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Abstract—This study uses models of pyramidal neurons in 

the hippocampus to design a hardware spiking neural network 

neuro-controller model for the purpose of navigation.  The 

neural network model consists of individual neurons modeled 

using the two-dimensional bio-inspired Izhikevich algorithm.  

The network is connected according to the connectivity within 

the hippocampus region, as this region is one of the regions in 

the brain that is responsible for path navigation.  The 

information processed by the model helps provide navigation 

and creates memories.  The neural network model is intended to 

be implemented onto a Field Programmable Gate Array 

(FPGA) device.  This eliminates the need of an operating system 

to run the network, thus achieving autonomy. 

 
Index Terms—Neural network architecture, neural network 

hardware. 

I. INTRODUCTION 

he aim of this study is to create a hardware spiking 

neural network (SNN) model that has the ability to 

compute positional information based on the theory of path 

navigation in the hippocampus.  A hardware spiking neural 

network model allows for an autonomous navigational 

controller to be incorporated directly onto a robot as a plug-

in module.  This neural network model is intended to be fully 

implemented on a Field Programmable Gate Array (FPGA) 

device, thus eliminating the need for an operating system to 

run the neural network.  Implementing the neural network on 

hardware can provide a faster and efficient method of 

achieving navigational autonomy.    

The neural network model was inspired by the structure of 

the hippocampus.  This is one of the regions in the brain, 

especially in mammals, that is believed to be responsible for 

path navigation.  A study done on London Taxi drivers 

indicates the importance of the hippocampus in human path 

navigation [1].  

There are two methods in achieving the neural network 

model; realistic/bio-physical modeling and bio-inspired 

modeling.  Bio-physical is modeling all aspects of the neuron 

and the neural network whereas bio-inspired modeling uses 

simplified models to help reduce the complexity of a bio-

 
Manuscript received January 30, 2007.  

M. Mokhtar is with the Intelligent Systems Group, Department of 

Electronics, The University of York, York YO10 5DD UK (phone: 44-

1904-432830; e-mail: mm520@ ohm.york.ac.uk).  

D. M. Halliday is with the Intelligent Systems Group, Department of 

Electronics, The University of York, York YO10 5DD UK (e-mail: 

dh20@ohm.york.ac.uk).  

A. M. Tyrrell is with  the Intelligent Systems Group, Department of 

Electronics, The University of York, York YO10 5DD UK (e-mail: 

amt@ohm.york.ac.uk). 

physical model.  Examples of bio-inspired model are the 

leaky-integrate-and-fire (LIF) model, the FitzHugh-Nagumo 

two-dimensional equation and the Izhikevich equations 

reviewed in [2].  Our neural network model uses the bio-

inspired approach of the Izhikevich equation for the single 

neuron model.   This model is more suited to hardware 

implementation, without losing any of the neuronal dynamics 

that are relevant [2]. 

Our hippocampus inspired neural network model 

emphasizes the ability of individual neurons to replicate the 

firing patterns of their biological counterpart, whilst they are 

operating within the network.  This differs from other 

hippocampus neural network models, whereby: 

1) Biophysical approach: The compartmental model used 

by [3] is too complex to be implemented onto a hardware 

device.  A compartmental model of a neuron provides a 

detailed description of the neuron, consisting of its physical 

dendritic structure and its Hodgkin and Huxley conductance 

description within a compartment.  If this approach was 

chosen, there is a possibility that only one neuron with 

limited number of compartments can be implemented onto 

an FPGA.  

2) Place cell-Place field: The firing pattern assumed by 

[4] emerged from a population of neurons or place cells in 

the hippocampus.  Their neural network pattern of activity 

does not encompass the behavior of individual pyramidal 

neurons found in the hippocampus.  The pyramidal neurons 

are the principle neurons in the hippocampus responsible for 

neuronal behavior [5].  The firing behavior of neurons in [4] 

is determined by averaging the rate of the place cells 

activities.  Incorporating individual neuron’s behavior to 

determine the firing rate of the place cells (as in this study) 

may help provide additional neuronal dynamics to the place 

cells and place fields representation. 

This paper briefly describes the steps taken in creating the 

hippocampus-inspired neural network model.  Section II 

begins with the theory of the hippocampus neurons and the 

design of the single neuron model.  This is followed by the 

investigation of neuron to neuron coupling that creates the 

neural network model.  Section III describes the VHDL 

simulation results of the neural network model applied to an 

agent going through a maze.  The final two sections conclude 

with the ideas and motivation that can help towards the 

development of the autonomous hardware system.  
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II. HIPPOCAMPUS-INSPIRED NEURAL NETWORK 

The objective of the research is to create an autonomous 

hardware navigational module.  The model is based on the 

hippocampus proper region or the Cornu Ammonis, CA 

region [5].  

A. Hippocampus proper 

The hippocampus proper consist of the Cornu Ammonis 

CA layers.  The flow of information in the hippocampus 

proper is known as the trisynaptic pathway.  This pathway is 

one of the processes within the hippocampus that is 

responsible for storing and retrieving information in memory 

[5].  The trisynaptic pathway starts with: 

1) Perforant pathway: The propagation of the afferent 

input from the enthorhinal cortex, EC layer II/III, to the CA3 

and CA1 region.  These inputs carry information about the 

environment [5]. 

2) Recursive collaterals:  The recursive collaterals are the 

recursive connections within the CA3 region.  The recursive 

collaterals cycle inputs within the CA3 region to allow the 

hippocampus to form episiodic memory or memories of 

episodes.  Episodic memory is how the hippocampus 

associates an event in time to an event in memory, thus 

allowing reconstruction when the event is recalled from 

memory.  The recurrent collateral also refreshes memory to 

ensure long term memory [6]. 

3) Schafer collateral: Connection from the CA3 region to 

the CA1 region.  The CA1 region also receives information 

from the EC_IN.  The CA1 region acts as the short term 

memory buffer to store current responses [5].  

4) Final Connection: The final connection is the 

projection of information both from the recurrent collateral 

of the CA3 region and the output of the CA1 region back to 

the enthorhinal cortex but to the EC layer IV/V so that this 

information can be passed to other regions of the brain [5], 

[6]. 

B. Hippocampus-inspired Neural Network 

The hippocampus-inspired neural network model is based 

on the trisynaptic pathway described in Section A.  The 

trisynaptic pathway is modeled with a small number of 

neurons in each region: 

1) One neuron in the EC layer II/III region (EC_IN) 

2) Recurrent collateral between three CA3 neurons. 

3) One neuron in the CA1 region 

4) One neuron in the EC layer IV/V region (EC_OUT) 

The connections between these six neurons are shown in 

Fig. 1.  This group of neurons is referred to as a Neuron 

Assembly (NA).  The complete network consists of 8 

identical NAs arranged at points on a compass.  This 

representation is chosen because it allows the network to 

provide directional control to an agent.  The correct direction 

is indicated by an increase in firing frequency of the neurons 

in the NA that represents that direction.  Subsequently, this 

leads to mutual inhibition of the NA in the opposite point. 

This representation was based on the concept of head 

direction cells [4], which stated that head direction cells are 

neurons whose activity is based upon orientation of a rat’s 

head. Each head direction cells fire maximally when the rat 

is facing in a specific direction regardless of its behavior [4], 

[7]. 

C. Neuron Equations 

The algorithms implemented to model the CA1 and CA3 

hippocampus neuron behavior are formed from the equations 

for the membrane potential, v and the membrane recovery 

potential, u, introduced by Izhikevich [8]  

Iuvv
dt

dvv +−++= 140504.0: 2  (1) 

( )uvba
dt

duu −⋅=:  (2) 

if v ≥ 30, then v=c and u=u+d. (3) 

Equation 1 was chosen by Izhikevich because this 

equation has the ability to fit spike initiation dynamics of 

cortical neurons [8].  In this project, values  of the variables 

a,b,c and d in (2) and (3) are tuned so that the neuron models 

display the different firing patterns seen at the hippocampus 

pyramidal neuron, CA3 and CA1 [5], [10].  The values of the 

variable a,b,c and d of our model are:  
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Fig. 1.  The neural network within one Neuron Assembly (NA).  One 

NA connects to its opposite direction NA via the inhibitory connection 

at CA3 and CA1 neuron.  Summation of the firing rate of the CA1 and 

EC_OUT neuron (shaded neurons) helps indicate the next desired move. 



  

1) CA3 neuron:  
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xd 15.0*15.0*68 3  
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If Injected Current ≤ 0.4nA then x = Injected Current*1.0, 

else x = Injected Current*2.0 

2) CA1 neuron:  

a = 0.025 (8) 

b = 0.2 (9) 
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D. Membrane Potential of the CA3 and CA1 Single 

Neuron Model Results 

The single neuron model was first simulated in Matlab
®
.  

As a verification stage the membrane potential of the single 

neuron models were compared against the membrane 

potential of the bio-physical model of the hippocampus 

neuron CA3 and CA1 model found in [10].  The 

characteristics of the two single neuron models described by 

[10] are: 

1) CA3 neuron model: The CA3 neuron behavior is 

characterized by two frequency versus injected current 

curves shown in Fig. 10 of [10].  Results of our CA3 neuron 

model are :  
TABLE I 

CA3 : CURVE 1 BURST FREQUENCY, BF VS SOMATIC INJECTED CURRENT, IC 

Somatic IC 

(nA) 

Results of Matlab®:  

BF (Hz) 

Results of VHDL: 

BF(Hz) 

0.175 0.56 1.429 

0.2 0.8 2.500 

Rheobase of about 0.15nA 

 

TABLE 2 

CA3 : CURVE 2 ACTION POTENTIAL FREQUENCY, AF VS SOMATIC INJECTED 

CURRENT, IC 

Somatic IC 

(nA) 

Results of Matlab®:  

BF (Hz) 

Results of VHDL: 

BF(Hz) 

0.4 20 20 

0.8 60 60 

 

An important behavior of the CA3 neuron is the switching 

between burst firing to action potential firing (or repetitive 

firing) [10].   This was observed in both the Matlab
®
 model 

and the VHDL model of the CA3 neuron.  The differences in 

results shown in Table 1 resulted from the translation of the 

Matlab
®

 model to VHDL.  The differences in results are 

discussed in Section V.  

2) CA1 neuron model: When the CA1 neuron is injected 

with current <1nA at the soma, rhythmic trains of action 

potentials are observed.  Larger currents, ≥1.15nA causes the 

neuron to respond with bursts of action potential [10].   

 
TABLE 3 

CA1 : ACTION POTENTIAL FREQUENCY, AF VS  

SOMATIC INJECTED CURRENT, IC 

Somatic IC 

(nA) 
Results of Matlab®:  Results of VHDL:  

0.25 17 20 

0.4 26 33 

0.8 Doublet of 30Hz Doublet of 30Hz 

1.2 3 spikes per burst 

(BF=30Hz) 

3 spikes per burst 

(BF=30Hz) 

 Our results show that the Matlab
®
 simulation of the bio-

inspired CA3 and CA1 neuron model using the modified 

Izhikevich algorithm has similar behavior to the bio-physical 

neuron model described in [10].  These similarities give 

confidence to our bio-inspired approach to the single neuron 

model.  The next section describes the design of the 

hippocampus-inspired neural network model. 

E. Neural Network 

To create a neural network, single neurons must 

communicate through synaptic transmission between the 

transmitting (presynaptic) neuron and the receiving 

(postsynaptic) neuron via a post-synaptic potential (PSP).  

The postsynaptic potential can either be excitatory or 

inhibitory.  An excitatory postsynaptic potential (EPSP) is a 

positive influence on the postsynaptic neuron, providing an 

increase in the membrane potential of the postsynaptic 

neuron.  Inhibitory postsynaptic potential (IPSP) inhibits the 

postsynaptic neuron [11].  In our neural network model, the 

EPSP is modeled as a small percentage (8%) of the 

presynaptic neuron membrane potential whilst IPSP is (-1 x 

EPSP).   

A weight factor is included to control the strength of 

connection between the presynaptic neuron and the 

postsynaptic neuron.  Two learning rules are used to 

determine the value of the weights.  The two learning rules 

are the Hebbian Timing-based learning rule or the Spike 

Timing Dependant Plasticity (STDP) and the Hebbian Rate-

based learning rule. 

1) Spike Timing Dependent Plasticity, STDP: STDP is 

dependent on the time of spikes between the pre and 

postsynaptic neurons.  If a presynaptic spike precedes a 

postsynaptic spike within the time constant, there will be an 

increase in weight.  Otherwise, the weight is either 

unchanged or depletes [12], [13].   

2) Hebbian Rate-based Learning: Hebbian Rate-based 

Learning is dependent on the mean firing rate of the neurons.  

If the mean firing rates of the presynaptic and postsynaptic 

neurons are both high, the connection between these neurons 

are strengthened, otherwise they are reduced [13]. 



  

Both of these learning rules are used in our neural network 

model.  STDP is used to adjust the weights when the agent is 

in a particular moment or episode in the environment and is 

trying to make its decision based on the propagation of 

spikes between each region.  If the propagation of spikes is 

consistent, the weights are consistently increased. If the 

propagation of spikes is weak, the weights will be reduced. 

The NA with the strongest connections or highest activation 

will provide a maximum mean firing rate of its output 

neurons (CA1 and ECOUT neuron), thus identifying the 

winning NA. The mean firing rate for each NA is calculated 

at the end of the episode.  A Hebbian Rate-based Learning 

rule is used to reinforce the weights of the output neurons of 

the winning NA (the direction which the agent defines to be 

correct).  The weights of the opposite direction of the 

winning NA are subsequently reduced.  Implementation of 

these learning rules is described in [14]. 

F. Results of the Hippocampus-Inspired Neural Network 

Results from our Matlab
®
 single neuron models are similar 

to the bio-physical neuron model described in [10].  These 

similarities are important for the design of the hardware 

spiking neural network model.  The complete neural network 

model is constructed by connecting together the four pairs of 

coupled NAs.  Two NAs are coupled so that an excitation of 

one direction will inhibit the NA of the opposite direction.  

The four coupled NA pairs are North and South, East and 

West, South East and North West and South West and North 

East.  If there is a path in the direction which the NA 

represents, the neurons in that particular NA will show an 

increase in its firing rate.  If there is a wall instead, there will 

be either a decrease in its firing rate or no firing at all. 

The performance of the hippocampus-inspired neural 

network model is judged by the navigational skill of the 

agent going through a maze.  The test was done on three 

different sizes of maze and the agent encountered a different 

maze on each trial.  The size of the maze is identified by the 

number of step in the x-axis, x, and the y-axis, y, of the maze, 

(x x y).  The capability of the neural network was evaluated 

by how long it took for the agent to complete each maze by 

calculating the number of episodes per maze, Table 4.  One 

episode is t = 500ms.  Even with varying sizes of maze, the 

agent still managed to navigate its way from the start to the 

end of the maze within reasonable times.   

 
TABLE 4 

HOW LONG DID THE AGENT TOOK TO COMPLETE THE MAZE 

Size of maze Number of trials 
Average number of 

episodes 

10 x 10 20 967 

15 x 15 4 2386 

20 x 20 5 5066 

30 x 30 1 8462 

III. NEURAL ACTIVITY OF THE HIPPOCAMPUS-INSPIRED 

NEURAL NETWORK VHDL MODEL 

As the motivation of this project is to create a hardware 

model, the Matlab
®
 model was then translated to a hardware 

synthesizable language or VHDL (Very High-speed 

Integrated Circuit Hardware Description Language).  The 

VHDL model was then emulated with the maze navigation 

task.  As stated above, there are differences in the frequency 

of the CA3 neuron before it switches to repetitive firing 

behavior.  The slope of the frequency is the same but the 

VHDL model results have three times the frequency of the 

Matlab
® 

model.  Because of this, the synaptic input to the 

CA3 neuron in the neural network model was reduced to ¼ 

of its original value. 

   Fig. 3 shows the output of the neurons in NA(N), (S), (E) 

and (W) of the neural network in one episode, indicated by 

the shaded box in Fig. 2, when the agent, represented by the 

black diamond goes through the path in a 5x5 maze in Fig. 2.   

 

 

 

 

 

 

 

 

 

 

 

The summation of firing rates of the CA1 and EC_OUT 

neurons of the NAs are used to determine the next desired 

move at one episode.  At this point in the maze, the agent has 

to choose either to move to the north, west or east.  Fig. 3 

shows that NA(E) has greater excitation compared to the 

others.  Therefore, the agent chooses east as its next move.  

The CA1 and EC_OUT neurons of NA(N) and NA(W) 

shows small or little excitation because its prior moves to the 

south and east has caused the inhibition of weights within the 

NAs.  Therefore, the input for the EC_IN could not 

substantially excite both the CA1 and EC_OUT neurons.  

Even though the CA1 and EC_OUT neurons are quiet, but 

there are still excitations of the CA3 neurons.  CA3 neurons 

are excited because the recurrent collateral of the CA3 is 

trying to consolidate this event within its synapses.   

The path the agent chose in the maze showed that the 

agent followed a one-way path without unnecessary 

backtracking or crossing over walls.  One episode, tperiod has 

500 steps.  If there is a path, EC_IN neuron will be excited 

otherwise the EC_IN neuron will be silent when there is 

wall.  Walls are indicated by continuous thick lines and one 

episode is within the broken thin lines.  NA(NW), (NE), 

(SW) and (SE) were simulated but the since these direction 

was not activated, the neurons within these NAs are inactive 

and not shown.   

Start ◦      

 ◦      

 ◦      

 ◦ ◦ ◦ ◦   

    ◦ ♦ End 

 
Fig. 2.  A path in a 5x5 maze used to test and simulate the VHDL 

neural network model. The circles represent the previous episodes and 

the arrows show the path the agent (black diamond) took within the 

maze. 

 



  

 
Fig. 3.  VHDL simulation results of the neurons in the neural network at one episode (shaded box) applied to an agent going through a path in Fig. 2.  Y-

axis in all graphs represents the membrane potential in millivolts (mV).  X-axis represents a sequential time step between 0 to 500 (steps), which is tperiod = 

1. 

IV. HARDWARE IMPLEMENTATION OF THE HIPPOCAMPUS-

INSPIRED NEURAL NETWORK 

Similar design methods are applied to the creation of the 

hardware model.  These methods are: 

1) Design of the single neuron model  

2) Connecting the neurons to create the neuron assembly.  

There will be eight of these assemblies, each representing 

a pointer on a compass. 

3) The eight NAs are assembled together to create the 

complete hippocampus-inspired neural network model  

4) Synthesizing the neural network model onto an FPGA. 

 Output of the single neuron VHDL models are shown in 

Tables 1-3.  Design methods number 2-4 are work in 

progress.  The successful FPGA design will be incorporated 

into a robot to act as an on-board neuro-controller device 

that helps the robot navigates within its environment.  The 

ability to implement the neural network onto a single FPGA 

device shall constitute the success of autonomy.  

There are issues in translating the software model to 

hardware.  The issues in realizing any artificial neural 

network model to hardware and its advantages have been 

discussed in [15].  For this project, the issues are: 

1) Word Length and Precision: The word length chosen 

for the hardware spiking neural network model is 32-bit 

signed binary fixed point notation. This notation consists of 

1 sign bit, 7 bits for decimal and 24 bits for fraction.  

This notation was chosen because it is much easier to 

design the neural network in this notation instead of floating 

point notation.  It is also believed to be unnecessary to 

require the precision of the floating point notation.     

The fixed point notation provides a minimum integer 

value of ±(5.9605x10
-8

) or ±(2
-24

) milivolts and a maximum 

integer value of ± (128-2
-24

) milivolts. These values are 

suitable to represent the membrane potential of a neuron 

because the membrane potential of a neuron is believed to be 

within the range of ±100 milivolts 

2) Mathematical Operation: Not all mathematical 

operations can be directly synthesised onto the FPGA or 

they require large number of logic slices for each operation.  

Example of these function are exponential, e, cube roots, 

square roots and division. 

3) Timing Constraints: The number of clock cycles to 

implement one neuron operation is important for the 

operation of the complete neural network.  The clock cycle 

is dependent on the clock frequency.  It is vital that one 

cycle of operation is completed in 1ms, as one time step of 

(1) and (2) is equivalent to 1ms [16].   

4) Size and cost of the FPGA: Design of the neural 

network model within the constraints of a specific FPGA. 

The device under consideration is the Xilinx Virtex IIPro 

XC2VP30. 

The output produced by ModelSim
®
 VHDL simulation of 

the hippocampus-inspired neural network (Section III) is in 

32-bit fixed point notation.  The binary output values were 

converted in Matlab
®
 for plotting against 500 time step in 

one episode.  Time, t in Fig. 2 (b) is not equivalent to 1ms 

but is t = 130µs.  This is because each mathematical 

operation in the neuron and the network algorithm operates 

with respect to the clock frequency.  The clock frequency 

used for the VHDL simulation is the clock frequency of the 

intended device (100MHz). 

Further work on trying to implement the VHDL model to 

the FPGA device has lead to the conclusion that the VHDL 

model in Section III will not be the final model used for 

implementation.  This is because the intended device, the 

Xilinx Virtex IIPro XC2VP30 has insufficient number of 

logic slices to implement this design.  The VHDL model 

requires almost 150% of the number of slices of the device.  

Changes will be made to the design so that it can 

accommodated on the FPGA.  The Xilinx Virtex IIPro 

XC2VP30 has two embedded PowerPCs.  In order for the 



 

 

 

network to fit onto this device, it is proposed that the single 

neuron model (CA3 neuron and CA1 neuron) and the 

network itself are implemented on hardware and the weight 

updates are implemented on the embedded PowerPC.  

Results from the implemented neural network model will be 

available in future publications. 

V. DISCUSSION 

The key behavior of the hippocampus neuron is the ability 

to switch between burst firing and repetitive firing.  The best 

translation of the software model to VHDL with respect to 

the limitations described above is the model that produced 

the results in Table 1-3.  There are differences in the results 

for the CA3 neuron model, the VHDL results of the burst 

firing frequency are three time larger than the Matlab
®
 

results (Table 1).  One possible explanation of this results is 

that x in (6) and (7) for the VHDL model are constantly kept 

at Injected Current*2.0.  This is because the rheobase value 

for the VHDL CA3 neuron model is found to be twice the 

Matlab
®
 model.  However, there is a similarity in the slope 

of the frequency curve of the CA3 VHDL neuron model and 

the Matlab model
®
.  Reducing the synaptic input to the CA3 

neuron to ¼ of its original value can help preserve the 

neuron behavior within the network.  The VHDL model also 

preserves the switching behavior between burst firing and 

repetitive firing at somatic injected current around 0.25nA.   

The aim of this research is to model the autonomous 

navigational controller based on the biological nervous 

system. The region responsible for such behavior in the 

brain is the hippocampus [1], [4].  This region is also 

believed to be responsible for mammalian learning and 

memory [5].  

There are two methods in designing a biological neural 

network model, either a bio-physical architecture or a 

simplified bio-inspired architecture.  The bio-inspired 

modeling approach of the two-dimensional Izhikevich 

algorithm was chosen for the design of our single neuron 

model.  This algorithm can reproduce a range of neuron 

behavior with simple algorithms [2], [8]. 

The hippocampus-inspired neural network model was first 

designed and tested in Matlab
®
.  This software neural 

network model was then converted to a language that is 

suitable for hardware synthesis, VHDL.  Methods to create 

the neural network model started with the single neuron 

model.  The success of the single neuron model was 

measured by how close the model behaves to a previous bio-

physical model [3], [10].  The CA3 neuron model fires in 

bursts whilst the CA1 neuron fires repetitively.  Entorhinal 

cortex layer II/III (EC_IN) behaves similarly to the CA1 

neuron and the entorhinal cortex layer IV/V (EC_OUT) is 

similar to the CA3 neuron.  Successful single neuron models 

were then coupled to create the neural network.   

The neural network is to be fully implemented onto a 

FPGA device, thus allowing the neural network to be 

independent of an operating system. 

The future success of this research project will be 

measured by its capability to act as an autonomous hardware 

device that can independently navigate and learn about its 

environment in an unsupervised fashion.  The learning of the 

neural network on the device is governed by the dynamics of 

the hippocampus region in the brain.  It is hoped that in the 

future, the hippocampus-inspired neural network hardware 

device will be incorporated to a robot, enabling autonomous 

navigation.  
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