to the generatassand equipped with the graph metric. Paths between verticas i
correspond to words in the generators that multiply the elgraorresponding to the start vertex to obtain
the element corresponding to the finish vertex. Thus thetgnagtric, restricted to the vertices &f is
just the word metric when the vertices are interpreted anehts of the grougs. As any point on an
edge ofK is distance< ; from a vertex we have théte spacéG, ds) and K with the graph metric are
guasi isometric

(11.9) Let S, S’ be two generating sets for a groGpwith dg, ds- the corresponding word metrics. To
bound these two in terms of each other it suffices to considearttes of the formi(1, g) as the metrics
are defined in terms of these. Let,

= (1 ! = 1,5}
p=max{ds (1,5)}, andu’ = max{ds(1, ')}

If g = s, ...s;, aword in the generator$ of minimal length, then eacky, can be written as a product
of at mosty of the generators fromf’. Thusds: (1, g9) < un = uds(1,g). Similarly, ds(1,g) < p'n =
udss (1, g), and sathe spaces$G, ds) and (G, dg/) are quasi isometric

Thus alsoany two Cayley graphs for a group are quasi isometric
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(11.20) In light of the last two observations, we say that a gréupnd a spac&’ are quasi isometric if
and only if X is isometric to a Cayley graph &f with respect to some set of generators. In particular, two
groups are quasi isometric if any two (hence every two) Gegtaphs for the groups are quasi isometric.

(11.11)Here is a simple example of an asymptotic result about groups

Theorem 11.1 Let K (X ;—) be a presentatiog-complex for a free group of finite rank add — K a
covering of infinite degree with the corresponding subgrfinifely generated. TheR is quasi isometric
to the universal cover ok (X';—), where both are equipped with the graph metric.

Indeed, ifK; is the universal cover, then it is the Cayley complex of tlee fgroup with respect to the
free generatorX, and so is an infinit€| X |-valent tree. We show in fact that there is an integiesuch
that if C is the set of all points distance at masfrom the vertex corresponding to the identity iy,
then outside of the sét, the graphd<; andK are identical:

squasiC

—
[ \E—

Proof: Let© be the basepoint fok . By the finitely generated condition, and the exercisesvaedmy
spanning tree fok{ must contain all but finitely many of the edgesiof In particular, we can construct
a spanning tree inductively as follows: for every vertexatised from the basepoint, choose precisely
one of the vertices adjacent to the vertex having distaheel from ¢, and add the connecting edge to
the tree. B

By the definition of covering, each vertex & has an incoming and an outgoing-edge for each
z; € X. If one of these edges is a loop or two of them start and endeagame vertex, then a spanning
tree for K'* cannot contain the loop, or can contain at most one of the tige® Thus, this can happen
at only finitely many vertices. B

Thus, apart from these finitely many, the arrangement of dgsund a vertex ok is as on the left:

with all the vertices shown distinct. Now suppose we havertexe’ of K such that there are geodesics
~1,72 from the basepoint that arrive &t across different edges from the (distinct) vertiéesand .
The two edges therefore cannot both be in the spanning trestrooted above, and therefore, there are
only finitely many vertices having this “double geodesicbperty. Letd be big enough so that all the
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vertices with edge arrangements not like the above andelldhtices with this double geodesic property
have distance: d from the basepoint, and |€t be the collection of points distaneed from o.

For any vertex outside af, there are| X | distinct vertices adjacent to it, and any geodesic fioto
the vertex must arrive on a fixed one of these edges. This nibahprecisely one of the| X | vertices
has distance — 1 from © and all the others have distande- 1. These are hence also outside of the
regionC, and one may continue inductively, getting that the parkodutsideC is identical to that part
of K; outside a ball of radiug centered on the vertex corresponding to the identity. O

Exercise 31

1. If K1 is an infinite graph with each vertex incident with finitely mysedges, and’ is a spanning tree fak'! that contains
all but finitely many edges ok'!, thenany spanning tree fofC! contains all but finitely many edges &f’.

2. If K is a2-complex andrq (K) is finitely generated then there is a finite set of Schreieeg®ors forr (K).

Aside 13 On any group there is a topology that encodes the finite indbgreup structure of the group, called thefinite
topology It has as a neighborhood basis at the identity the norma&rsups of finite index. In particular, a growp is residually
finite (see§7) if and only if the profinite topology or is Hausdorff. A natural question to ask is whether an anfyitsabgroupH
of G is closed in this topology (if{ has finite index then this is easily seen to be so). Gaubgroup separabler LERFiff every
finitely generatedsubgroup is closed. Equivalently H is a finitely generated subgroup apd= G \ H there is a finite grougs
and a homomorphisre : G — K such thatp(g) & o(H).

(11.12) We can put our asymptotic result to work. The following trexarwas originally proved by
Marshall Hall in the 1950’s and subsequent proofs have baem dpy Stallings and Margolis.

Theorem 11.2 Free groups of finite rank are subgroup separable.

Proof: If H has finite index: in the free grougs = (X;-) there is a finite coveringd — K (X;-),
where the elements df correspond to those paths Ki(X;—) that lift to loops at the basepoint af.

Thus no word representingdoes so. The path lifting action gives a homomorphism- Aut(K) to a
finite group, where, by the above, the image of any eleme#f atts by fixing the basepoint dt, but
the image ofy moves the basepoint. Thysand H have differentimages as required. _

The really interesting case is whéhhas infinite index irG. We still have a coveringd — K (X;—),
where now, by Theorem 11.1, we know thitlooks like the infinite2| X |-valent treeT” outside of a
compact seC that contains the basepoint. As before, any word repreggglifts to a non-closed path
at the basepoint oK. Let D be large enough so that all the vertices in the redioand all the vertices
in this lifted path have distance D from the basepoint.

LetT be the Cayley complex for the free group and consider thef sstges of the tre@’ that go from
a vertex distanc® from ¢ to a vertex distanc® + 1. The following is easily proven by induction: for
each generator € X, there are the same numberseedges in this set going from a distanDevertex
to a distanceD + 1 vertex as there are-edges going the other way (ie: from a vertex distabce 1 to
a vertex distanc®).
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This must then be true fak, asT angf( are identical this far from the basepoint. Form a rfinite
complexK’ as follows: the vertices ok’ are those of{ distance< D from the basepoint. any edges
of K inside this ball are also edges Af. That leaves the edges “on the boundary” of the ball to worry
about. But, according to the previous paragraph they camalvegup as, as

Ay — L

We leave it to the reader to verify that’ — K(X;-) is a covering, thus we have a homomorphism
G — Aut(f{’) to a finite group. Thay and H have different images follows by observing that elements
of H act onk by fixing the basepoint, and as we are only interested in neialtones, these loops can
be assumed to stay inside the regi@r{because of the tree like nature &f outside this region). Thus
they act the same way dk’, butg acts onK’ by sending the basepoint to |

(11.13) A geometric propertpf groups is an invariant of quasi isometry (sometimes dal@gasymptotic
invariant), in the sense that if grouggs; andG» are quasi isometric the@; has the property if and only
if G2 has the property. Here is a (incomplete) list of some gedmgtoperties, with only the first being
obvious:

1. Being finite;

2. finitely presented,;

3. virtually free;

4. the number of ends;

5. being hyperbolic (see the last section);

6. thel;-homology and*° cohomology;

Obviously there is also a list aforrgeometric properties, and a list where the status of thesitis

undecided.

(11.14) An isometry of a geodesic space is a map— X preserving the distances between points, and
a groupG acts by isometries oX if we have a homomorphisi® — Isom(X), where the isometries
form a group in the obvious way. An actionpgoperif for any pointz € X there is ar, > 0 such that
the set,

{9 € G|B(z,r2) N B(x,15)g # 0}
is finite (B(«x, r,) is the ball center: and radius-,;). An action iscocompactff there is a compact subset
C whose images cover all of, ie: X = CG.

(11.15)We can find presentations for groups acting in this way:

Theorem 11.3 (Poincaé) Let G act by isometries on the connected spacelf U is an open set such
that X = UG then the set,
S={9geG|UgnNU # 0}

generatess.

Proof: Let H be the subgroup generated by the elements ahdV = UH, V' = U(G\ H), both open
as isometries are homeomorphisms. Suppose they are mottisp that there arle € H andh’ € G\ H
with UhNUR' # 0. ButthenUNU (Wh~1) # O sothat'(h=1) € S,ie:h’ € SH C H, a contradiction.
Thus we haveX expressed as a disjoint union of open sets withon-empty, so connectedness gives
thatV’ must be empty, ieH = G. O
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(11.16) If we have a grougr acting on a seX then we can transfer the geometric propertieXadb G:

Theorem 11.4 Gvarc-Milnor) Supposed acts properly cocompactly by isometries on the geodesic
spaceX. ThenG is quasi-isometric toX .

Proof: We have aC C X compact withCG = X. Choose a basepoint, € X and a\ such that
C C B(xo, A). Thus every point o is within A distance of the seftz }G. LetU = B(xg, 3)) so that
the set

S={9geG|UNUg # 0}

generates;. We show that the map— (z0)g is a quasi isometry fromiGG, ds) to the subspacér}G
of X, and hence the result.

Let g € G and consider a geodesic i from x( to zog. Step offA
lengths along the geodesic, with the last one possibly lgdeimgth< .
If xg,21,...,2, = xog are the points of the partition, then we have

1
n < XdX(x(); rog) + 1.
Choose elements= gq, g1, . . ., gn = g Of G such thateqg; is within distance\ of ;. Thus,

dx (z0gi—1,%09:) < 3\,

SO tha’cgigi‘}1 moveszx, a distance less thab\ away fromzy. This gives thaTg,-g;ll is one of our

generators irb. But,
9= (9n9,21)(9n-197"5) - (9195 )90
a product ofn generators, so thaty (1, g) < n. Thusds (1, g) < (1/AN)dx (zo, z0g) + 1.
On the other hand, if5(1, g) = n then we have aword = g¢; ... g,

in the generators. Take a geodesic iX from z( to zog as before, and
consider the pointsgg; . .. g,. Then

Zog2---Gn

TogGn : o9

Lo T0Gn—
0gn=19n dx (xo,xog) < Z dx (0gi-1---Gn>T0Gi - - - In)-

Hitting the segment betweeng; 1 . .. g, andzog; . . . g, with the isometry,, 1 . .. g,t.‘_l1 gives a segment
betweenz, andzog;. Letting . = maxges{dx(zo, zog)}, we have

dx (0, w0g) < pn < pds(1, g).

d

(11.17) ExamplesZ is quasi isometric tdR via a translation action; in gener@l’ is quasi isometric to
R™;

(11.18)We now construct a proper cocompact action by isometrigseo$tirface groups on the hyper-
bolic plane. LetK be the Cayley graph far; constructed ir9. In §10 we realisedy in the hyperbolic
plane as a tessellation by regular octagons with eight mgetiound a vertex. Indeed, dfis the side
length of an octagon, then this realisation iscad)-quasi isometryK — this tessellation. From now
on, when we mentiody we mean this realisation of it i{2. Construct the dual tessellatidh place a
new vertex at the center of each octagon, and join two suditgsiby a geodesic segment iff they lie in
octagons sharing an edge. It is easy to se€lhatalso a tessellation of the hyperbolic plane by regular
octagons with eight meeting at every vertex.
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There is a distinguished octagéhe T' containing the basepoint ver-
texv of K. For anyy € X, the path-lifting action of; on K gives
./X/@ , an image vertex, in K. Let O’ be the octagon containingat its cen-
v 7 ter. There is a unique isometry of H* that send$) — O’ in such a
0 way that the edges df meeting abv match up with those meeting at
DefineX, — Isom™H? by — +'.

We show that this gives a proper cocompact isometric actidfymn

Oxy @ the hyperbolic plane. Firstly, if
O Y=T1...Tk

~ 7
is a word in the generators then the compositign. . ) sendsO to

O’ with the edges matching, so by uniquenegs= z ...z,. Thus forS; — Isom*tH? to be a
homomorphism, we require that the imagésa’, b}, b}, of the generators satisfy the same relations in
Isom*H? that the originak1, as, b1, by generators do ilX.

This amounts to showing th4f, [a;, b;] acts as the identity map
on the hyperbolic plane. But this word is the boundary lalfed o
face in the Cayley complek, so by definition it maps the octagon
O to itself with the edges matching, so is the identity map. sThu

K ¥, — IsomtH? is indeed a homomorphism. That the action is by
isometries is by definition.
As K is connected and the octagons tessellatewe have that
0%, = H?. If O’ is an octagon wittD N O’y non-empty for some
v € Yo, then there is an edge labelledn K connectingv to the
vertex corresponding t©’. Thusy must be one of the generators for
¥, of which there are eight. Hence

0 T

{y€X210N0"y # 0},
is finite giving that the action is proper and cocompact@as compact). Thus, we have,

Proposition 11.1 The surface groupi, is quasi isometric to the hyperbolic plane.

Indeed, any group acting properly cocompactly by isometiiethe hyperbolic plane is quasi isometric
to the plane, hence any two such groups are quasi isometécto other.

(11.19) Just as a geodesic in the spdéé d) is an isometric mapping of an intervi@, ¢] into X, so a
(A, €)-quasi geodesits a (), €)-quasi isometric mapping ¢, ¢] to X.

The primary example is if we have two spacésandY and a quasi isometry’ — Y. Then clearly
any geodesic irX is mapped by the quasi isometry to a quasi geodesit in

(11.20) One thinks of quasi geodesics as discrete approximatiogeddesics. How good an approxi-
mation are they? Sometimes not very good: the same argusiabbae gives a quasi isometry between
the groupZ & Z and the Euclidean plane, so we get quasi geodesics in the pjatiaking geodesic paths
in the Cayley complex embedded in the plane as a tiling by reguaAs can be readily seen, a quasi
geodesic can get arbitrarily far away from a geodesic betwee same two points. But it turns out that
guasi geodesiado approximate geodesics well in spaces that “look like” thpdrpolic space of10. We
take this up in our final section.

12 Hyperbolic Groups

We saw at the end 0f10 that the geometry of the hyperbolic plane has a remarkaiolperty that
distinguishes it from the Euclidean plane: there is an alteatonstant = In(1 + 1/2), such that a
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side of any triangle (no matter how large) is contained dareeighborhood of the other two sides. Thus,
triangles inH? are “thin”, in that the points on the sides never get too faayafrom each other.

In this final section we study metric spaces with this propenhd in particular, those groups which
have a Cayley graph whose triangles are thin.

(12.1) Let X be a geodesic metric space ahd- 0 a fixed constant. We say that is ¢-hyperboliciff
every geodesic triangle i has the property that each side is containeddmaighborhood of the union
of the other two. Say judtyperbolicif it is 6-hyperbolic for someé > 0.

(12.2) Before giving some examples, we state,

Theorem 12.1 Let X be a hyperbolic space. Then there is an absolute congtant0 such for any two
pointsz,y € X any quasi geodesic fromto y lies within aA-neighborhood of any geodesic franto
Y.

(12.3) An immediate consequence is

Proposition 12.1 If X andY are geodesic metric spaces with: X — Y a (), ¢) quasi-isometry and
Y d-hyperbolic, thenX is (A(2A + 0) + ¢)-hyperbolic, whereA is the constant fol” guaranteed by
Theorem 12.1.

Proof: Suppose we have a triangle Xhand consider a poin® on any one of its sides:

There is a(\, ¢)-quasi isometryf : X — Y which sends the geodesic sides of this triangle to quasi
geodesics irt” (the squiggly lines in the picture above right). Thus theran absolute constait with
these quasi geodesics imaneighborhood of a geodesic between the same two pointsvibyan these
geodesics to give a triangle i, there is a point: on the geodesic neareftP) at mostA distance
from it. As triangles inY” ared-thin, there is a point on another geodesic side of the triangle at ndost
distance fromu. Finally, the quasi geodesic closest contains a pfiiGt) at mostA distance frond. The
conclusion is that the poirgg back inX mapping tof(Q) satisfies,

dz(P,Q) < M2A +0) +e,

so that triangles ik are(A(2A+4)+¢)-thin. Notice that everything on the right hand side is inefegent
of the triangle inX chosen. O

(12.4) The Proposition goves us our first non-trivial example of admpolic metric space, namely we
show that any Cayley graph for the surface graigphas this thin triangles property. At the end of the
previous section we showed that the group could be made faragerly cocompactly by isometries on
the hyperbolic plan@?, and so by theSvarc-Milnor Theorem, the group, is quasi-isometric to the
hyperbolic plane, which is itselfi(1 + v/2)-hyperbolic. Thus every Cayley graph fBs, equipped with
the word metric, is a hyperbolic space by the Propositiorvabo

Indeed, any group acting properly cocompactly by isomegtde the hyperbolic plane has Cayley
graphs that are hyperbolic.
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(12.5) Motivated by this example, a group is said to(behyperbolic(or word hyperbolicor hyperbolic

in the sense of Gromif some Cayley graph for it is a hyperbolic space with respethe graph metric.
This definition does not depend on which Cayley graph ones#®as we have already seen that any two
Cayley graphs are quasi-isometric.

(12.6) We content ourselves with just stating some examples: fgribeips (obviously, as the Caylay
graphs have finite diameter so the thin triangles condiaratiher trivially satisfied); free groups (their
Cayley graphs are trees so triangles are definitely thin/pehbolic lattices, ie: lattices in the real Lie
groups SQ@,,R ~ Isom™H"; in particular, if M is a closed Riemannian manifold with constant sectional
curvature—1, thenm; (M) is hyperbolic.

(12.7) Hyperbolic groups have many very nice properties. Givenenpyeparation time, these notes
would have gone into some of them! Nevertheless, there isrenenice property that we state without
proof as it answers the question we posed at the eg#l.of

Theorem 12.2 For a hyperbolic groug there is an absolute constat > 0 such that any closed path
in a Cayley complex fofs contains a sub-path of length C which is not a geodesic.

That the closed path contains a non-geodesic sub-path th@dey bit: it is that this sub-path stays
only so long, no matter how long the closed path taken.

This was the crucial property that the Cayley compléxor ¥, had: any closed path in the graph had
to go “the long way” around one of the faces of the complexcleerontained a sub-path of length at
most8 that was not a geodesic. As a consequence, and for pretty tineslame reasons, we have,

Theorem 12.3 A group has a Dehn'’s algorithm if and only if it is hyperbolic.

(12.8) We end with a result that shows, in some sense, that mostyipitesented groups are hyperbolic.
Consider the set of all presentatiof#; R) where| X |, | R| and the number of occurrences of the gener-
ators in each relator iR is fixed Let V be the number of such presentations andbe the number that
are hyperbolic groups.

Theorem 12.4 (Gromov, OI'Shanskii) There is ac > 0 such that
Ny
N
wheren is the length of the shortest relator.

=1—-e "4 0(1),

(here, as usuab(1) denotes a quantity that tendsit@sn — oo).
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