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Abstract

A framework within which to generate and characterize populations of correlated spike trains is
presented. Spike trains are generated using integrate to threshold and ®re type encoders. Spectral
analysis techniques form the basis for specifying the strength of correlation within the population. To
accurately specify weak correlation, a combined coherence estimate is formed between several
independent pairs of spike trains from a population. The aim is to produce populations of spike trains
which have a realistic stochastic correlation structure and which can be used to explore the role of
correlated neuronal discharge in information processing in neuronal systems. # 1998 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

The role of correlated neuronal discharges in transmitting information and information

processing in neuronal systems is currently of considerable interest [1, 2]. The importance of

models which can be used to investigate neural function is also recognised [3, 4], these models

can incorporate detailed biophysical data at the single cell level. The present report is

concerned with the related questions of generating and characterizing populations of spike

train discharges which have a pre-speci®ed correlation structure between pairs of spike trains

within the population. The emphasis is on computational e�ciency and generation of weakly

correlated spike trains, which can be input to detailed single/multiple cell models to explore the

role of correlated neuronal discharges in information transmission and processing in neuronal

systems.
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The basic building block is the integrate to threshold and ®re type encoder which
incorporates a time constant [5], also known as a leaky integrator. Each spike train is
generated by one such encoder and these encoders are acted upon by common inputs which
are used to induce the desired patterns of correlation. Spectral analysis techniques are used to
characterize the strength of correlation within the resulting population of spike trains. To
accurately characterize the weak correlation, a single combined coherence estimate between
several independent pairs of spike trains is formed.

2. Description of spike generators

The basic construction of each spike generator is that of an integrate to threshold and ®re
model. The models in the present study incorporate a ®rst order time constant. These can be
considered as part of the general class of sigma pulse frequency modulation systems (SPFM)
described in Pavildis and Jury [5]. If we denote as x the sum of all the inputs acting on an
encoder and n the output of the encoder, then the encoder can be described by the di�erential
equation

dn
dt
� G

t
xÿ 1

t
n �1�

where G is the gain of the encoder and t is the time constant. The simplest method of
advancing Eq. (1) through time is to use a forward Euler integration scheme. We can write this
in the form of a di�erence equation as nn+1=nn+h dnn/dt, where nn + 1 is the new value of the
encoder output after advancing the encoder by a single time step, of duration h, from the value
at nn. If we use a value of 1.0 for the encoder gain and combine the above di�erence equation
with Eq. (1) we obtain

nn�1 � nn � h=txn

1� h=t
�2�

to obtain the solution of Eq. (1). The new value of the encoder output can be compared with
the threshold value, nth. If this is exceeded, an output spike is signalled and the encoder output
n is reset. If spike timings on a more precise time scale are required these can be approximated
as follows. If the new voltage value, nn + 1, exceeds the threshold, nth, the timing of threshold
crossing can be estimated using a simple linear interpolation as:

tn � nth ÿ nn
nn�1 ÿ nn

,

where tn is the time associated with the encoder output nn. Using this approach, the encoder
®ring times can be approximated on a ®ner time scale, without the extra burden of evaluating
nn + 1 using smaller time steps. A further re®nement of this approximation would be to shift
the encoder output down by nth after each output spike, rather than resetting the value to zero:
nn + 1=nn + 1ÿnth. This preserves the extra excitation provided by the inputs which is over and
above that required to cross threshold.
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3. Choice of parameters

Once the basic parameters have been chosen, the encoder behaviour is governed by the form
of the input sequence, x. In the present study, we ®x the threshold value, nth=1.0, and the
starting value, n0=0.0. We use a value of 10ÿ3 s for h (1.0 ms) and a time constant t of
2.5eÿ 02 s (25 ms).

The input sequence x for each encoder consists of two parts, an independent part which is
unique to each encoder, and one or more parts which are common to all the encoders in each
set. For the independent inputs we use a normal distribution. Thus, if x consists of samples
from a normal distribution with a mean of 1.02 and a standard deviation (S.D.) of 0.065, each
encoder will generate a spike train with a mean rate of 10.0 spikes/s and a coe�cient of
variation (c.o.v.) of 0.1. Altering the form of the input to have a mean of 1.015 and an S.D. of
0.15 results in generated spike trains with a mean rate of 10.0 spikes/s and a c.o.v. of 0.2. The
generation of spike trains with higher mean rates is achieved by increasing the mean value of
the input x. For example, input sequences with a mean value and S.D. of 1.269 and 0.307,

Fig. 1. Sample records of spike encoder output, including resetting after each output spike, for an average output
rate and c.o.v. of (a) 10 spikes/s and 0.2, (b) 25 spikes/s and 0.1, (c) 32 spikes/s and 1.0. The last example contains

19 threshold crossings in the 500 ms segment illustrated.
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respectively, result in output spike trains with mean rates and c.o.v. values of 25.0 and 0.1,
respectively. It is also possible to generate random spike trains using these encoders. Inputting
a sequence x with a mean of 0.892 and an S.D. of 6.20 results in generated spike trains with
mean rates of 32.0 spikes/s and a c.o.v. of 1.0. In Fig. 1 are shown three examples of the
encoder output, obtained from Eq. (2), for di�erent input sequences, x. These include the
resetting of the encoder each time threshold is crossed. The three examples are for (a) an
output spike train with a mean rate of 10.0 spikes/s and c.o.v. of 0.2, (b) an output spike train
with a mean rate of 25.0 spikes/s and c.o.v. of 0.1 and (c) an output spike train with a mean
rate of 32.0 spikes/s and c.o.v. of 1.0. The timings of the output spikes can be clearly seen for
the two periodic discharges.
The generation of populations of correlated spike trains involves a similar procedure, except

that the input sequence x to each encoder in the population includes one or more common
components, the objective of which is to induce synchronized ®ring among the members of the
population. In the present implementation, this is achieved by the addition of pulse inputs to
each input sequence x. These inputs act to increase the values of n in each encoder and for
those encoders which are close to threshold will cause synchronized ®ring.
The step response of the ®rst order system described in Eq. (1) to rectangular pulse inputs is

well known, e.g. Ref. [6]. It is described by an exponential function, whose form is determined
by the characteristics of the pulse and the time constant of the encoder. The magnitude of the
encoder response to pulse inputs can be adjusted by altering the magnitude of the pulse input
and the pulse width. For example, if the input x has the form of a rectangular pulse of width 2
ms and magnitude 0.398 the response of the above encoder (G= 1.0, t = 25 ms) will increase
by 0.03 after 2 ms. If the magnitude of the pulse is increased to 1.33, the encoder response will
have increased by 0.1 after 2 ms. In this way the desired strength of correlation can be
obtained within the population of spike generators. The frequency of correlation can be
determined by the inter spike interval distribution of these common pulse inputs to the spike
generators.

4. Speci®cation of correlation strength

To describe accurately the strength of correlation within the population of spike trains
requires an analytical framework which can estimate the strength of correlation between spike
trains. Spectral analysis provides such a framework, in particular we use estimates of coherence
functions to describe the strength of correlation between pairs of spike trains. In the present
report, we adopt the framework of Halliday et al. [7]. The generated spike train data are
assumed to be realisations of stationary stochastic point-process data. A stochastic point-
process can be de®ned formally as a non-negative integer valued measure [8], which in practice
de®nes the ordered times of occurrence of spikes in terms of a multiple of the sampling interval
(1 ms). The coherence function between two spike trains a and b, at frequency l, vRab(l)v2, can
be de®ned as

��Rab�l�
��2 � ��fab�l���2

faa�l�fbb�l� �3�
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where faa(l) and fbb(l) are the autospectra of spike trains a and b, respectively, and fab(l) is the
cross spectrum. An estimation procedure follows directly from Eq. (3) by direct substitution of
spectral estimates. In the present study we use the spectral estimation technique described in
Ref. [7], where the complete record is broken down into a number of non-overlapping disjoint
sections of equal length and stable spectral estimates are obtained by averaging across the
sections. This approach also allows signi®cance levels to be determined by a simple expression,
which depends only on the number of disjoint sections. In this case a 95% con®dence limit for
estimates of the coherence function, under the assumption of independent spike trains, is given
by the expression 1ÿ (0.05)1/(L ÿ 1), where L is the number of disjoint sections [7]. If tapering is
used to form the spectral estimates, then this expression must be adjusted accordingly to re¯ect
the increased variance [9].
It is also possible to characterize the correlation between two spike trains as a function of

time. In the present report we use estimates of the cumulant density function, denoted by
qab(u) at time lag u. This is de®ned and estimated as the inverse Fourier transform of the cross
spectrum, fab(l) [7].
One complication we are faced with in the present study is the speci®cation of weak

correlations. In cases where the strength of correlation is of the same order as the signi®cance
level for a single record, an accurate estimate of the correlation strength is not possible. This
problem can be overcome using the technique of pooled coherence [10]. This estimates a single
pooled coherence from several records in the form of a weighted average. The increase in the
amount of data used to estimate the pooled coherence function results in reduced standard
errors, which provides a more accurate estimate of the average strength of correlation between
pairs of spike trains from a single population. In summary, if we have k pairs of spike trains:
ai, bi; i= 1, . . . , k; then the pooled coherence can be de®ned as�����Xk

i�1
faibi �l�Li

����2���Xk
i�1

faiai �l�Li

��Xk
i�1

fbibi �l�Li

��ÿ1
�4�

where Li is the number of disjoint sections used to estimate the auto spectra, faiai�l� and
fbibi �l�, and the cross spectra, faibi�l�, for the ith record. The upper 95% con®dence limit for
the pooled coherence, Eq. (4), under the assumption of independence can be approximated by
the value 1ÿ �0:05�1=�SLiÿ1�, where aLi is the total number of segments in the pooled coherence
estimate [10]. We take advantage of the fact that coherence and pooled coherence functions
provide a normative measure of linear association, on a scale from 0 to 1, and have similar
interpretations, to compare the strength of correlation between di�erent populations of
correlated spike trains.

5. Examples

The ®rst example consists of a population of periodically ®ring spike trains which are weakly
correlated at the frequency corresponding to the mean ®ring rate. The desired ®ring rate for
each spike generator is 10 spikes/s, with a c.o.v. of 0.1. The two components of the input, x, to
each encoder are (1) an independent component of samples from a normal distribution with a
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mean of 1.018 and an S.D. of 0.065 and (2) a common component of pulses of magnitude
0.0928 and width 2 ms triggered by the times of a single spike train which has the same inter
spike interval statistics as those for each spike generator, 10 spikes/s and c.o.v. 0.1. Each pulse
increases n towards the threshold by 0.007 in each encoder. A sample set of 100 spike trains of
duration 100 s with these characteristics was generated and subjected to the above analysis.
Shown in Fig. 2(a) is the estimated point process autospectrum of the discharge of one spike

train. All spectral estimates in this report have a segment length of 1024 points, equivalent to
1.024 s, which de®nes the spectral resolution as 0.98 Hz. The fundamental component at the
frequency of 10 Hz, corresponding to the discharge rate, can clearly be seen along with
harmonic components. In Fig. 2(b) and (c) are shown estimates of the cumulant density
function and coherence function for a single pair of spike trains from the population. The
cumulant has a small peak at time zero, which exceeds the upper 95% con®dence limit, and
which indicates a tendency for synchronized discharge. The coherence estimate has signi®cant

Fig. 2. Analysis of periodic spike trains correlated at 10 Hz, the desired ®ring rate is 10 spikes/s, with a c.o.v. of 0.1.
(a) Estimated autospectrum of one discharge, dashed and solid horizontal lines are expected value and upper and

lower 95% con®dence limits, respectively, based on the assumption of a Poisson spike train. (b) Estimated cumulant
density and (c) estimated coherence between one pair of discharges. (d) Estimated pooled coherence between 20
independent pairs of such discharges. Dashed and solid horizontal lines in (b, c, d) are upper 95% con®dence limits

based on assumption of independence.
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values around 10 Hz. However, it is di�cult to determine accurately that the two spike trains
are correlated at 10 Hz. Indeed, in a sample of 50 pairs of spike trains from this population,
the majority of individual pairs exhibit no signi®cant features in coherence or cumulant density
estimates. To specify more accurately the correlation within this population of spike trains the
pooled coherence estimate formed from a total of 20 pairs is shown in Fig. 2(d). This estimate
is constructed from a total of 1940 segments (Li=97, i = 1, . . . , 20), the estimated upper 95%
con®dence limit of 0.0015 allows the weak correlation within the population of spike trains to
be more accurately speci®ed than from a single record. The estimated peak coherence value of
around 0.015 indicates that the strength of correlation within the population is extremely weak.
In the second example we consider a population of correlated spike trains which have a

random discharge pattern, i.e. the individual spike trains in the population have a c.o.v. of
around 1.0. The desired ®ring rate in this case is 32 spikes/s. The independent components of
the input, x, to each encoder are samples from a normal distribution with a mean of 0.523 and
S.D. of 6.30. Each encoder is acted upon by two common components, one at 10 Hz and
another at 25 Hz. The common input at 10 Hz is activated by a single spike train of rate 10
spikes/s and c.o.v. of 0.1, which adds a pulse input of width 2 ms and magnitude 6.63 to the
input, x, of each encoder. The e�ect of this component is to increase the encoder output, n, by
0.5 towards threshold. The second common component at 25 Hz is activated by a single spike
train of rate 25 spikes/s and c.o.v. of 0.1, which adds a pulse input of width 2 ms and
magnitude 3.98 to each encoder input, the e�ect of which is to increase the encoder output, n,
by 0.3 towards threshold. The estimated autospectrum of one discharge from the population is
shown in Fig. 3(a). The record length is 100 s as in the previous example. The mean rate and
c.o.v. of this spike train are 32.4 spikes/s and 1.0. The spectrum is ¯at as expected, but does
deviate slightly from the expected value for that of a Poisson spike train of the same mean rate
(horizontal dashed line), re¯ecting the ®nite dead time of the spike encoder. There is no
indication in the power spectrum of distinct components at 10 or 25 Hz. As in the previous
example, the correlation between a single pair of spike trains fails to reveal the correct
correlation structure in either the time domain, Fig. 3(b), or the frequency domain, Fig. 3(c).
The pooled coherence estimate, constructed as above from 20 di�erent pairs of discharges from
the population, does reveal that the spike trains are correlated at 10 and 25 Hz. In this case the
peak values of the estimated pooled coherence are around 0.03 and 0.025, and indicate that the
correlation within the population is weak, and that it is stronger than the previous example.

6. Discussion

In the present report we have set out a framework within which to generate and characterize
weakly correlated spike trains. For the spike encoders, the emphasis has been on simplicity and
computational e�ciency. The problems with a forward Euler integration scheme are well
known [11], i.e. instability and inaccuracy. Since we are not interested in accurate solutions of
Eq. (1) this scheme is adequate for our purposes. Stability is not a problem for the range of
®ring rates considered in the present study, a 1 ms time step gives stable behaviour, even for
the generation of random spike trains. The choice of time constant is determined by several
factors. Without any time constant there is no memory in the encoders which results in
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correlated spike trains which are tightly coupled in time. With a large time constant the
response of the encoders is too slow to generate correlated spike trains at the frequencies of
interest. With a short time constant, of the order of the integration step size h, the encoders
respond rapidly to small inputs, and considerations of stability and integration errors then
become important. The value of t = 25 ms used allows correlated spike trains to be e�ectively
and e�ciently generated at the frequencies of interest. Both examples above required around
110 s of computer time on a 486/66 PC and around 15 s on a DEC Alpha EB164/300. These
times include running all the encoders for 2000 steps to randomize the starting point of each
encoder, otherwise all the encoders start from n = 0.0 and are tightly synchronized for the ®rst
few output spikes.
Pulse frequency modulation techniques have been widely used to simulate neural systems,

e.g. Ref. [12]. It is not our intention to simulate neural behaviour, rather to use their cell like
properties (integrate to threshold and ®re) to e�ciently generate spike trains with particular
characteristics.

Fig. 3. Analysis of random spike trains correlated at 10 and 25 Hz, the desired ®ring rate is 32 spikes/s, with a
c.o.v. of 1.0. (a) Estimated autospectrum of one discharge, dashed and solid horizontal lines are expected value and
upper and lower 95% con®dence limits, respectively, based on the assumption of a Poisson spike train. (b)

Estimated cumulant density and (c) estimated coherence between one pair of discharges. (d) Estimated pooled
coherence between 20 independent pairs of such discharges. Dashed and solid horizontal lines in (b, c, d) are upper
95% con®dence limits based on assumption of independence.
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Two previous studies have explored the e�ects of synchronized inputs on the output ®ring
rate of single neurones. Murthy and Fetz [13] generated simulated inputs by lumping multiple
inputs into a single input whose strength increased proportionally. Bernander et al. [14] used
inputs where a ®xed fraction of the inputs ®red within a narrow time window to simulated
correlated inputs. Both these studies concluded that synchronized inputs could exert an
in¯uence of the output ®ring rate of the post-synaptic cell. The techniques presented in the
present report provide a basis from which to extend these studies by allowing the generation of
correlated spike trains with patterns of correlation which match more closely the stochastic
nature of neuronal discharges [15], as opposed to the deterministic form of correlation used by
the above authors. The role of rhythmically synchronized inputs of varying strength and
frequencies of synchronization can also be explored in detail with the techniques presented.
We ®nish by speculating on a possible corollary to the second example, which demonstrated

that a population of apparently random spike trains, characterized by a c.o.v.01.0, can be
weakly synchronized in di�erent frequency bands and that a statistical analysis of a single
sample record of 100 s duration can fail to reveal this synchronization. Softky and Koch [16]
found that the responses of individual cortical neurones to visual stimuli were characterized by
irregular spike trains with a c.o.v.01.0 and that this variability could not be explained by
temporal summation in passive dendrites of randomly timed EPSPs. Using computer
simulations they postulated that this high inter-spike interval variability could be explained by
including active dendritic conductances, which changed the response of the cell to that of a
coincidence detector. The above techniques provide the means to explore another aspect of this
variable ®ring in cortical cells, namely that a large population of randomly ®ring inputs spike
trains which are weakly correlated could contribute to the output ®ring variability.

7. Summary

A framework for the generation and characterization of populations of correlated spike
trains is presented. The spike trains are generated using integrate to threshold and ®re type
encoders, the correlation is induced by applying common pulse inputs to these encoders. The
correlation structure is characterized using spectral analysis techniques, in particular coherence
estimates between pairs of spike trains from the population are used to estimate the strength of
correlation between sample pairs of spike trains. To characterize weak correlation we construct
a combined coherence estimate formed as a weighted average between several pairs, the
reduced standard errors of this estimate allows weak correlation to be accurately speci®ed.
Two examples are presented, the ®rst is a population of periodic spike trains which is
correlated at the frequency of ®ring, the second is a population of randomly ®ring spike trains
(with a coe�cient of variation of 1.0) which are correlated at two di�erent frequencies. The
aim is to allow the generation of populations of spike trains, which have a correlation structure
that matches the stochastic nature of neuronal discharges, and which can be input to detailed
biophysical neuronal models to explore the role of correlated synchronous neuronal discharges
in information processing in neuronal systems.
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