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The need to determine the directionality of interactions between neural signals is a key re-
quirement for analysis of multichannel recordings. Approaches most commonly used are
parametric, typically relying on autoregressive models. A number of concerns have been
expressed regarding parametric approaches, thus there is a need to consider alternatives. We
present an alternative nonparametric approach for construction of directionality measures for
bivariate random processes. The method combines time and frequency domain representations
of bivariate data to decompose the correlation by direction. Our framework generates two sets
of complementary measures, a set of scalar measures, which decompose the total product
moment correlation coe±cient summatively into three terms by direction and a set of func-
tions which decompose the coherence summatively at each frequency into three terms by
direction: forward direction, reverse direction and instantaneous interaction. It can be un-
dertaken as an addition to a standard bivariate spectral and coherence analysis, and applied to
either time series or point-process (spike train) data or mixtures of the two (hybrid data). In
this paper, we demonstrate application to spike train data using simulated cortical neurone
networks and application to experimental data from isolated muscle spindle sensory endings
subject to random e®erent stimulation.

Keywords: Directionality; coherence; nonparametric; time series; point process; networks;
Granger causality.

1. Introduction

In many scienti¯c ¯elds there is a need to extract information from multivariate

time series or point-process data that can provide insight into the underlying dy-

namics of the system under study. The ¯eld of networks and network theory

(Newman, 2010) has emerged in recent years as an approach that has broad ap-

plicability, where a graphical network (Whittaker, 1990) is used to represent the

data, with individual time series or point processes as nodes in the network and the

pattern of interactions as edges (or links) in the network. This approach has been

applied to genetic regulatory networks (Karlebach & Shamir, 2008; Crespo et al.,

2012) metabolic networks (Jeong et al., 2000), man-made networks (Carvalho et al.,

2009) and neuronal networks using neuroimaging (Rubinov & Sporns, 2010;
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Kaiser, 2011) and electrophysiological (Medkour et al., 2009) datasets. The ¯eld

of network theory provides a range of tools to classify the network structure

(Newman, 2010; Rubinov & Sporns, 2010), which takes as the starting point the

adjacency matrix in binary form describing the pattern of interactions between

the time series or point process data.

The ¯rst step in applying network theory is to establish the pattern of inter-

actions between the nodes (time series or point processes). In application to mul-

tivariate neural data, two classes of networks are used, these are directed and

undirected networks, often referred to as functional and e®ective connectivity

graphical networks (Rubinov & Sporns, 2010). Undirected networks are typically

based on measures of correlation between pairs of variables (Rubinov & Sporns,

2010; Kaiser, 2011) although partial correlation has also been used (Rosenberg

et al., 1998; Salvador et al., 2005; Halliday, 2005; Medkour et al., 2009). The most

commonly applied correlation measures are nonparametric using time and fre-

quency domain measures of correlation (Medkour et al., 2009; Rosenberg et al.,

1998, 1989).

Directed networks which measure the e®ective connectivity are concerned with

cause-and-e®ect, i.e., establishing directionality or causal e®ects in the network

(Rubinov & Sporns, 2010). Approaches typically adopted here are parametric,

these rely on a model to describe the underlying interactions. Granger (1969)

introduced the concept of using residual variances to determine cause and e®ect in

random processes, with application to economic time series, leading to the term

\Granger causality". A variation on this was developed by Geweke (1982, 1984)

using a similar parametric approach to generate measures based on log ratios of

residual variances. These studies use autoregressive models to describe the pattern

of interactions between the time series. The Granger and Geweke measures and

variants of these have been widely applied to describe directed interactions in

neurophysiological datasets (Baccala & Sameshima, 2001; Kaminski et al., 2001;

Chen et al., 2006; Schelter et al., 2006; Chicharro, 2012). Although parametric

approaches are widely used, a number of studies have suggested reasons why

parametric approaches may not be appropriate. Gersch (1972) showed examples of

misclassi¯cation of interactions using parametric as opposed to nonparametric

measures. Thomson (1990) compared multi-taper spectral estimates with auto-

regressive estimates and found the former to be better suited to climate time series

data. Thomson and Chave (1991) suggested that AR models are not well suited to

capture the structure in time series routinely encountered in scienti¯c and engi-

neering problems. It has also been noted that in some cases negative values can be

obtained for parametric causality estimates (Geweke, 1982; Lindsay & Rosenberg,

2011).

These concerns suggest that approaches which avoid the use of AR models need to

be further investigated, including nonparametric approaches. Gersch (1972) intro-

duced the concept of using nonparametric approaches to infer causal e®ects using

partial coherence estimates. Eichler et al. (2003) investigated a time domain
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approach based on partial covariance densities. Lindsay and Rosenberg (2011) in-

troduced a frequency domain approach using a progression of spectra and partial

spectra to infer network structure. These nonparametric approaches are not subject

to the concerns regarding autoregressive models. However, as yet, nonparametric

approaches do not provide direct quantitative measures of directionality similar to

those available from parametric approaches. This may explain in part the restricted

applications of nonparametric directionality analyses. There have been few studies of

directionality applied to neuronal spike train (or point process) data, in part because

of the inability to apply autoregressive models to point-process data. One approach

has been suggested recently that uses a recursive factorization of the spectral matrix

(Wilson, 1972) and has been applied to generate Granger-like measures (Dhamala

et al., 2008a, 2008b). It has been pointed out (Lindsay & Rosenberg, 2011) that the

approach is partly parametric as it relies on a parametric model for the observations.

Thus, it could also be classi¯ed as a parametric approach and may be subject to some

of the concerns regarding the validity of representation.

This paper introduces a framework for nonparametric directionality measures

which quantify directed interactions between bivariate data. A combined time and

frequency domain approach is used to decompose the coherence function by direc-

tion. In addition, scalar metrics are introduced which quantify the direction of in-

teraction between the signals. The measures have a direct interpretation in terms of

the overall strength of correlation. We use the term directionality in preference to

causality, although the motivation is similar. A particular strength of the proposed

approach is applicability to both time series and point-process data.

Section 2 describes the method including practical aspects related to estimation

and the setting of con¯dence limits. Section 3 illustrates application of our non-

parametric approach to neuronal spike train data using simulated cortical neurone

interactions and application to single unit data from identi¯ed single muscle spindle

sensory endings subject to e®erent stimulation. Section 4 discusses the results and

considers a number of issues related to the broader applicability of the approach and

how our metrics relate to those obtained from parametric approaches.

2. Methods

We consider bivariate random processes, ðx; yÞ, which are assumed to be weakly (or

wide-sense) stationary (Brillinger, 1975), have bounded moments and satisfy a

mixing condition (Rosenberg et al., 1989). The notation ðx; yÞ is used to represent

bivariate time series and stochastic point-process data. This shared notation draws

on the concept of stationary interval functions (Brillinger, 1972; Daley & Vere-Jones,

2003), where point-process data are represented using zero-mean di®erential incre-

ments. Di®erential increments count the number of spikes in a small interval, see

Brillinger et al. (2009); Rigas (1983). The techniques can be applied to both spike

train and waveform (sampled) signals or mixtures of the two data types, which we

refer to as hybrid data (Halliday et al., 1995).
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2.1. The coherence function and R2 measure

The coherence between two random processes ðx; yÞ is de¯ned as (Brillinger, 1975;

Priestley, 1981; Rosenberg et al., 1989)

jRyxð!Þj2 ¼
jfyxð!Þj2

fxxð!Þfyyð!Þ
; ð2:1Þ

where fyxð!Þ is the cross power spectral density (or cross-spectrum) between x and y,

and fyxð!Þ and fyxð!Þ are the autospectra at frequency !.

The total product moment correlation between ðx; yÞ, which we denote as R2
yx , can

be recovered by integration of the coherence (Pierce, 1979)

R2
yx ¼

1

2�

Z þ�

��
Ryxð!Þ
�� ��2d!: ð2:2Þ

The coherence in (2.2) is de¯ned over the normalized angular frequency range

½��;þ��. Pierce (1979) uses this de¯nition to obtain the squared correlation coe±-

cient, R2, by integrating coherence when x is the input to and y the output from a

linear regression model. Equation (2.2) allows the R2 measure to be calculated by

integrating over frequencies and establishes an important reference point for our

framework. The decomposition of R2
yx by direction is achieved using a novel form of

¯ltering which reduces the coherence to the cross-spectrum.

2.2. MMSE whitening ��� reducing coherence to the cross-spectrum

The coherence (2.1) is de¯ned as a ratio. Pierce (1979) notes that if the autospectra

are assumed white then coherence reduces to the cross-spectrum. However, in gen-

eral, spike trains and time series will not have white PSD estimates. The method of

pre-whitening (Press & Tukey, 1956) can be used, where a signal is ¯ltered prior to

spectral analysis to bring its spectral content closer to that of white noise. A common

approach to pre-whitening is to create a residual series after ¯tting a low order

autoregressive (AR) model to each process x and y (Percival & Walden, 1993). Pre-

whitening can be advantageous in reducing undesirable aspects such as spectral

leakage (Percival &Walden, 1993), but in the majority of cases the target of achieving

a white sequence prior to spectral analysis is only met approximately, this does not

allow replacement of the magnitude squared coherence by the magnitude squared

cross-spectrum without degradation of the reliability of the coherence estimate.

We adopt the optimal whitening or minimum mean square error (MMSE) whit-

ening scheme introduced by Eldar and Oppenheim (2003). The Optimal whitening

¯lter for a zero-mean stationary random process, x, with PSD fxxð!Þ is given by

(Eldar & Oppenheim, 2003, Theorem 3).

wxxð!Þ ¼ �fxxð!Þ�1=2; ð2:3Þ
where � is a ¯xed constant, � > 0. Denoting the whitened spectrum as f wxxð!Þ, the
MMSE whitening procedure generates a whitened spectrum: f wxxð!Þ ¼ �2. In our case,
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we wish �2 ¼ 1, thus � ¼ 1 in Eq. (2.3). The pre-whitening ¯lter de¯ned in Eq. (2.3)

is a noncausal zero phase phase ¯lter with magnitude proportional to the inverse

square root of the PSD fxxð!Þ.
This procedure is equivalent to generating two new (or derived) random processes,

xw and yw, which have spectra equal to 1 at all frequencies

f wxxð!Þ ¼ 1; f wyyð!Þ ¼ 1: ð2:4Þ
The cross-spectrum between the two whitened sequences is f wyxð!Þ, and a coherence

estimate calculated using Eq. (2.1), in conjunction with Eq. (2.4) gives

jRw
yxð!Þj2 ¼ jf wyxð!Þj2: ð2:5Þ

Our framework is applicable to both time series and point-process signals. The

MMSE ¯ltering step derives processes with spectra equal to 1 at all frequencies.

Following this whitening/¯ltering step, point-process signals can no longer be con-

sidered as spike trains. In the context of the present analysis, the output of the

MMSE whitening procedure for spike trains will be a continuous process which has a

constant spectrum. The MMSE whitening step for time series similarly derives a

continuous process with a constant spectrum. The two derived continuous processes

have the same correlation structure as the original bivariate spike train or time series

data. Brillinger (1974) notes that a common frequency domain approach can be

applied to time series and point-process signals, where parameter estimates having

the same statistical results can be constructed in the same manner after evaluation of

the relevant Fourier transforms.

The ¯ltering step to derive the whitened processes xw and yw uses two separate

univariate ¯lters in the MMSE framework as opposed to a single optimal whitening

transformation derived from the inverse square root of the covariance matrix (Eldar

& Oppenheim, 2003). A single transformation would e®ectively orthogonalize the

two random processes removing both within-variable and between-variable e®ects,

and would not provide a useful approach to estimate directionality. The e®ect of the

two pre-whitening ¯lters is to remove any structure in the auto-correlation of the

original sequences x and y. The relationship between the variables is preserved,

coherence is insensitive to linear transformations of the original signals (Priestley,

1981). Thus, the two coherence functions in Eqs. (2.1) and (2.5) are equivalent

jRw
yxð!Þj2 ¼ jRyxð!Þj2: ð2:6Þ

The coherence between the whitened processes, jRw
yxð!Þj2 ¼ jf wyxð!Þj2, has no terms in

the denominator and can thus be decomposed to obtain directionality measures.

2.3. Directionality measures ��� time domain

The scalar measure of dependence between x and y, R2
yx , can now be written as

R2
yx ¼

1

2�

Z þ�

��
jf wyxð!Þj2d!: ð2:7Þ
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To decompose R2
yx by direction we de¯ne a correlation measure in the time domain,

�yxð�Þ, with time lag � , which forms a Fourier transform pair with the pre-whitened

cross-spectrum, f wyxð!Þ, as

�yxð�Þ ¼
1

2�

Z þ�

��
f wyxð!Þe i!�d!: ð2:8Þ

The de¯nitions in Eqs. (2.7) and (2.8) assume second-order spectra are periodic in !

with period 2� (Brillinger, 1975, Theorem 2.5.1). Then R2
yx can be decomposed by lag

according to

R2
yx ¼

Z þ1

�1
j�yxð�Þj2d�: ð2:9Þ

Equation (2.9) can be proved using Parseval's theorem (e.g., Priestley, 1981,

Chapter 4).

Further decomposition of R2
yx by lag to obtain measures of directionality is

achieved by selecting the required lag range in Eq. (2.9). We de¯ne and use three

measures which from a subset of R2
yx . These are R

2
yx;�, R2

yx;0 and R2
yx;þ which measure

the directionality: x  y, x $ y and x ! y, respectively. Thus, R2
yx is decomposed

summatively into three components:

R2
yx ¼

Z
�<0

j�yxð�Þj2d� þ j�yxð0Þj2 þ
Z
�>0

j�yxð�Þj2d�: ð2:10Þ

This can be written using our extended notation as

R2
yx ¼ R2

yx;� þ R2
yx;0 þ R2

yx;þ: ð2:11Þ
The term R2

yx;� quanti¯es the contribution from future xt to the present yt, using

values with negative lags from �yxð�Þ. The term R2
yx;0 has a single component that

quanti¯es the contribution of the instantaneous interaction between xt and yt to R
2
yx ,

using the single value �yxð0Þ. The term R2
yx;þ quanti¯es the contribution from past xt

to the present yt , using values with positive lags from �yxð�Þ.

2.4. Directionality measures in the frequency domain

In this section, we consider how the directionality measures, R2
yx;�, R2

yx;0 and R2
yx;þ

can be decomposed as a function of frequency. To do this, we de¯ne two sets of

corresponding measures: f 0yx;�ð!Þ, f 0yx;0ð!Þ, f 0yx;þð!Þ and jR 0yx;�ð!Þj2, jR 0yx;0ð!Þj2,
jR 0yx;þð!Þj2. The ¯rst set of measures are de¯ned by applying a Fourier transform to

the function �yxð�Þ with di®erent integration ranges for � :

f 0yx;�ð!Þ ¼
Z
�<0

�yxð�Þe�i!�d�; ð2:12Þ

f 0yx;0ð!Þ ¼ �yxð0Þ; ð2:13Þ

f 0yx;þð!Þ ¼
Z
�>0

�yxð�Þe�i!�d�: ð2:14Þ
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The lag ranges used for � here are the same as in Eq. (2.10), thus f 0yx;�ð!Þ is calculated
using only negative lags from �yxð�Þ and f 0yx;þð!Þ is calculated using only positive lags

from �yxð�Þ. The measure f 0yx;0ð!Þ is constant over all frequencies, this is just the

Fourier transform of a scaled impulse at � ¼ 0 in �yxð�Þ. The original R2
yx measure

can be recovered from these by integrating over the full frequency range as, c.f.

Eq. (2.2).

R2
yx ¼

1

2�

Z þ�

��
jf 0yx;�ð!Þj2d!þ

Z þ�

��
jf 0yx;0ð!Þj2d!þ

Z þ�

��
jf 0yx;þð!Þj2d!

� �
: ð2:15Þ

This result is derived following the same arguments as for the proof of Eq. (2.9). The

three directional measures can also be de¯ned in terms of the f 0 functions, for

example

R2
yx;� ¼

1

2�

Z þ�

��
jf 0yx;�ð!Þj2d!: ð2:16Þ

The equality in Eqs. (2.15) and (2.16) is valid when the f 0 measures are integrated

over the complete frequency range, ½��;þ��. Using the magnitude squared of each

measure, jf 0yx;�ð!Þj2, as an indication of the strength of the interaction at each fre-

quency may not preserve the original variance bound (Priestley, 1981), as the sum of

the three terms at each frequency may exceed the original coherence, jRyxð!Þj2.
To overcome this, we de¯ne a second set of measures, jR 0yx;�ð!Þj2, jR 0yx;0ð!Þj2,

jR 0yx;þð!Þj2. These preserve the variance bound given by the original coherence

estimate at each frequency

jRyxð!Þj2 ¼ jR 0yx;�ð!Þj2 þ jR 0yx;0ð!Þj2 þ jR 0yx;þð!Þj2: ð2:17Þ
This is achieved by rescaling the original coherence according to the relative mag-

nitude of the jf 0yx;�ð!Þj2 measures at each frequency

jR 0yx;�ð!Þj2 ¼
jf 0yx;�ð!Þj2

jf 0yx;�ð!Þj2 þ jf 0yx;0ð!Þj2 þ jf 0yx;þð!Þj2
jRyxð!Þj2; ð2:18Þ

jR 0yx;0ð!Þj2 ¼
jf 0yx;0ð!Þj2

jf 0yx;�ð!Þj2 þ jf 0yx;0ð!Þj2 þ jf 0yx;þð!Þj2
jRyxð!Þj2; ð2:19Þ

jR 0yx;þð!Þj2 ¼
jf 0yx;þð!Þj2

jf 0yx;�ð!Þj2 þ jf 0yx;0ð!Þj2 þ jf 0yx;þð!Þj2
jRyxð!Þj2: ð2:20Þ

The assumption underlying this rescaling is that the jf 0yx;�ð!Þj2 provide an indication

of the relative strength of the directionality at each frequency (Pierce, 1979). To

distinguish the two sets of measures from conventional cross-spectral densities and

conventional coherence functions we use the notation f 0 and R 0.

2.5. R2
yx measures over a restricted frequency range

A further useful re¯nement is consideration of R2
yx calculated over a restricted fre-

quency range. This may be useful in situations where the dependency between the
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signals of interest is restricted to a particular frequency range. For example many

neurophysiological signals are low pass in nature with little power and dependency

above a speci¯c cut-o® frequency. If the Nyquist frequency is considerably higher

than this cut-o® frequency then calculation of R2
yx using Eq. (2.2) will include values

where the coherence is not signi¯cant. In such cases, it may be appropriate to

introduce an upper limit in the integration to calculate R2
yx;� as

R2
yx;� ¼

1

2��

Z þ��

���
jRyxð!Þj2d!; ð2:21Þ

where � is a fractional multiplier for the Nyquist frequency, 0 < � � 1. To distin-

guish such measures, they will be referred to as R2
yx;� and in the directional case as

R2
yx;�;�, R2

yx;0;� and R2
yx;þ;�. To calculate the directionality measures over a restricted

frequency range we use the R 0 measures, as these satisfy the residual variance bound,

see Eq. (2.17). Thus

R2
yx;�;� ¼

1

2�

Z þ��

���
jR 0yx;�ð!Þj2d!: ð2:22Þ

A similar de¯nition is used for R2
yx;0;� and R2

yx;þ;�. The numerical value of � may be

more usefully indicated as absolute frequency in Hz, f�. So the directional measures

are then R2
yx;�; f�, R

2
yx;0; f� and R2

yx;þ; f�, where f� ¼ �fN and fN is the Nyquist fre-

quency, usually speci¯ed in Hz. This is the approach we adopt, thus R2
yx;þ;100

represents the directionality measure x ! y at frequencies up to 100Hz.

Some caution is needed in selecting the value of � particularly if comparisons are

made between R2
yx;� for di®erent bivariate data which do not use the same value of �.

The choice of suitable values of � are discussed in the results section.

2.6. Estimation and algorithmic details

This section gathers in one place all the necessary expressions to estimate our non-

parametric measures. The ¯rst step in the bivariate directionality analysis of two

random processes x and y is to construct the auto- and cross-spectral estimates. A

range of approaches exist for calculation of spectral densities, here we will adopt the

approach of Halliday et al. (1995) in which a record of durationR points is split into L

disjoint sections of length T points, with R ¼ LT . To distinguish between a pa-

rameter and its estimate we will use a hat symbol, ^, to indicate an estimate, thus

f̂ xxð!Þ, f̂ yyð!Þ and f̂ yxð!Þ are the estimated auto- and cross-spectra constructed using

average periodograms, see Halliday et al. (1995, Eq. (5.2)).

The pre-whitening ¯lter for each process is estimated from Eq. (2.3) as

ŵxxð!Þ ¼ f̂ xxð!Þ�1=2; ð2:23Þ
ŵyyð!Þ ¼ f̂ yyð!Þ�1=2: ð2:24Þ

The hat is used in each pre-whitening ¯lter to indicate that it is an estimate con-

structed from a single realization of each process. A di®erent realization will result in
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a di®erent pre-whitening ¯lter for each process. From our perspective this is ¯ne; the

objective is to pre-whiten auto-spectral estimates to be identical to 1 at each fre-

quency. The simplest approach to apply the ¯lter is in the frequency domain by

multiplying each discrete Fourier transform (dFT) by the appropriate ¯lter to get the

whitened dFT for each segment, l

dwT
x ð!; lÞ ¼ d T

x ð!; lÞŵxxð!Þ ðl ¼ 1; . . . ;LÞ; ð2:25Þ
dwT

y ð!; lÞ ¼ d T
y ð!; lÞŵyyð!Þ ðl ¼ 1; . . . ;LÞ: ð2:26Þ

The whitened auto- and cross-spectral estimates, f̂
w
xxð!Þ, f̂ w

yyð!Þ and f̂ w
yxð!Þ, are then

constructed using the same algorithmic approach as previously (average period-

ograms in our case). The auto spectral estimates, f̂
w
xxð!Þ and f̂ w

yyð!Þ, will now be 1 at

all frequencies. Thus, the coherence from the whitened sequences can be estimated as

jR̂w
yxð!Þj2 ¼ j f̂ w

yxð!Þj2: ð2:27Þ
Thiswill be identical to the original coherence estimate beforewhitening, jR̂yxð!Þj2, the
advantage now is that the pre-whitening process equates the magnitude squared co-

herence to the magnitude cross-spectrum, allowing the directionality measures to be

derived from the cross-spectrum estimate, f̂
w
yxð!Þ. The correlation, �yxð�Þ, is estimated

using a standard inverse Fourier transform of length T (e.g., Halliday et al., 1995).

The overall R2
yx measure can be estimated in either the frequency domain from

Eq. (2.7) or in the time domain from Eq. (2.9).

R̂
2
yx ¼

1

T

X
j

j f̂ w
yxð!jÞj2; ð2:28Þ

R̂
2
yx ¼

X
k

�̂yxð�kÞ2: ð2:29Þ

Here, !j are the discrete Fourier frequencies, !j ¼ 2�j=T . Both summations have T

terms. We do not distinguish between the two estimates in Eqs. (2.28) and (2.29). In

practice either can be used to estimate R2
yx , they give equivalent values.

The directionality measures can be calculated using �̂yxð�Þ as
R̂

2
yx;� ¼

X
�<0

�̂yxð�Þ2; ð2:30Þ

R̂
2
yx;0 ¼ �̂yxð0Þ2; ð2:31Þ

R̂
2
yx;þ ¼

X
�>0

�̂yxð�Þ2; ð2:32Þ

where � is lag speci¯ed as an integer in the range � T
2 � � < T

2 .

The frequency domain directionality measures use the quantities f 0 in Eqs. (2.12)–

(2.14), and R 0 in Eqs. (2.18)–(2.20). The ¯rst of these are estimated as

f̂
0
yx;�ð!jÞ ¼

X
�<0

�yxð�Þe i!j� ; ð2:33Þ
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f̂
0
yx;0ð!jÞ ¼ �̂yxð0Þ; ð2:34Þ

f̂
0
yx;þð!jÞ ¼

X
�>0

�yxð�Þe i!j� ; ð2:35Þ

where !j ¼ 2�j=T . The quantities in Eqs. (2.33)–(2.35) can be calculated using an

FFT algorithm of length T containing the relevant subset of �̂yxð�Þ, padded with

zeros as appropriate. The R 0 measures can be estimated directly by direct substi-

tution of jf̂ 0yx;�ð!jÞj2 estimates and coherence estimates, jR̂yxð!Þj2, into Eqs. (2.18)–

(2.20), providing the estimates jR̂ 0yx;�ð!Þj2, jR̂ 0yx;0ð!Þj2 and jR̂ 0yx;þð!Þj2.
Calculation of the R2 scalar metrics over a limited frequency range needs the

additional parameter � to be speci¯ed, where 0 < � � 1. From Eq. (2.21) we can

estimate R2
yx;� as

R̂
2
yx;� ¼

1

�T

X
jjj<�T=2

jR̂yxð!jÞj2: ð2:36Þ

An estimate of R2
yx;�;�, Eq. (2.22), is

R̂
2
yx;�;� ¼

1

�T

X
jjj<�T=2

jR̂ 0yx;�ð!jÞj2: ð2:37Þ

Similar expressions are used to estimate R2
yx;0;� and R2

yx;þ;�.

2.7. Assessing signi¯cance in parameter estimates

Approaches for assessing the signi¯cance of features in auto-spectral estimates are

described in Diggle (1990) and Bokil et al. (2007). The metric R2
yx can be viewed as a

correlation coe±cient between the bivariate random processes ðx; yÞ. Statistical

aspects of the correlation coe±cient are discussed in Kendall and Stuart (1961) where

expressions for standard errors and setting of con¯dence limits are discussed for a

range of scenarios including the case of no correlation. These expressions are based on

calculation of a scalar product-moment correlation coe±cient, calculated as a ratio of

the covariance to the product of the standard deviations. In our case the correlation

coe±cient R2
yx is estimated by integrating across the coherence function, thus the

statistical distribution will be di®erent. In the case of no correlation, R2
yx ¼ 0, the

distribution of R̂
2
yx will tend to normal as it is based on a sum over T points, see

Eq. (2.28). Since R̂
2
yx is derived from the estimated coherence, jR̂yxð!Þj2, we can use

existing approaches to determine the signi¯cance in coherence estimates to determine

the signi¯cance of R̂
2
yx . Signi¯cance levels for coherence estimates, based on a null

hypothesis of uncorrelated data are discussed in Brillinger (1975) and Rosenberg

et al. (1989). In particular Rosenberg et al. (1989) provide an expression for the

approximate upper 95% con¯dence limit for jR̂yxð!Þj2 estimated through an average

periodogram over L disjoint sections as

1� 0:051=ðL�1Þ: ð2:38Þ

262 D. M. HALLIDAY



Our approach is to use this for R̂
2
yx also: If the estimated coherence is signi¯cant at

frequencies of interest then R̂
2
yx can be interpreted as also signi¯cant at these fre-

quencies. This assumes that estimation of R̂
2
yx over a reduced frequency range, R̂

2
yx;�,

Eq. (2.36), incorporates the frequencies of interest. Equation (2.38) provides an ap-

proximate con¯dence limit based on the assumption of uncorrelated processes.

A more detailed analysis can be found in Brillinger (1975) where it is shown that the

covariance structure for di®erent frequencies has terms of order OðT �2Þ. Concerns
regarding the spread of correlation to adjacent frequencies can be addressed through

using a longer segment length, T , at the expense of fewer segments, L.

The primary use of the function �yxð�Þ is to allow decomposition of R2
yx into the

three components in Eq. (2.11). However, the measure may be useful visually as an

indicator of the general characteristics of the interactions between random processes

x and y. A graphical representation is likely to be the most useful way to present this,

in which case the large sample behavior needs to be investigated, and in particular

con¯dence intervals derived. From the de¯nition of �yxð�Þ in Eq. (2.8) and the results

in Halliday et al. (1995) and Rigas (1983, Theorem 4.9.1), under the assumption of no

correlation between processes x and y we can write

varf�yxð�Þg �
1

2�

� �
2 2�

R

� �Z �

��
f wxxð!Þf wyyð!Þd!: ð2:39Þ

Here R is the record length or number of data points, R ¼ LT . As a consequence of

the MMSE pre-whitening step then f wxx ð!Þ ¼ f wyy ð!Þ ¼ 1, all !. Thus,

varf�ð�Þg � 1

2�

� �
2 2�

R

� �
2� ¼ 1

R
: ð2:40Þ

The expected value and upper and lower 95% con¯dence limits can then be set as

0� 1:96ffiffiffiffi
R
p : ð2:41Þ

Inclusion of horizontal lines at these values on plots of estimates of �yxð�Þ will provide
a useful guide to interpret the signi¯cance or otherwise of speci¯c features at indi-

vidual lags. Equation (2.41) provides approximate con¯dence limits that are based on

the assumption of uncorrelated processes, where second- and fourth-order cross

spectral terms are assumed zero, with additional terms of order OðR�2logeðRÞÞ
(Rigas, 1983). A similar approach has proved useful for setting con¯dence limits on

cross-covariance (cumulant density) estimates (Halliday et al., 1995).

Equation (2.41) can be used to assess signi¯cance of the scalar measures R2
yx;�,

R2
yx;0 and R2

yx;þ which are estimated from �̂yxð�Þ using Eqs. (2.30)–(2.32). Therefore,

signi¯cant values of �̂yxð�Þ at lags � < 0 can be interpreted as an indication of sig-

ni¯cant R2
yx;�, and signi¯cant values of �̂yxð�Þ at lags � > 0 can be interpreted as an

indication of signi¯cant R2
yx;þ. Similarly, a signi¯cant value of �̂yxð0Þ can be inter-

preted as an indicator of a signi¯cant R2
yx;0.
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3. Results

3.1. Simulated three neurone networks

The data in this section were generated using simulated three neurone networks of

cortical neurones with dynamics similar to those in Halliday (2005). Each neuron was

modeled using a biophysical point neurone conductance model (Rm ¼ 40M�,

Cm ¼ 0:5 pF, �m ¼ 20ms) with resting potential, Vr ¼ �74mV, ¯ring threshold,

Vthresh ¼ �54mV and partial reset threshold of Vreset ¼ �60mV. The partial reset

mechanism allows point cortical neurone models to mimic the ¯ring variability seen

in vivo (Troyer & Miller, 1997). Each neurone received large scale background syn-

aptic activation consisting of 100 excitatory inputs ¯ring randomly at 40 spikes/s

(VEPSP ¼ 300�V from rest, VEPSP ¼ 220�V at Vthresh, �EPSP ¼ 0:2ms, reversal

potential EEPSP ¼ 0mV, EPSP: Excitatory Post Synaptic Potential) and 25 inhibi-

tory inputs ¯ring randomly at 40 spikes/s (VIPSP ¼ 16�V at Vthresh, � IPSP ¼ 10ms,

EIPSP ¼ �74mV, IPSP: Inhibitory Post Synaptic Potential). This background ac-

tivation generated membrane potential °uctuations with a mean value of �55mV

and SD of 1.25mV (measured with threshold mechanism suppressed) thus simulating

the balanced large scale input that cortical neurones typically receive in vivo (Des-

texhe et al., 2003).

The three neurone networks were connected in a range of con¯gurations using

both excitatory (VEPSP ¼ 2000�V from rest, VEPSP ¼ 2750�V at Vthresh, �EPSP ¼
1ms, EEPSP ¼ 0mV) and inhibitory connections (VIPSP ¼ 1000�V at Vthresh,

� IPSP ¼ 10ms, EIPSP ¼ �74mV) as illustrated in Fig. 1. Each con¯guration was run

10 times generating 100 s of spike train data for each run. The ¯ring rates ranged

from 8–21 spikes/s the coe±cient of variation (COV) ranged from 0.70–0.95 across all
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Fig. 1. Network con¯guration for three cortical neurone simulations. Excitatory connections are in-
dicated: \þ", inhibitory connections are indicated: \�". Con¯gurations (g) and (h), are the same as (a)
and (e), respectively, except an additional synaptic delay of 50ms is present in the connection from
1! 3 in (g) and 1 3 in (h).
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runs. Spike timings for each neurone were saved using a sampling interval of

�t ¼ 1ms.

The results for the simulated data are illustrated in Figs. 2–4 and Table 1. The

examples in the ¯gures use single datasets of 100 s duration each, the data in the table

are mean values over 10 repeat runs of 100 s duration each. Each run was analyzed

using the directionality analysis with a segment length of T ¼ 1024 over L ¼ 97

segments. All estimates in Figs. 2–4 have been constructed using L ¼ 97 segments. In

our average periodogram estimates, the number of segments, L, is used to determine

con¯dence limits, and it can also provide an indication of the sensitivity of the

approach.

Coherence estimates are plotted as a function of frequency in cycles/s, �j with

�j ¼ j=ðT�tÞ, 1 � j � T=2, where T is the segment length and �t the sampling

interval. Here�t ¼ 10�3 s. The original coherence estimates, jR̂21ð�jÞj2 (Fig. 2, black
lines) and jR̂31ð�jÞj2 (Fig. 3, black lines) indicate there is signi¯cant correlation

between all spike train pairs, with signi¯cant coherence up to � 150Hz for excitatory

connections and up to � 10Hz for inhibitory connections. The quantitative direc-

tionality measures are in Table 1, an upper limit of 250Hz was used to calculate the

directionality measures (� ¼ 0:5, f� ¼ 250Hz, against a Nyquist frequency of

fN ¼ 500Hz). The table shows the values for the estimated strength of interactions

between neurones 1! 2, R̂
2
21;250 and between neurones 1! 3, R̂

2
31;250, as well as the

estimated directional interactions: R̂
2
21;þ;250 and R̂

2
21;�;250 for neurones 1 and 2, and

R̂
2
31;þ;250 and R̂

2
31;�;250 for neurones 1 and 3. In our notation, R̂

2
yx represents an

estimate of the strength of interaction between x and y assuming process x is the

input and y is the output. Thus, the directional measures in Table 1 all assume that

neurone 1 is the reference (or input) neurone.

For con¯guration a the directionality estimates in Table 1, R̂
2
21;þ;250 and R̂

2
31;þ;250,

assign 93% of the overall correlation to the directions 1! 2 and 1! 3, in agreement

Table 1. Estimated values of R2
21 and R2

31 at frequencies up to 250Hz, f� ¼ 250Hz,
for the three neurone networks illustrated in Fig. 1, R̂

2
21;250, R̂

2
31;250, along with the

estimated directional coupling strengths at frequencies up to 250Hz, R̂
2
21;þ;250,

R̂
2
21;�;250, R̂

2
31;þ;250, R̂

2
31;�;250. The numbers in brackets for the directional measures are

the percentage of the overall correlation in each direction. All values represent the
mean over 10 repeat runs, where each run generated 100 s of spike train data for
analysis.

Con¯g. R̂
2
21;250 R̂

2
21;þ;250 R̂

2
21;�;250 R̂

2
31;250 R̂

2
31;þ;250 R̂

2
31;�;250

a 0.0712 0.0664 (93) 0.0046 (7) 0.0688 0.0638 (93) 0.0049 (7)

b 0.0561 0.0045 (8) 0.0514 (92) 0.0600 0.0048 (8) 0.0551 (92)

c 0.0802 0.0756 (94) 0.0045 (6) 0.0642 0.0059 (9) 0.0582 (91)

d 0.0122 0.0050 (41) 0.0071 (58) 0.0641 0.0060 (9) 0.0580 (90)

e 0.0124 0.0050 (40) 0.0074 (60) 0.0845 0.0364 (43) 0.0479 (57)

f 0.0689 0.0046 (7) 0.0642 (93) 0.0139 0.0075 (54) 0.0064 (46)

g 0.0722 0.0674 (93) 0.0046 (6) 0.0675 0.0629 (93) 0.0046 (7)

h 0.0129 0.0053 (41) 0.0077 (59) 0.1225 0.0657 (54) 0.0568 (46)
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with the con¯guration in Fig. 1(a). In Fig. 2(a), the decomposition of the coherence

by direction shows jR̂ 021;þð�jÞj2 (red line) is almost identical to the original coherence

estimate (black line), whereas jR̂ 021;�ð�jÞj2 (blue line) is close to zero at all frequen-

cies. A similar interpretation applies to jR̂ 031;þð�jÞj2 and jR̂ 031;�ð�jÞj2 in Fig. 3(a). The

time domain estimate in Fig. 4(a), �̂31ð�Þ has a signi¯cant peak at positive latencies

(maximum at þ2ms) and no signi¯cant features at negative latencies, in agreement

with the con¯guration in Fig. 1(a).

In con¯guration b, the directionality is reversed [Fig. 1(b)], this is correctly

identi¯ed by the entries in Table 1 (row 2), by the decomposition of coherence by

direction [Figs. 2(b) and 3(b)] and by the decomposition in the time domain

[Fig. 4(b)], where the signi¯cant features are at negative latencies.

Con¯gurations c and d include reciprocal excitatory-inhibitory connections be-

tween neurones 1 and 3. Figures 3(c) and 3(d) indicate that the excitatory connection

is much stronger than the inhibitory connection. This is further illustrated in

Figs. 4(c) and 4(d) where the relative timescales of the excitatory and inhibitory

connections are highlighted ��� a short duration peak at negative latencies for ex-

citatory connection (time constant �EPSP ¼ 1ms) from 1 3 and a much broader

depression only just reaching signi¯cance at positive latencies for inhibitory con-

nection (� IPSP ¼ 10ms) from 1! 3. Con¯gurations e and f have symmetrical
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Fig. 2. (Color online) Directionality analysis for interactions between neurones 1 and 2. Con¯guration
as shown in Fig. 1. Shown are original coherence estimate jR̂21ð�Þj2 (black line) and estimated direc-
tional measures from 1! 2, jR̂ 021;þð�Þj2 (red line) and directional measure from 1 2, jR̂ 021;�ð�Þj2 (light
blue line). The horizontal dashed line is the upper 95% con¯dence limit for the ordinary coherence based
on the assumption of uncorrelated processes.
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reciprocal connections between neurones 1 and 3. The metrics in Table 1 assign

around 50% of the overall correlation to each direction as expected. The symmetry is

further highlighted by the decomposition of the coherence in Figs. 3(e) and 3(f) and

the decomposition by lag in Figs. 4(e) and 4(f).

The ¯nal two con¯gurations g and h are similar to a and e, respectively, except

there is an additional synaptic delay of 50ms in the connection from 1! 3 in a and

1 3 in e. These two con¯gurations demonstrate that the directionality metrics are

not a®ected by the presence of additional delays in the pathways. For con¯guration g

the estimate in Fig. 3(g) is not distinguishable from that in Fig. 3(a). The delay is

clearly seen in Fig. 4(g). The directional metrics in Table 1 row g are identical to

those in row a. In con¯guration h, the coupled neurones now oscillate with a fun-

damental frequency around 18 Hz, this is seen in the original coherence in Fig. 4(h).

The increased strength of correlation is re°ected by the increased value of R̂
2
31;250 in

Table 1, the decomposition by direction suggests a similar strength in each direction,

as does the decomposition of the coherence by direction in Fig. 3(h). The increased

latency in the connection from 1 3 is clearly seen in Fig. 4(h), note that this is

una®ected by the strong oscillatory coupling and rhythmic discharges of the two

model neurones.
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Fig. 3. (Color online) Directionality analysis for interactions between neurones 1 and 3. Con¯guration
as shown in Fig. 1. Shown are original coherence estimate jR̂31ð�Þj2 (black line) and estimated direc-
tional measures from 1! 3, jR̂ 031;þð�Þj2 (red line) and directional measure from 1 3, jR̂ 031;�ð�Þj2 (light
blue line). The horizontal dashed line is the upper 95% con¯dence limit for the ordinary coherence based
on the assumption of uncorrelated processes.
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3.2. Experimental data

In this section, we consider analysis of an experimental dataset consisting of simul-

taneous recordings of the spike timings from a®erent sensory receptors while subject

to e®erent stimulation of the same sensory ending. The data were obtained from an

isolated muscle spindle (Halliday et al., 1987; Gladden & Matsuzaki, 2002) where the

discharges of the primary (Ia) and secondary (II) endings were made while one or two

separate static gamma (�s1, �s2) were stimulated with electrical pulses with a random

(or exponential) distribution of intervals. For further details and time and frequency

analyzes of this dataset see Rosenberg et al. (1989) and Brillinger et al. (2009). Here

two 60 s records are analyzed using nonparametric directionality analysis. In the ¯rst

record, �s1 was stimulated, in the second record both �s1 and �s2 were stimulated.

The directionality analysis considers the relationship between the �s inputs and the

Ia, II outputs in both cases. The directionality measures are given in Table 2, for

frequencies up to 100 Hz, the overall strength of correlation ranges from 0.05 to 0.18.

The percentage of this overall correlation which is in the forward direction, i.e., from

�s ! II and �s ! Ia ranges from 78% to 96%. Thus, there is clear evidence that the

directionality is in the forward direction for this data. Since the pulse sequences

driving the electrical stimulation were generated independently we would expect the
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Fig. 4. Time domain directionality analysis for interactions between neurones 1 and 3. Con¯guration
as shown in Fig. 1, these use the same data as analyzed in Fig. 3. Shown are estimated correlation �̂31ð�Þ
along with null value (dashed horizontal line at zero) and upper and lower 95% con¯dence limits (solid
horizontal lines) based on the assumption of uncorrelated processes. Note that the lag range is not the
same for all panels, a dotted vertical line at � ¼ 0 is included for reference.

268 D. M. HALLIDAY



directionality to be in the forward direction for this dataset. The data in Table 2 is in

broad agreement with our expectations.

Figures 5 and 6 show the frequency domain and time domain analyses of the same

data is in Table 2. The frequency domain estimates in Fig. 5 have the same format as

previously, with the original coherence estimate, jR̂yxð�jÞj2 in black and the forward,

jR̂ 0yx;þð�jÞj2, and reverse, jR̂ 0yx;�ð�jÞj2, directional measures shown in red and blue,

respectively. For all six interactions there is a clear consensus that the directionality

of interaction is in the forward direction ��� the red traces, jR̂ 0yx;þð�jÞj2, lie either on
or just below the original coherence estimates. In contrast the blue traces,

jR̂ 0yx;�ð�jÞj2, all °uctuate close to or around zero over the frequency range of interest.

The time domain estimates, �̂yxð�Þ, in Fig. 6 all have a similar form with a clear

excitatory e®ect of the gamma inputs onto the primary and secondary sensory

Table 2. Values of directionality measures R̂
2
yx;100,

R̂
2
yx;�;100 and R̂

2
yx;þ;100 for two records from an isolated

muscle spindle where one or two static gamma inputs were
stimulated with sequences of random pulses while the
discharges of the primary (Ia) and secondary (II) endings
were simultaneously recorded. The directional coupling
strengths are estimated at frequencies up to 100Hz,
f� ¼ 100Hz. See text for further details. The percentage
in brackets in the last column represents the percentage of
R̂

2
yx;100 that is accounted for by R̂

2
yx;þ100, i.e., the per-

centage in the direction from �s ! II and �s ! Ia.

No Record: x ! y R̂
2
yx;100 R̂

2
yx;�;100 R̂

2
yx;þ;100

a 1: �s1 ! II 0.067 0.015 0.052 (78%)

b 1: �s1 ! Ia 0.18 0.0087 0.170 (95%)

c 2: �s1 ! II 0.048 0.0061 0.042 (87%)

d 2: �s1 ! Ia 0.18 0.0076 0.175 (96%)

e 2: �s2 ! II 0.083 0.010 0.073 (87%)

f 2: �s2 ! Ia 0.065 0.011 0.054 (82%)
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Fig. 5. (Color online) Frequency domain directionality analysis for the same data as described in
Table 2. The channel de¯nitions are in column 1 of Table 2. Each panel shows estimates of the original

coherence, jR̂yxð�Þj2 (black trace), and decomposition of this into the forward, jR̂yx;þð�Þj2 (red trace)

and reverse, jR̂yx;�ð�Þj2 (blue trace), directions. The dashed horizontal line is the upper 95% con¯dence

limit for the coherence estimates, based on the assumption of uncorrelated processes.
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endings at positive latencies. There is no consistent evidence in favor of any e®ects at

negative latencies. While there are departures outside the upper and lower 95%

con¯dence intervals at negative latencies, we regard these as chance e®ects, which

should happen on average for 5 points in every 100. As well as con¯rming the di-

rectionality of interaction the plots in Fig. 6 give some further insight into the

dependency of the sensory discharges on the stimulation. The e®ect of the �s1 input

onto the secondary ending [Figs. 6(a) and 6(c)] are longer latency (around þ 20ms)

and more di®use than onto the primary ending [Figs. 6(b) and 6(d)], which have
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Fig. 5. (Continued)
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Fig. 6. Time domain directionality analysis for the same data as described in Table 2. The channel
de¯nitions are in column 1 of Table 2. Each panel shows estimates of the correlation measure, �̂yxð�Þ.
The dashed horizontal line is the null value (zero), the solid horizontal lines are the upper and lower 95%
con¯dence limits based on the assumption of uncorrelated processes.
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latencies of +14ms and +12 ms, respectively. The second gamma input, �s2 has a

shorter latency onto the secondary ending, þ16ms [Fig. 6(e)] and a similar latency

onto the primary ending, þ13ms [Fig. 6(f)] than the simultaneously active �s1 input

[Figs. 6(c) and 6(d)]. Taken together the R2 metrics in Table 2, the frequency domain

directionality measures in Fig. 5 and the time domain directionality measures in

Fig. 6 give a clear and consistent indication of the strength of dependence and

directionality of interaction between the �s stimuli and the discharges of the sensory

endings.

4. Discussion

4.1. General remarks

We have shown how a combined frequency domain and time domain approach can

be used to construct nonparametric measures of directionality in bivariate data. Our

approach is to combine power spectral density analysis with a MMSE ¯ltering step

which reduces the coherency to the cross-spectrum. The ¯ltering derives two new

processes which have the same correlation structure (coherence and phase) as the

original processes, but with spectral densities of 1 at all frequencies. This removes

the denominator terms from the coherence function, compare Eq. (2.1) with

Eq. (2.5). The complex coherency reduces to the cross-spectrum of the derived

processes, f wyxð!Þ, allowing the overall correlation, R2
yx , to be decomposed using

Parseval's theorem according to time lag, see Eqs. (2.9) and (2.10), which decom-

pose the total correlation coe±cient summatively into three components: R2
yx;�,

R2
yx;0 and R2

yx;þ. These measure the strength of directionality from: x  y, x $ y

and x ! y, respectively, assuming that x is the input process and y the output

process. Estimates of the scalar directionality measures have a direct interpretation

related to the overall strength of correlation in each direction. A further re¯nement

de¯ned the measures over a restricted frequency range, f�: R2
yx;�; f�, R

2
yx;0; f� and

R2
yx;þ;f�.
The function that we use to derive the directionality measures is the correlation

function, �yxð�Þ de¯ned in Eq. (2.8) as the inverse Fourier transform of the cross-

spectrum between the whitened processes, f wyxð!Þ. This function captures the corre-

lation structure in the time domain between the two whitened processes in a similar

manner to the way the ordinary cross-covariance (or cumulant density) captures the

temporal structure between the original processes as represented in the ordinary

cross-spectrum, fyxð!Þ. However, �yxð�Þ is free from any within variable e®ects. The

whitened processes have the same coherence and phase estimates as the original

processes, so all signi¯cant features in estimates of �yxð�Þ will re°ect the interaction
between the processes, as illustrated in Figs. 4 and 6. In practice numerical issues will

result in small di®erences in the coherence and phase estimates between the original

and those for the whitened processes. For the results presented here these di®erences

are less than 10�15 in absolute terms (using MATLAB), there are no practical con-

sequence of these di®erences for the directionality estimates.
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We do not directly generate the whitened processes. Instead the dFTs are calcu-

lated using Eqs. (2.25) and (2.26) and all parameters are derived from these dFTs.

The characteristics of the derived processes are discussed in Sec. 2.2. The MMSE

¯lters used to derive the whitened processes are de¯ned in the frequency domain,

Eq. (2.3), these are real valued even symmetric in frequency !. The time domain

equivalent ¯lter can be estimated through an inverse Fourier transform, a process

used to obtain time domain wavelet functions for classes of wavelets de¯ned in the

frequency domain (Olhede & Walden, 2002). In our case these will be ¯nite impulse

response (FIR) ¯lters, typically high pass although the precise form depends on the

nature of the electrophysiological signals under consideration. The coe±cients of

these FIR ¯lters will be symmetrical about the current time sample and will therefore

be zero phase ¯lters with no delay (Oppenheim & Schafer, 1975). The ¯ltering pro-

cess preserves the timing information between the original processes as encoded in the

phase estimate. The FIR ¯lters will be noncausal, however, as our processing is done

o®line, this is not an issue.

The ordinary coherence function, jRyxð!Þj2, decomposes the overall correlation,

R2
yx , as a function of frequency. However, it provides no indication regarding the

direction of interaction. To complement the scalar directionality measures we have

also introduced a decomposition of the coherence using three frequency domain

functions: jR 0yx;�ð!Þj2, jR 0yx;0ð!Þj2, jR 0yx;þð!Þj2. Estimates of these functions are used

to infer directionality at each frequency. These functions decompose the coherence in

a summative manner, and thus have an immediate interpretation in terms of the

strength of directional interactions at a particular frequency.

The correlation function �yxð�Þ can also be used to provide a visual representation

of the pattern and direction of interaction between the signals. Con¯dence limits

were derived for a null hypothesis of no linear dependence, Eq. (2.41). The inter-

pretation of this measure is similar to a traditional cross-correlation estimate. One

consequence of using the optimal MMSE whitening step is to remove all structure in

the input and output signals, thus estimates of �yxð�Þ are a useful addition to the

normally used cross-covariance or cumulant density functions in the time domain.

The cross covariance function can contain features re°ecting the internal structure of

one or both of the process ðx; yÞ, the MMSE whitening step removes these features.

Thus, the function �yxð�Þ is likely to be a useful indicator of the relative timing of

between variable e®ects that is free from within variable e®ects.

4.2. Summary of results

The nonparametric measures were applied to both simulated and real spike train

data. Application to the simulated data, Sec. 3.1, demonstrated that all measures

correctly inferred the directional interactions between the three neurones, as de¯ned

in Fig. 1. The scalar directionality metrics in Table 1 are in agreement with Fig. 1 as

are the estimated R 0 functions in Figs. 2 and 3. The estimates, jR̂ 0yx;�ð�jÞj2 and

jR̂ 0yx;þð�jÞj2 have a direct interpretation in terms of the strength of correlation in each
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direction as a function of frequency. We believe this direct interpretation will add to

the appeal of these measures. Application to experimental data used a dataset con-

sisting of random stimulation of primary and secondary sensory endings in a single

identi¯ed muscle receptor. The directionality analysis in scalar (Table 2) and func-

tional form (Figs. 5 and 6) correctly identi¯ed the directionality in this case.

4.3. Relationship with parametric approaches

Much of the previous work on directionality has relied on parametric approaches,

where autoregressive models are used to describe the random processes and their

interactions. We have already commented in the introduction on the issues sur-

rounding the validity, or otherwise, of using autoregressive models for complex neural

data. Notwithstanding this issue, a natural question is to ask how the scalar R2

measures and the magnitude squared R 0 functions relate to these previous approa-

ches. Two of the most commonly used measures are those proposed by Granger

(1969) and Geweke (1982). Geweke proposed a directional measure to measure linear

feedback from y ! x of the form fy!x ¼ logeðj�1j
j�2jÞ, where �1 is the residual after

modeling process x on its own history, and �2 is the residual after modeling process x

on its own history and the history of process y. In the case of no feedback, fy!x ¼ 0,

although in practice negative values can sometimes be obtained (Gersch, 1972). In

the Granger framework, the measure of the causal e®ect of y onto x is taken as

1� ðj�2j
j�1jÞ, which also has the value 0 in the case of no causal interaction.

Our framework considers the de¯nition of the R2 scalar measures in terms of the

coherence function. If the variances, �1 and �2 in the autoregressive model are

equated to the variance of the output and the residual variance in a linear ¯lter,

respectively (Priestley, 1981), then our R2
yx directionality measure is equivalent to

the Granger measure. Extending this argument, then the Geweke feedback measure

could be constructed as fy!x ¼ �logeð1� R2
yxÞ, however, as has been pointed out

(Lindsay & Rosenberg, 2011) this does not directly measure directional e®ects as R2
yx

is not sensitive to the direction of interaction. A possible approach here, if Geweke

style measures are required, might be to consider the three terms �logeð1� R2
yx;�Þ,

�logeð1� R2
yx;0Þ and �logeð1� R2

yx;þÞ as the relevant measures. However, the va-

lidity of this suggestion has to be veri¯ed still. The present nonparametric approach

should be viewed as complementary to the previously discussed parametric methods.

In situations well described by low-order AR models the Granger (1969) and Geweke

(1982) metrics can be used. If there is uncertainty regarding model order, a high

model order is required or there are concerns regarding the validity of an AR ap-

proach, then the nonparametric approach outlined here may be preferable.

4.4. Alternative nonparametric approaches

While much of the work on directional interactions in time series has used parametric

(autoregressive) approaches, a number of studies have considered nonparametric

approaches. Lindsay and Rosenberg (2011) considered a purely frequency domain
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approach to directed interactions using coherence and partial coherence functions.

They also discuss how unobservable inputs can be taken into account. Eichler et al.

(2003) considered how partial spectra could be inverted to generate partial correla-

tion measures of association for spike train data using scaled partial covariance

density estimates. This used a form of normalization which takes into account the

¯ring rate of the two spike trains. Our approach is similar in concept, but by using the

MMSE whitening step we e®ectively remove both ¯rst- and second-order (periodic)

components from the time domain correlation function �yxð�Þ. Thus, all signi¯cant
features in time domain plots (e.g., Fig. 4) re°ect the interactions between the

neurones rather than rhythmic components in the individual spike train ¯ring times.

4.5. Concluding remarks

We have presented a novel approach to estimation of directionality measures that is

nonparametric, can be applied to both spike train and time series data (as well as

hybrids of the two) and can readily be incorporated into a bivariate spectral analysis.

The analysis generates two sets of parameters, a scalar set which decomposes the

overall strength of correlation R2
yx summatively into three directional components:

R2
yx;�, R2

yx;0 and R2
yx;þ, and a set of functions that decompose the original coherence

function jRyxð!Þj2 summatively into three directional functions: jR 0yx;�ð!Þj2,
jR 0yx;0ð!Þj2 and jR 0yx;þð!Þj2. Estimates of these have a direct interpretation in terms of

the strength of correlation (overall or as a function of frequency). A key aspect of our

framework is a combined time and frequency domain approach, in the time domain

the key parameter is the correlation function �yxð�Þ. Use of the MMSE whitening step

removes all within variable e®ects so that this function characterizes only e®ects

between processes x and y.

Areas for further work include development of expressions for con¯dence limits for

the R2 scalar measures and jR 0ð!Þj2 functions, and exploration of application to a

wider range of data. It is recognized that auto-regressive-based approaches do not

scale well (Granger, 1969; Geweke, 1982), a new model has to be constructed for each

additional process and the comparison of di®erent autoregressive models can be

problematic (Lindsay & Rosenberg, 2011). Future work will explore to what extent

nonparametric multivariate spectral analysis (Salvador et al., 2005) can be adapted

to provide multivariate nonparametric directionality analyses.

5. Software

MATLAB software for nonparametric bivariate directionality analysis is available

for free download from the NeuroSpec archive at: http://www.neurospec.org/.
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