Images of hyperbolic groups

Брент Эверитт
(Brent Everitt)
York, England

Санкт-Петербург, Россия
E elliptic curve over \mathbb{Q}:

\[Y^2Z = 4X^3 + aXZ^2 + bZ^3 \]

$\ a, b \in \mathbb{Q}$

Taniyama-Shimura:

\[E \cong (\mathcal{H} \cup \mathbb{P}^1)/\Gamma, \]

$\Gamma \leq \text{SL}_2\mathbb{Z}$ defined by congruences:

- there is $m \in \mathbb{Z}^{>0}$, $A_1, \ldots, A_k \in \text{SL}_2\mathbb{Z}$
- with $A_1 = \text{Id}$, such that
- $\Gamma = \{A \in \text{SL}_2\mathbb{Z} : A \equiv A_i \pmod{m} \text{ for some } i\}$.

\[\Rightarrow \text{FLT} \]

obstruction: is every $\Gamma \leq_n \text{SL}_2\mathbb{Z}$ defined by congruences?

Weil-Belyi

\[E \cong (\mathcal{H} \cup \mathbb{P}^1)/\Gamma \text{ where } \Gamma \leq_n \text{SL}_2\mathbb{Z} \]
Arithmetic groups and congruence subgroups

V_Q a \mathbb{Q}-space, $V = V_Q \otimes \mathbb{R}$.

$G \subseteq GL(V)$ a real algebraic \mathbb{Q}-group.

$\Lambda (\cong \mathbb{Z}^n)$ free \mathbb{Z}-module in V_Q,

$$G_\Lambda = \{g \in G : g(\Lambda) = \Lambda\}.$$

$\Gamma \leq G$ arithmetic \Leftrightarrow Γ commensurable with G_Λ for some Λ.

$\Gamma \cap G_\Lambda$ finite index in Γ and G_Λ.

$\Gamma \leq G$ semisimple real Lie group ($< \infty$ components) is arithmetic \Leftrightarrow there is a semisimple G as above, and

$$\begin{array}{rcl}
\tilde{G}^o & \xrightarrow{\text{epimorphism } \psi} & G^o \\
p | & \text{covering} & (1). \ker \psi \text{ compact;}
\end{array}$

$\psi(p^{-1}(G_\Lambda^o))$ commensurable with Γ.

Γ arithmetic; $\Gamma(m) = \{\gamma \in \Gamma : \gamma \equiv \text{Id} \pmod{m}\}$;

A subgroup of Γ is congruence iff contains a $\Gamma(m)$ for some m.

Congruence Subgroup Problem. Let $\Gamma \subseteq G$ be arithmetic. Are all finite index subgroups of Γ congruence subgroups?
Many positive solutions for $\Gamma \subseteq G$, $\text{rk}_\mathbb{R} G > 1$.

[Serre, Bass, Milnor, Matsumoto, Raghunathan, Platino, ...]

On the other hand: $V_\mathbb{K}(n + 1)$-dim. space over $\mathbb{K} = \mathbb{R}, \mathbb{C}$ or \mathbb{H}.

$$B(u, v) = -u_1 \overline{v_1} + \sum_{i \geq 2} u_i \overline{v_i}$$

Hermitian form signature $(1, n)$.

$$\mathbb{K}H^n = \{v \in V_\mathbb{K} \mid B(v, v) < 0\}/v \sim \lambda v,$$

("Projectivised time-like vectors")

gives n-dim. \mathbb{K}-hyperbolic space.

... the (\mathbb{R}-) rank 1 symmetric spaces.

$\text{SU}_{1,n}(\mathbb{K}) = f \in \text{SL}(V_\mathbb{K})$ preserving form B,

... gives \mathbb{R}-rank 1 simple groups,

$\text{SO}_{1,n}, \text{SU}_{1,n}, \text{Sp}_{1,n}$ and F_4.
Some negative solutions \((\text{rk}_\mathbb{R} G = 1)\)

Conjecture (Serre 1970). \(\Gamma\) arithmetic \(\subseteq G\) simple, \(\text{rk}_\mathbb{R} G = 1\), then \(\Gamma\) fails to have the congruence subgroup property.

Millson’s property: \(\Gamma' \leq \Gamma\) with \(b_1 = \text{rk}_\mathbb{Z} H_1(\Gamma') \neq 0 \Rightarrow \Gamma\) fails CSP.

(i). arithmetic \(\Gamma \subseteq \text{SO}_{1,n}(\mathbb{R}), n \neq 3, 7\), then all have Millson’s property; [Millson, Li, Raghunathan, Venkataramana, Lubotzky, . . .]

(ii). arithmetic \(\Gamma \subseteq \text{SU}_{1,n}(\mathbb{C})\), all have Millson’s property; [Kazhdan, Shimura, Borel, Wallach]

(iii). \(\Gamma \subseteq\) other \(\text{rk}_\mathbb{R} = 1\) groups \(\Rightarrow\) \(\text{rk}_\mathbb{Z} H_1(\Gamma) = 0\).

Subgroup growth: If \(\Gamma\) to have congruence subgroup property then asymptotically,

\[
\log \sigma_n(\Gamma) \sim \frac{\log n}{\log \log n}
\]

number of subgroups of index \(\leq n\)

But, eg: if \(\Gamma \subseteq \text{SO}_{1,n}, n = 2, 3\) then \(\sigma_n(\Gamma)\) grows quicker than this!
Property (A). \(\Gamma \) surjects infinitely many alternating groups \(A_n \).

\[\cdots \text{arose historically from } \cdots \]

The Hurwitz Problem: \(M \) orientable compact (resp. non-compact, finite volume) \(\mathbb{R}H^n \)-manifold; then

\[
|\text{Aut}^+(M)| \leq \frac{\text{vol}(M)}{\text{vol}(\mathbb{R}H^n/\Gamma)},
\]

\(\Gamma \) = uniform (resp. non-uniform) lattice in \(\text{Isom}^+ \mathbb{R}H^n \) of smallest volume.

Which finite (simple) \(G = \text{Aut}(M) \) for \(M \) achieving (1)? \[\Leftrightarrow \]

Which finite (simple) \(G \) arise as \(1 \rightarrow \pi_1(M) \rightarrow \Gamma \rightarrow G \rightarrow 1 \)?

<table>
<thead>
<tr>
<th>(n = 2)</th>
<th>compact</th>
<th>non-compact</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Gamma = \text{triangle group})</td>
<td>(\Gamma = \text{PSL}_2 \mathbb{Z} \cong (\mathbb{Z}/2\mathbb{Z}) \ast (\mathbb{Z}/3\mathbb{Z}))</td>
<td>(\text{"classical Hurwitz problem" [Conder]})</td>
</tr>
<tr>
<td>(\Gamma = (\mathbb{Z}/2\mathbb{Z}) \rtimes \text{tetrahedral group})</td>
<td>(\Gamma = \text{tetrahedral group}) (5) [Everitt]</td>
<td>(6) [Everitt]</td>
</tr>
<tr>
<td>(n \geq 4)</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Some groups with property (A)

[Pyber-Müller] $A \ast B$ for A, B finite, non-trivial, not both $\cong \mathbb{Z}/2\mathbb{Z}$, surjects almost all A_n.

[Everitt, conjectured by G. Higman c1969] Every lattice in $\text{PSL}_2 \mathbb{R} (\cong \text{SO}_{1,2}(\mathbb{R}))$ surjects almost all A_n.

\Rightarrow eg: given $p, q, r \in \mathbb{Z}^{>0}$ prime, with $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} < 1$, there is $N \in \mathbb{Z}^{>0}$ such that A_n is (p, q, r)-generated for all $n \geq N$.

To show $\Gamma = \langle X; R \rangle$ has property (A):

$$
\Gamma \rightarrow \text{Sym}\Omega \quad \cong \quad \downarrow \text{finite covering of } CW\text{-complexes}.
$$

\ldots where $\pi_1(K_0) \cong \Gamma$, eg:

Look for complexes that can be “pasted” together:

$$
\left\{ \begin{array}{c}
K_i \\
\downarrow \\
K_0
\end{array} \right\}_{i=1\ldots n} \quad \longrightarrow \quad [[K_1 \ldots K_n]] \\
\downarrow \\
K_0
$$

$$
\{ \Gamma \rightarrow \text{Sym}\Omega_i \}_{i=1\ldots n} \quad \Gamma \rightarrow \text{Sym}(\cup_i \Omega_i)
$$

Finally, use classical “recognition theorems” for A_n.
\(\Gamma \subseteq G \) arithmetic with property (A) \(\Rightarrow \Gamma \) fails to have the congruence subgroup property.

Question. Does every lattice \(\Gamma \subseteq G \), simple, \(\text{rk}_\mathbb{R} = 1 \) have property (A)?

<table>
<thead>
<tr>
<th>(A)</th>
<th>CSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{SO}_{1,2}(\mathbb{R}))</td>
<td>all (\Gamma)</td>
</tr>
<tr>
<td>(\text{SO}_{1,n}(\mathbb{R}), n \geq 3)</td>
<td>some examples</td>
</tr>
<tr>
<td>(\text{SU}_{1,n}(\mathbb{C}))</td>
<td>?</td>
</tr>
<tr>
<td>(\text{Sp}_{1,n}(\mathbb{H}))</td>
<td>?</td>
</tr>
<tr>
<td>(F_4)</td>
<td>?</td>
</tr>
</tbody>
</table>

\(\text{(*) some exceptions when } n = 7 \text{) } \)